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Resumen

Esta tesis reporta la demostración experimental de una extensión del teorema de la coherencia

de polarización (PCT), un teorema que estableció una restricción entre la distinguibilidad y la

visibilidad, dos cantidades que sirven, respectivamente, como medida de el comportamiento de

el tipo partícula y de el tipo onda los cuales pueden aparecer simultáneamente en los arreglos

interferométricos. Si bien el PCT se aplica tanto en el régimen cuántico como en el clásico,

esta tesis se centra en el caso cuántico. Los experimentos se llevaron a cabo con fotones indi-

viduales. La extensión teórica de la PCT que se sometió a prueba experimental es mucho mas

complicada que la PCT original y planteó varios retos técnicos. Esta tesis informa de la exitosa

realización de los experimentos. Las técnicas utilizadas también podrían emplearse, con ligeras

modificaciones, al trabajar con luz clásica. El marco general, al que contribuyen nuestros re-

sultados, se refiere a la llamada dualidad onda-partícula y al principio de complementariedad

de Bohr. Este es un tema de intensa investigación que aborda no solo cuestiones fundamentales

de la mecánica cuántica, sino también aplicaciones prácticas en la ciencia de la información

cuántica.
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Abstract

This thesis reports the experimental display of an extension of the polarization coherence theo-

rem (PCT), a theorem that established a constraint between distinguishability and visibility, two

quantities that serve, respectively, as a measure of particle-like and wave-like behavior that may

simultaneously appear in interferometric arrangements. While the PCT applies in both quantum

and classical regimes, this thesis focuses on the quantum case. The experiments were conducted

using single photons. The theoretical extension of the PCT that was submitted to experimental

test is much more involved than the original PCT and put several technical challenges. This

thesis reports the successful implementation of the experiments. The techniques used could

also be employed, with slight modifications, when working with classical light. The general

framework, in which our results make a contribution, refers to so-called wave-particle dual-

ity and Bohr’s complementarity principle. This is a topic of intensive research that addresses

not only foundational issues in quantum mechanics but also practical applications in quantum

information science.
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Chapter 1

Preliminary concepts

In this chapter, basic concepts will be presented to support the formalism behind the experimen-

tal research. The definitions of Hilbert space, two-state systems, mixed states for polarization

and path qubits and the polarization coherence theorem (PCT) establish the basis of the present

thesis.

1.1 Two-state systems

1.1.1 Hilbert space

The vector space in which all quantum states lie is a Hilbert space. Formally, a Hilbert space

is an inner-product space V which is a Banach space with respect to the induced norm [1]. If

V is an inner product space, it maps (·, ·) : V × V → C satisfying the conditions of Hermitian

symmetry, linearity and positive definiteness. These conditions are shown below, in the same
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order:

(x, y) = (y, x) ∀x, y ∈ V

(αx1 + βx2, y) = α(x1, y) + β(x2, y) ∀x1, x2, y ∈ V, α, β ∈ C

(x, x) ≥ 0 and (x, x) = 0⇔ x = 0 ∀x ∈ V.

(1.1)

It is possible to induce a norm ‖·‖ in V with inner product (·, ·), as follows:

‖x‖ =
√

(x, x) ∀x ∈ V. (1.2)

Finally, the Hilbert space is a Banach space if every Cauchy sequence xi of vectors converges

to some vector x in that space. For simplicity, we will use a finite dimensional Hilbert space

Cn. In particular, the subspace C2 allows to define a two-state systemH2.

1.1.2 Qubit

Classical physics was not successful in predicting the result of the Stern-Gerlach experiment.

This experiment sheds lights on the nature of spin states, some of which might seem counterin-

tuitive. A setup of three Stern-Gerlach devices and filters allow to make evident that, e.g., spin

up in +z direction is a superposition of spin up and spin down states on the x direction and vice

versa. This holds for any two-state system [2]. In addition, many other physical entities have

the same property of quantum superposition. Under realistic conditions, there is a finite time of

coherence, i.e., a finite duration of the quantum superposition property. It is useful to define a

mathematical object that represents the superposition of two states. This is the quantum bit or

qubit.

In classical information and classical computation, the bit is the fundamental unit. It can take

on two values, 0 and 1. In contrast to a classical bit, a qubit has a variety of possible states,

because superposition is its primary feature.
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A general qubit will be built as a superposition of states. The orthonormal basis {|0〉 , |1〉} and

the α, β ∈ C coefficients define a general state on a two-state system as

|ψ〉 = α |0〉+ β |1〉 , (1.3)

where |ψ〉 ∈ H2.

From a different angle, a geometric representation of a qubit can be visualized on a unit sphere

S2. Given the state

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 , (1.4)

where θ, ϕ ∈ R, it defines a point or a vector, with unit length, on the surface of the sphere

shown in Fig. 1.1

Figure 1.1: Bloch sphere and qubit representation.

In quantum computing this sphere is named Bloch sphere and it is used on the context of a

two-state system for representing pure states.
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1.2 Path and polarization qubits

1.2.1 Polarization qubit

Polarized states are two-state systems. The description of polarization is given in terms of the

electric field of paraxial beams or single photon beams. This field corresponds to a plane wave

and can be given in terms of two orthogonal polarization vectors, which are also orthogonal to

the wave vector, the vector that points along the beam. A general electric field can be written as

E(r, t) =
i

ε
1/2
0 L3/2

∑
k

∑
s

ωk[uks(t)εεεk,se
ik·r − c.c.], (1.5)

where the angular frequency is ωk = ck, the mode amplitude is uks(t) and the polarization

vector is εεεk,s with s = 1, 2.

In light of the aforementioned description of electric field, it is convenient to choose

k · εεεk,s = 0, (s = 1, 2), (1.6)

εεε∗k,s · εεεk,s′ = δss′(s, s
′ = 1, 2), (1.7)

εεε∗k,1 × εεεk,2 =
k

k
= k̂, (1.8)

where eq. (1.6) means that the wave vector is orthogonal with each polarization vector, eq. (1.7)

means that the polarization vectors are orthonormal and eq. (1.8) that the polarization vectors

and wave vector form a right-handed triad [3].

For the sake of simplicity, we refer only to the first part of eq. (1.5). This part will be called

positive-frequency electric field, and is given by

E+(r, t) =
i

ε
1/2
0 L3/2

∑
k

∑
s

ωk[uks(t)εεεk,se
ik·r]

=
i

ε
1/2
0 L3/2

∑
k

ωk[ukH(t)εεεk,He
ik·r + ukV(t)εεεk,Ve

ik·r],

(1.9)
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where εεεk,H , εεεk,V are the horizontal and vertical polarization vectors for each wave-vector k. For

paraxial beams, there is a predominancy of a propagation direction, parallel to some given k,

and the electric field is reduced to having only the components

εεεHE
+
H(r, t) =

i

ε
1/2
0 L3/2

∑
k

ωkukH(t)εεεk,He
ik·r,

εεεVE
+
V (r, t) =

i

ε
1/2
0 L3/2

∑
k

ωkukV (t)εεεk,V e
ik·r.

(1.10)

In the case of a laser beam, the frequency bandwidth is very narrow and only modes close to

the axis of propagation should be taken into account giving the electric field

E+(r, t) = εεεHE
+
H(r, t) + εεεVE

+
V (r, t). (1.11)

The vectors εεεH and εεεV conform an orthonormal basis, whose members are perpendicular to

the propagation direction k. They define a right handed triad. These basis vectors have a

representation in a Hilbert spaceH2. We can use Dirac notation and make the correspondence

εεεH → |H〉

εεεV → |V 〉

εεεD →
1√
2
(|H〉+ |V 〉) = |D〉

εεεA →
1√
2
(|H〉 − |V 〉) = |A〉

εεεR →
1√
2
(|H〉+ i |V 〉) = |R〉

εεεL →
1√
2
(|H〉 − i |V 〉) = |L〉 ,

(1.12)

where D/A refer to diagonal/antidiagonal polarization and R/L to right and left polarization.

A general polarization state in Hilbert spaceH2 is given by

|ψ〉 = α |H〉+ β |V 〉 , (1.13)
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where α, β ∈ C and {|H〉 , |V 〉} are the components for the orthonormal basis H2. Similarly,

we can express |ψ〉 in the other bases {|D〉 , |A〉} and {|R〉 , |L〉}.

1.2.2 Path and polarization qubits

As it was mentioned in subsec. (1.2.1), two polarization vectors can be associated to a wave

vector. Therefore, it is possible to use two wave vectors as two possible paths to form a path

qubit. To illustrate this, we let the electric field being modified as it is shown below

E+(r, t) =
i

L3/2

∑
k

(~ωk
2ε0

)1/2
[akH(0)εεεk,He

i(k·r−ωt) + akV(0)εεεk,Ve
i(k·r−ωt)], (1.14)

where the mode amplitudes ukH(0) and ukV (0) are replaced by the operators akH(0) and

akV (0), respectively.

For a general state with many paths, the Fock state with infinite occupation numbers is

|{n}〉 =
∏
k,s

|nk,s〉 , (1.15)

where |{n}〉 represent all the set possibles of nk,s.

Orthonormality is fulfilled in eq. (1.16)

〈{n}|{m}〉 =
∏
k,s

δnk,smk,s
. (1.16)

This product represents propagation mode and polarization mode with k and s, respectively,

with the number of photons being n. Propagation and polarization modes are perpendicular,

i.e., the two possible polarizations (s) are perpendicular to the propagation mode k. The two

states of polarization are orthogonal. The two states of polarization and mode of propagation

form a right hand Cartesian basis.

An extensive form of eq. (1.15) for one photon state in the propagation k2 and polarization H

6



is

... |0k1,H〉 |0k1,V 〉 |1k2,H〉 |0k2,V 〉 |0k3,H〉 |0k3,H〉 ... (1.17)

It is more practical to reduce the expression for two orthogonal propagation modes k1 and k2,

given by

|k1, H〉 = ... |1〉k1,H
|0〉k1,V

|0〉k2,H
|0〉k2,V

...,

|k2, H〉 = ... |0〉k1,H
|0〉k1,V

|1〉k2,H
|0〉k2,V

...
(1.18)

so that they read

|k1, H〉 ≡ |X,H〉 ≡ |X〉 ⊗ |H〉 ,

|k2, H〉 ≡ |Y,H〉 ≡ |Y 〉 ⊗ |H〉 ,
(1.19)

where |X,H〉 and |Y,H〉 are similarly defined, as perpendicular to one another. A general, path

state is given by

|ψ〉 = α |X〉+ β |Y 〉 , (1.20)

where α, β ∈ C and {|X〉 , |Y 〉} is an orthonormal basis on Hilbert space H2. In addition, it

is possible to define a density matrix as it is done with polarization states, but our experiments

were performed with pure path states.

1.3 Mixed states for polarization and path qubits

There is no pure state in nature. Real states are always an ensemble of many states, each one

of its constituents entering with some probability. The uncertainty of the states comes from

incomplete knowledge about the system and the representation of mixed states can be given
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with density matrices. A mixed state is generally given by

ρ =
∑
i

piρi, (1.21)

where ρi = |ψi〉〈ψi| is a pure state and pi its probability. That is, pure states are combined

incoherently in such way that the average of the states ρi with weights pi results in ρ.

Given a two-state system {|H〉 , |V 〉} in Hilbert spaceH2, a general pure state |ψi〉 = ch,i |H〉+
exp(iφi)cv,i |V 〉, whose coefficients ch,i, cv,i are complex values, define the density matrix given

by

ρi =

 |ch,i|2 exp(−iφi)ch,ic∗v,i
exp(iφi)c

∗
h,icv,i |cv,i|2

 . (1.22)

As an example, let us consider the case in which all states are identical, except for their phase

distribution φi. The states can then be written as |ψi〉 = ch |H〉 + exp(iφi)cv |V 〉 and their

corresponding density matrices read

ρi =

 |ch|2 exp(−iφi)chc∗v
exp(iφi)c

∗
hcv |cv|2

 . (1.23)

If all the states occur with the same probability pi = 1/N , where N is the number of states, the

off diagonal elements of the total density matrix reduce to

ρh,v =
∑
i

pi exp(−iφi)chc∗v

= chc
∗
v

1

N

N∑
i

exp(−iφi)

= chc
∗
v

1

2π

∫ 2π

0

exp(−iφ) dφ

= 0.

(1.24)
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It means that in mixed states the coherence between |H〉 and |V 〉 cancels out [4], giving rise to

a diagonal density matrix

ρi =

|ch|2 0

0 |cv|2

 , (1.25)

which is the sum of two pure states |H〉〈H| and |V 〉〈V |, with probabilities |ch|2 and |cv|2, re-

spectively.

In Sec. 1.1, we defined the geometric representation of a qubit. Replacing {|0〉 , |1〉} by

{|H〉 , |V 〉}, a state can be represented on S2.

An arbitrary mixed state represents an ensemble of polarization states given by

ρM =
σ0 + ~s · ~σ

2
, (1.26)

where σ0 = 1, ~s =
(〈

ˆS(1)
〉

〈Ŝ0〉 ,
〈Ŝ2〉
〈Ŝ0〉 ,

〈Ŝ3〉
〈Ŝ0〉

)
and ~σ = (σ1, σ2, σ3) are the identity matrix, the

Stokes vector and the Pauli matrices, respectively. The Stokes vector represents a vector on the

Poincare sphere, plotted in Fig. 1.2, with length |~s| ≤ 1 giving the degree of polarization, which

is defined as P =
√
~s · ~s.

Figure 1.2: Poincare sphere.
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The quantum Stokes vector operators are defined as follows:

Ŝ0 = a†HaH + a†V aV ,

Ŝ1 = a†HaH − a†V aV ,

Ŝ2 = a†DaD − a†AaA,

Ŝ3 = a†RaR − a†LaL.

(1.27)

The mean values are

s1 =
〈
Ŝ1

〉
/
〈
Ŝ0

〉
=
〈n̂H〉 − 〈n̂V 〉
〈n̂H〉+ 〈n̂V 〉

,

s2 =
〈
Ŝ2

〉
/
〈
Ŝ0

〉
=
〈n̂D〉 − 〈n̂A〉
〈n̂H〉+ 〈n̂V 〉

,

s3 =
〈
Ŝ3

〉
/
〈
Ŝ0

〉
=
〈n̂R〉 − 〈n̂L〉
〈n̂H〉+ 〈n̂V 〉

.

(1.28)

Some cases of degree of polarization will be related to a combination of states of |H〉〈H| and

|V 〉〈V |. Some examples are the pure polarized state, the partially polarized state and the non-

polarized state given by eq. (1.29), eq. (1.30) and eq. (1.31), respectively, as it is shown below

ρ = |V 〉〈V | ~S = (−1, 0, 0) P = 1, (1.29)

ρ =
3 |H〉〈H|

4
+
|V 〉〈V |

4
~S = (1/2, 0, 0) P = 1/2, (1.30)

ρ =
|H〉〈H|

2
+
|V 〉〈V |

2
~S = (0, 0, 0) P = 0. (1.31)

Likewise, for a path qubit it is possible to build a density matrix and define a sphere equivalent

to Poincare sphere. However, it will be enough to deal with a pure state.

|φ〉 = α |X〉+ β |Y 〉 (1.32)

ρS = |φ〉〈φ| . (1.33)
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Finally, the most relevant properties for a mixed state are listed below

Tr(ρ) = 1

ρ† = ρ

Tr(ρ2) ≤ 1

〈A〉 = Tr(Aρ)

Pi = Tr(|ψi〉〈ψi| ρ).

(1.34)

1.4 Extended polarization coherence theorem

According to Niels Bohr, the two views of light as wave or particle are limitations of a classical

interpretation of experimental evidence of the nature of light[5]. Both the wave nature and the

particle nature of light can be quantified with visibility (V ) and distinguishability (D), respec-

tively. Various authors derived the inequality (1.35) that establishes a constraint for the duality

of the two behaviors of quantum light or any other quantum object (also called “quantons”)

[6, 7, 8]:

V 2 +D2 ≤ 1. (1.35)

A tight constraint for the duality behavior of quantons was derived and dubbed the polariza-

tion coherence theorem (PCT) [9]. The degree of polarization (P ), which enters the PCT, is

understood in its most general sense, which is a two-party property [9]. The constraint reads

V 2 +D2 = P 2. (1.36)

The term P should not be limited to light polarization, which is only a particular case. In

general, it addresses all quantities that are susceptible of being “polarized”, such as propagation

modes, spin, electric-field polarization, etc. The experimental evidence that supports eq. (1.36)
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was carried out using classical light fields in a Mach-Zehnder interferometer[10]. Thereafter, an

extended version of the PCT was given in [11]. In contrast to the PCT, that extension involves

a path state and a polarization state, which acts as a marker in an interferometric scenario.The

extension is given by

D2 + V2 = cos2
γ

2
+ P2 sin2 γ

2
, (1.37)

where the marker state undergoes a unitary evolution, which allows the distinction of one path

from the other. The more efficient the marker is, the lower the capacity of the state to produce

a well defined interference pattern.

The squared values of visibility and distinguishability can be shown to be given by [11]

V2 = cos2
γ

2
+ P cos2 φ sin2 γ

2
,

D2 = P2 sin2 φ sin2 γ

2
,

(1.38)

where γ is the angle rotated by the Stokes vector ~S around the unit vector n̂ on the Poincare

sphere. The latter vector is the rotation axis that is associated to the unitary operator acting on

the polarization space. P is the degree of polarization and φ is the angle between ~S and n̂ .

Experimental tests of this extension of the PCT have been conducted with classical light fields

and a Mach-Zehnder type setup [12].
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Chapter 2

Experimental arrangements

2.1 Generation of path states and mixed polarization states

2.1.1 Generation of path states

A beam submitted to a beam splitter gives rise to an output-state that is a superposition of two

path states. Eq. (2.1) gives the unitary operator of a quantum beam splitter. It is given in terms

of the two possible modes of propagation [13]:

S(θ) = eiθ(a
†
1a2+a†2a1). (2.1)

Here, a1 and a2 are the propagation modes and θ defines the amplitude coefficient for transmis-

sion and reflection. Photons are sent on mode 1 and the vacuum on mode 2, so that the evolution

for a single photon is given by

|out〉 = S |1k1 , 0k2〉 , (2.2)
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where |1k1 , 0k2〉 represents the incoming photon. By introducing the identity operator and writ-

ing explicitly the creation operator of the incoming photon, the state becomes

|out〉 = Sa†1S
†S |0k1 , 0k2〉

= (a†1 cos θ + ia†2 sin θ) |0k1 , 0k2〉 .
(2.3)

Eq. (2.3) results from S |0k1 , 0k2〉 = |0k1 , 0k2〉 and Sa†1S
† = a†1 cos θ+ ia

†
2 sin θ. For a symmet-

ric beam splitter, which was used in our experimental setup, θ = π
4
. The final state is then

|out〉 = 1√
2
[|1k1 , 0k2〉+ i |0k1 , 1k2〉]. (2.4)

The two states for single photon are |1k1 , 0k2〉 and |0k1 , 1k2〉. A two state system can be defined

as two orthogonal states {|1〉 , |2〉} onH2, with the following equivalence:

|1k1 , 0k2〉 ≡ |1〉

|0k1 , 1k2〉 ≡ |2〉 .
(2.5)

Hence, the output state after being submitted to a symmetric beam splitter is

|φ〉 = 1√
2
[|1〉+ i |2〉] (2.6)

or in the density matrix form

ρS = |φ〉〈φ| , (2.7)

which is a pure state in path space.

2.1.2 Generation of mixed polarization states

As for polarization space, a set of mixed polarized states is sent through a half-wave plate

(HWP), which changes the vertical polarization to horizontal, in order that the weighting of
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vertical and horizontal polarizations can be used to build a mixed state. Since visualization of

polarizations states on the Poincare sphere will be used, it is necessary to describe the evolution

of a state under the action of a birefringent plate. Elements of the unimodular and unitary

group SU(2) transform the polarization states and operate as single-qubit gates [14]. A subset

of members of SU(2), which depend on two parameters (instead of three), are given by

u(ζ,θ) = e−i
ζ
2
(n̂(θ)·σ). (2.8)

The unit vector n̂ = (cos 2θ, sin 2θ, 0) lies on the s1 − s2 plane, ζ is the rotation angle around n̂

on the Poincare sphere and σ = (σ1, σ2, σ3) is a vector of Pauli matrices. Eq. (2.8) for ζ = π

and ζ = π/2 can be realized by a half wave plate and quarter wave plate, respectively. For

instance, given a vertical polarization, it is required to transform it into a horizontal polarization

by a half wave plate. The value of θ = π
4

and ζ = π on u(ζ, θ) realize this transformation. Eq.

(2.9) represents that evolution:

|V 〉〈V | = uπ,π
4
|H〉〈H|u†π,π

4
. (2.9)

Fig. 2.1 shows a scheme that allows to generate |V 〉 states with adjustable weights.

Introducción Arreglo experimental Resultados Referencias

Generación estados mixtos

Generación de estados |V 〉

|H〉

H( θ2)

PBS

H(0)

El estado final será sin θ |V 〉

Max Jara Ortiz Laboratorio de Óptica cuántica, PUCP

Experimental display of extended polarization coherence theorem 20 / 36

Figure 2.1: Scheme for generation of |V 〉 state.

The generated state is sin θ |V 〉.
Fig. 2.2 shows a scheme that allows to generate |H〉 states with adjustable weights.
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Introducción Arreglo experimental Resultados Referencias

Generación de estados mixtos

Generación de estados |H〉

|H〉

H(π4 − θ
2)

PBS

H(π4 )

El estado final será cos θ |H〉

Max Jara Ortiz Laboratorio de Óptica cuántica, PUCP

Experimental display of extended polarization coherence theorem 21 / 36

Figure 2.2: Scheme for generation of |H〉 state.

The generated state is cos θ |H〉.
For a two-state system {|H〉 , |V 〉}, the two polarized states can be produced incoherently, giv-

ing rise to three types of mixed polarizations: completely polarizaded, partially polarized and

unpolarized. Eq. (2.10) gives a mixed state, an incoherent combination of |H〉 state and |V 〉
states:

ρM = cos2 θ |H〉〈H|+ sin2 θ |V 〉〈V | . (2.10)

As was seen in Sec. 1.3, the degree of polarization is given by P =
√
~s · ~s = cos 2θ. If θ = π/2

or θ = 0, the state will be a completely polarized state, P = 1. On the other hand, if θ = π/4,

the state will be an unpolarized state, P = 0. All other states are partially polarized states. This

method will be applied to build a mixed state on polarization space. Any kind of mixed states

can be given by the equation

ρM =
σ0 + ~s · ~σ

2
. (2.11)

2.2 Experimental setup

Following the definitions in Sec. 2.1 of path and polarization states, we consider the tensor

product of a path state (the system) and a polarization state (the marker) given by

ρS+M = ρS ⊗ ρM , (2.12)
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which is submitted to a unitary evolution, given by a beam-splitter and a half wave plate. This

combination operates on both path and polarization spaces. The unitary evolution of the optical

elements are defined by the eqs. (2.13) and (2.14), respectively:

UBS =
1√
2
(σ1 + σ2), (2.13)

H(β) = −i(cos(2β)σ1 + sin(2β)σ2). (2.14)

We also consider unitary evolutions in polarization space. Each of them is applied on one arm of

the interferometer and are given by U1 = H(γ
8
) and U2 = H(−γ

8
). The global unitary evolution

of the system is

USM = σ†σU1 + σσ†U2e
iδ, (2.15)

where σ = |2〉〈1|, σ† = |1〉〈2|, and eiδ is a relative phase shift.

The evolution of the total system (SM ) is given by

ρSM = USM(ρ
(0)
S ⊗ ρ

(0)
M )U †SM

= |α|2σ†σρ(1)M + |β|2σσ†ρ(2)M + α∗βσeiδρ̃M + β∗ασ†e−iδρ̃†M.
(2.16)

Here, ρ(k)M = Ukρ
(0)
M U †k , k = 1, 2, and ρ̃M = U2ρ

(0)
M U †1 .

The new path state is given by

ρS = TrM(ρSM) = |α|2σ†σ + |β|2σσ† + α∗βeiδCσ + αβ∗e−iδC∗σ†, (2.17)

where C = TrM(ρ̃M).

Finally, the state S is submitted to a symmetric BS, resulting in

ρFS = UBSρSU
†
BS. (2.18)
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After measuring the intensity on the detector as it is shown in Fig. 2.3 , placed on one output of

the interferometer, the results is

I(1) = Tr
(
σ†σρFS

)
=

1

2
[|α|2 + |β|2 + 2R(αβ∗eiδC)]. (2.19)

Here, R means the real part of its argument.

Figure 2.3: Sagnac-type interferometer.

For a symmetrical beam splitter at the beginning, ρ(0)S = |φ〉〈φ| with |φ〉 = 1√
2
(|1〉 + |2〉) give

the intensity

I(1) = [1 + |C| cos(δ + argC)]/2. (2.20)

It can be shown that visibility equals the module of coherence (C):

V =
I
(1)
max − I(1)min

I
(1)
max + I

(1)
min

= |C|. (2.21)
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As for distinguishability, we have that

ρM = TrS(ρSM) = |α|2ρ(1)M + |β|2ρ(2)M ,

D = Tr
∣∣∣|α|2ρ(1)M − |β|2ρ(2)M ∣∣∣. (2.22)

The last term can be simplified, because the initial path state we consider has the values |α| =
|β| = 1√

2
.

Finally, the visibility and distinguishability are given by

V = |TrM ρ̃M | D =
1

2
Tr
∣∣∣ρ(1)M − ρ(2)M ∣∣∣, (2.23)

where |A| =
√
A†A, for an operator A. We have also ρ

(0)
M = 1

2
(σ0 + s · σ). The value of

distinguishability is given by the trace distance between ρ(1)M and ρ(2)M , which corresponds to the

Euclidean distance between the Stokes vectors of each state:

D =
1

2
Tr
∣∣∣ρ(1)M − ρ(2)M ∣∣∣ = 1

2

∣∣S(1) − S(2)
∣∣, (2.24)

where S(1) = R1S and S(2) = R2S are the Stokes vectors after being submitted to the unitary

evolutions U1 and U2 whose 3D rotation operators areR1 andR2, respectively.

The Euler-Rodrigues parameters are defined by e0 = cos
(
γ
2

)
and ê = sin

(
γ
2

)
n̂. Parameters γ

and n̂ define the rotation angle and the vector around which the Stokes vector rotates on the

Poincare sphere, respectively. Therefore, the value of the squared distinguishability will be

D2 = e2S2 − (e · S)2. (2.25)

As for squared visibility, it is given by

V2 = e20 + (e · S)2. (2.26)
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The final equation that constrains visibility and distinguishability is

V2 +D2 = cos2
γ

2
+ P2 sin2 γ

2
, (2.27)

where the individual expressions for visibility and distinguishability are

V2 = cos2
γ

2
+ P2 cos2 φ sin2 γ

2
, (2.28)

D2 = P2 sin2 φ sin2 γ

2
. (2.29)

The parameter P is the degree of polarization, γ is the angle rotated by the Stokes vector ~S

around the unit vector n̂, and φ is the angle between ~S and n̂.

2.3 Technical information and experimental details

2.3.1 Technical information

Technical details of the devices used in the experiment are given in what follows.

The diode laser we used was a 405 nm continuous-wave with spectral line-width between 0.5

and 1 nm and output power of 37.5 mW. The single photon source was a beta barium borate

(BBO) crystal which produces twin photons of wavelength 810 nm. The twin photons were

detected by two avalanche photodetectors within a 10.42 ns time window. The photon-counting

module Perkin-Elmer SPCM-AQ4C counted the photons after converging lenses and multi-

mode fiber-optic cables. Dichroic filters Thorlabs FB800-40, FWHM: 40±8 nm centered at

800±8 nm were used to filter spurious counts.

The degree of second order coherence g2(0) was the parameter used to distinguish between

classical and quantum fields. A value g2(0) < 1 indicates that the light is non-classical. The
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measurement of g2(0) was made in the laboratory with the result g2(0) = 0.187 ± 0.011, in

accordance with [15].

The half wave plate Thorlabs WPH05M-808 was mounted on Thorlabs RSP1/M rotation mounts,

the beam splitter was a Thorlabs BS-014, the polarizing beam splitter was a Thorlabs PBS-252

and the mirror a Thorlabs BB1-E02.

2.3.2 Experimental details

It is worth to mention some experimental aspects that affected our measurements.

Imperfect beam splitter: Although the beam splitter used in the laboratory was supposed to

divide the laser beam in two beams of equal intensity, the experimental data showed that the

transmitted and reflected beams were not equally distributed, i.e., in 50:50 relation, but in 40:60.

This affected the visibility, because an unbalanced interferometer reduces the contrast of the in-

terference fringes.

Mirror phase: Theoretically, the reflection produces a relative phase of π/2 between the hori-

zontal and vertical polarization states. This is a physical restriction to put on the unitary evo-

lution devices, the HWPs. It was convenient to maintain the polarization state along the path

without changes. Thus, the HWPs were placed at the end of the two possibles paths, as shown

in 2.3.

Phase between |H〉 and |V 〉 states after the beam splitter: The beam splitter used in the labo-

ratory, ideally, does not change the polarization, but the experimental data showed that for any

polarization of a superposition of horizontal and vertical states there is an added phase in the

vertical component. This phase made it impossible to have two perfect orthogonal polariza-

tions, as it is evident in Figs. 3.2 and 3.3 for γ = π.

Imperfect alignment: An imperfect alignment does not allow a visibility close to the value of 1,

as is plotted in Figs. 3.1, 3.2 and 3.3.
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Polarizer for states |H〉 and |V 〉: After generating |H〉 and |V 〉, see Fig. 2.3, these states were

not completely polarized but had a non-zero value in the third component of the Stokes vector

which propagated an error in distinguishability and visibility. A polarizer could “clean” these

states so as to be closer to the ideal state.
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Chapter 3

Results

3.1 Measurement of visibility

As mentioned in Sec. 2.2, the value of V2 depends on three parameters: γ, φ and P . The first

one is the rotated angle around the axis n̂ of the Stokes vector ~S. The second one is the angle

between n̂ and ~S, which equals φ = π
2

because ~S is on the plane s1 − s2 and n̂ lies along the s3

axis. The last parameter, P , is the degree of polarization. The states are completely polarized,

partially polarized and non polarized with the values P = 1, P = 0.5 and P = 0, respectively.

As was seen in Sec. 2.2, the visibility is the normalized difference between the maximum

and minimum intensities. For non-classical light, the number of photons n is used instead of

intensity, giving the result

V(γ) = nmax − nmin
nmax + nmin

, (3.1)

where

n = nH + nV (3.2)

and nH and nV are labels that refer, respectively, to the number of counts of H-polarized states

and the number of counts of V -polarized states, which as components of the mixed state, are
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submitted to the interferometer and then measured. Hence, the fraction of horizontal and verti-

cal photon counts are eqs. (3.3) and (3.4), respectively:

nH =
cos2 θ

2
(1 + cos

γ

2
cos δ), (3.3)

nV =
sin2 θ

2
(1 + cos

γ

2
cos δ), (3.4)

n =
1

2
(1 + cos

γ

2
cos δ) = nH + nV . (3.5)

In the next three subsections, the measurement of the squared visibility in Figs. 3.1, 3.2 and

3.3 show three different behaviors of light: the wave-like and the particle-like behavior, plus an

intermediate case, which corresponds neither to wave nor to particle. For all mentioned figures,

the interferometer with HWPs set to γ = 0 or γ = 2π reduces the capability of distinguish-

ing whether a photon went along one path or the other. This feature corresponds to a wave

behavior. In contrast, the value γ = π distinguishes completely the two paths. Thus, the two

possible, orthogonal polarizations give information of the path along which the photon went.

An intermediate case is any value of {γ ∈ [0, 2π]|, γ 6= {0, π, 2π}} which means that par-

tial information of the photon path corresponds to a behavior that changes from wave-like to

particle-like through intermediate cases.

3.1.1 Pure polarized states

A pure state has the degree of polarization P = 1, which means that θ = 0. Thus, the polariza-

tion state is

ρ
(0)
M = |H〉〈H| , (3.6)
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where the superscript (0) refers to the preparation state, i.e., the state before entering the inter-

ferometer. The number of photon counts at the output is

n = nH =
1

2
(1 + cos

γ

2
cos δ). (3.7)

The visibility function is given by

V(γ) = nH,max − nH,min
nH,max + nH,min

(3.8)

and its square is plotted by

0 π

2
π 3π

2
2π

0.0

0.2

0.4

0.6

0.8

1.0

γ (rad)

2

Figure 3.1: V2 for P = 1.
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3.1.2 Partially polarized states

For addressing partially polarized states, the degree of polarization chosen was P = 1/2, which

means that the value of θ = π/6. Thus, the polarization state is

ρ
(0)
M =

3 |H〉〈H|
4

+
|V 〉〈V |

4
. (3.9)

The output number of photon counts is

n = nH + nV =
1

2
(1 + cos

γ

2
cos δ). (3.10)

It is possible to express the number of counts of horizontal and vertical polarization states with

eqs. (3.3) and (3.4), respectively. The results are

nH =
3

8
(1 + cos

γ

2
cos δ), (3.11)

nV =
1

8
(1 + cos

γ

2
cos δ). (3.12)

The visibility function is given by

V(γ) = nH,max + nV,max − nH,min − nV,min
nH,max + nV,max + nH,min + nV,min

(3.13)

and its square is plotted below
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Figure 3.2: V2 for P = 0.5.

3.1.3 Non polarized states

For a completely unpolarized state, the degree of polarization is P = 0 which means that

θ = π/4. The polarization state is

ρ
(0)
M =

|H〉〈H|
2

+
|V 〉〈V |

2
. (3.14)

The output number of counts is

n = nH + nV =
1

2
(1 + cos

γ

2
cos δ). (3.15)

It is possible to express the number of counts of horizontal and vertical polarization states with

eqs. (3.3) and (3.4), respectively. The results are

nH =
1

4
(1 + cos

γ

2
cos δ) (3.16)

nV =
1

4
(1 + cos

γ

2
cos δ). (3.17)
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The visibility function is given by

V(γ) = nH,max + nV,max − nH,min − nV,min
nH,max + nV,max + nH,min + nV,min

(3.18)

and its square is plotted below
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Figure 3.3: V2 for P = 0.

3.2 Measurement of distinguishability

For a symmetric beam splitter, the distinguishability is

D =
1

2
Tr
∣∣∣ρ(1)M − ρ(2)M ∣∣∣. (3.19)

The equivalent value, in terms of Stokes vectors, is given by

D =
1

2

∣∣S(1) − S(2)
∣∣. (3.20)
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The measurement of S(1) and S(2) were made possible by blocking the transmitted and reflected

paths in Fig. 3.4. Polarization tomography was made by using a QWP, HWP and a polarizer.

The six projections of polarization states, mentioned in Sec. 1.3, were made by setting the

following set of angles

nH =
(
P (π/2)H(π/4)Q(0)

)
ρ
(
P (π/2)H(π/4)Q(0)

)†
,

nV =
(
P (π/2)H(0)Q(0)

)
ρ
(
P (π/2)H(0)Q(0)

)†
,

nD =
(
P (π/2)H(−π/8)Q(π/4)

)
ρ
(
P (π/2)H(−π/8)Q(π/4)

)†
,

nA =
(
P (π/2)H(π/8)Q(π/4)

)
ρ
(
P (π/2)H(π/8)Q(π/4)

)†
,

nR =
(
P (π/2)H(π/8)Q(0)

)
ρ
(
P (π/2)H(π/8)Q(0)

)†
,

nL =
(
P (π/2)H(−π/8)Q(0)

)
ρ
(
P (π/2)H(−π/8)Q(0)

)†
.

(3.21)

These projections allowed to determine the Stokes vectors S(1) and S(2). As shown in eq. (2.29),

the distinguishability depends on P and γ.

Figure 3.4: Tomography of stokes vector

Similarly to the previous Sec. 3.1, three cases for the degree of polarization can be addressed:

pure polarized states, partially polarized states and non-polarized states. The measurement of

the squared distinguishability in Figs. 3.5 and 3.6 show three aspects of complementary behav-

ior of the squared visibility: the completely wave-like, particle-like and an intermediate value
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which is neither wave nor particle. As can be seen in the mentioned figures, the inteferometer

with HWPs set to γ = 0 or γ = 2π reduces the capability of distinguishing if one photon

went to one path or the other. This feature is proper of a wave behavior. The distinguishability

is at the minimum possible: D2 = 0. In contrast, the value γ = π lets distinguish the two

paths, giving a sharped or degraded quality ofD2, depending on the degree of polarization. The

values P = 1 and P = 0.5 correspond to a particle behavior and the distinguishabilities are

at their maximum possible values D2 = 1 and D2 = 0.25, respectively. Thus, the degree of

polarization regulates information of the path along which the photon went. An intermediate

case corresponds to values {γ ∈ [0, 2π]|, γ 6= {0, π, 2π}} which emphasizes that a partial

information of the knowledge of the path of the photon can lead the behavior from wave-like to

particle-like through intermediate cases.

Contrary to the results in Figs. 3.5 and 3.6 the measurement of distinguishability in Fig. 3.7

remains constant along the range of γ because of the value of the degree of polarization P = 0.

The capability of distinguishing one path-state from the other is always 0, despite the evolution

of the polarization states. Thus, it is possible to say that there is no information to know which

path the photon passed through.

3.2.1 Pure polarized states

For a pure state, the degree of polarization is P = 1. Thus, the polarization state is

ρ
(0)
M = |H〉〈H| . (3.22)

Its evolution is given by

ρ
(i)
M = Ui |H〉〈H|U †i ; i = 1, 2. (3.23)
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Therefore, the Stokes vector is

Tr
(
σρ

(i)
M

)
= Tr

(
σUi |H〉〈H|U †i

)
S(i)(γ) = S

(i)
H (γ),

(3.24)

where the subscript in S(i)
H refers to the initial polarization. The two Stokes vectors S(1) and S(2)

are

S(1)(γ) = S
(1)
H (γ) (3.25)

S(2)(γ) = S
(2)
H (γ). (3.26)

Thus, the distinguishability is given by

D(γ) = 1

2

∣∣∣S(1)
H (γ)− S

(2)
H (γ)

∣∣∣. (3.27)

and its square is plotted below
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Figure 3.5: D2 for P = 1.
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3.2.2 Partially polarized state

We considered a partially polarized state, whose degree of polarization was P = 0.5. Thus, the

state was given by

ρ
(0)
M =

3

4
|H〉〈H|+ 1

4
|V 〉〈V | . (3.28)

Its evolution is

ρ
(i)
M =

3

4
Ui |H〉〈H|U †i +

1

4
Ui |V 〉〈V |U †i ; i = 1, 2. (3.29)

Therefore, the Stokes vector is

Tr
(
σρ

(i)
M

)
=

3

4
Tr
(
σUi |H〉〈H|U †i

)
+

1

4
Tr
(
σUi |V 〉〈V |U †i

)
(3.30)

S(i)(γ) = S
(i)
H (γ) + S

(i)
V (γ). (3.31)

The two Stokes vectors S(1) and S(2) are given in eqs. (3.32) and (3.33), respectively:

S(1)(γ) = S
(1)
H (γ) + S

(1)
V (γ) (3.32)

S(2)(γ) = S
(2)
H (γ) + S

(2)
V (γ). (3.33)

The distinguishability is given by

D(γ) = 1

2

∣∣∣S(1)
H (γ) + S

(1)
V (γ)− S

(2)
H (γ)− S

(2)
V (γ)

∣∣∣ (3.34)

and its square is plotted below
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Figure 3.6: D2 for P = 0.5.

3.2.3 Non polarized state

A non polarized state has the degree of polarization P = 0. Thus, the state is

ρ
(0)
M =

1

2
|H〉〈H|+ 1

2
|V 〉〈V | . (3.35)

Its evolution is

ρ
(i)
M =

1

2
Ui |H〉〈H|U †i +

1

2
Ui |V 〉〈V |U †i ; i = 1, 2. (3.36)

Therefore, the Stokes vector is

Tr
(
σρ

(i)
M

)
=

1

2
Tr
(
σUi |H〉〈H|U †i

)
+

1

2
Tr
(
σUi |V 〉〈V |U †i

)
(3.37)

S(i)(γ) = S
(i)
H (γ) + S

(i)
V (γ). (3.38)
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The two Stokes vectors S(1) and S(2) are given by eqs. (3.39) and (3.40), respectively:

S(1)(γ) = S
(1)
H (γ) + S

(1)
V (γ) (3.39)

S(2)(γ) = S
(2)
H (γ) + S

(2)
V (γ). (3.40)

The distinguishability is given by

D(γ) = 1

2

∣∣∣S(1)
H (γ) + S

(1)
V (γ)− S

(2)
H (γ)− S

(2)
V (γ)

∣∣∣. (3.41)

and its square is plotted below
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Figure 3.7: D2 for P = 0.

3.3 The sum of visibility and distinguishability squared

The measurement of visibility, for the fixed angle φ = π/2 is the result of varying the marker

state which allows to make a distintion of the paths of the photon. It is revealed in the com-

pletely waveness behaviour with V2 = 1 or the particleness of the photon with V2 = 0. As
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complementary behaviour of visibility is the calculation of distinguishability which is not only

restricted to the evolution of the marker state but also to the type of the mixed state. This is the

reason of the partial complementary behaviour with visiblity because distinguishability depends

on the marker evolution and the degree of polarization. As was mentioned in Secs. 3.1 and 3.2,

a description of the duality behaviour of light is given by the sum V2 +D2.

3.3.1 Pure polarized state

For this state the evolution of the marker shows the complementary behaviour of visibility and

distinguishability. According to the Fig. 3.8, the value of γ = 0 or γ = 2π does not distinguish

the path of the photon, then the wavelike behaviour is maximum V2 = 1 and distinguishability

is at its lowest: D2 = 0. By contrast, the value of γ = π distinguishes completely the path, then

the wavelike behaviour is at its minimum V2 = 0 and the distinguishability is at its maximum:

D2 = 1. An intermediate case corresponds to any value of {γ ∈ [0, 2π]|γ 6= {0, π, 2π}} which

emphasizes that partial information of the photon’s path can lead the behaviour from wavelike

to a partial particle-like through intermediate cases. As it is obvious, the sum V2 + D2 always

is 1 in the range γ ∈ [0, 2π].
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Figure 3.8: Plot of V2 +D2 for P = 1.

3.3.2 Partially polarized state

For this state not only the evolution of the marker shows the complementary behaviour of vis-

ibility and distinguishability but also the degree of polarization which reduces the maximum

value of the distinguishability. As shown in Fig. 3.9, the value of γ = 0 or γ = 2π does not

distinguish the path of the photon, then the wavelike behaviour is maximal V2 = 1 but the

distinguishability is at its minimum: D2 = 0. By contrast, the value of γ = π distinguishes

partially the paths, then the distinguishability is the maximum possible given by the degree of

polarizationD2 = 0.25 and the visibility is minimum V2 = 0. As can be seen, the sum V2+D2

is less than or equal to 1 in the range γ ∈ [0, 2π] because of the reduction of distinguishability.
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Figure 3.9: Plot of V2 +D2 for P = 0.5.

3.3.3 Non polarized state

For this state the evolution of the marker only affects the visibility but not the distinguishability

D2 = 0. In spite of the unitary evolution of the polarization state, there is no distinction between

the transmitted and the reflected path states because of the degree of polarization. The visibility,

in contraposition, mantains the feature of changing the behaviour from wavelike to particle-like.

According to Fig. 3.10, the value of γ = 0( or γ = 2π) does not distinguish the path of the

photon, then the wavelike feature is at its maximum: V2 = 1, and the distinguishability is at

its minimum: D2 = 0. In addition, for γ = π, the visibility is at its minimum: V2 = 0 and

distinguishability remains constant, with D2 = 0. As it is clear, the sum V2 +D2 is always V2

in the range γ ∈ [0, 2π].
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Figure 3.10: Plot of V2 +D2 for P = 0.
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Chapter 4

Summary

This thesis addressed several topics. In chapter 1, the analysis of a two-state system as a ba-

sic description of quantum effects allows introducing quantum bits as a useful tool to work in

quantum and classical optics. Thereafter, the quantization of electromagnetic field played an

important role to elucidate the nature of light revealed on the propagation of modes and the po-

larization states associated with any possible mode. Thus, any mode of propagation is a system

of two degrees of freedom, the first is the mode of propagation along two possible paths and

the second one is the polarization state. The background of the nature of light is a source for a

more complex description of polarization as the statistical mixture of states. The definitions of

mixed states of polarization and path state are degrees of freedoom which are included in the

extension of the polarization coherence theorem where the polarization works as a marker to

change the behaviour of photons from waveness to particleness.

In the chapter 2, the experiment focuses on two parts, the generation of polarization mixed

states and the evolution of the states. The first one is detailed in the generation of two orthogo-

nal polarizations which will be joined to work with mixed states. These states were submitted

to a unitary evolutions which operated on the marker state to distinguish the paths of the pho-

ton. The second part of the experimental setup is the sending of the mixed state in the sagnac

interferometer to evolve and then interfere.
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Finally, in the chapter 3, the measurements of visibility as a result of maximum counts and a

minimum counts were made for three degree of polarization: pure polarized state, partially po-

larized state and non polarized state. By the other side, the measurement of distinguishability

was made by tomography of stokes vectors of the transmitted path and reflected path. Therefore,

the visibility squared plus the distinguishability squared verify the validation of polarization co-

herence theorem with photons. This experiment can be useful to extensions as a mixed path

state and pure polarized state or including a general unitary evolution in the polarization space.
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