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Resumen 

Compañías mineras están en búsqueda constante de nuevas tecnologías para aumentar su 

productividad. Una de las tecnologías que les permite realizar la reconstrucción de la superficie 

sin poner en riesgo la vida de sus trabajadores es el uso de sensores LiDAR junto con plataformas 

móviles que les permiten rotar el sensor para realizar un escaneo completo de la estructura. Sin 

embargo, el procesamiento de los datos se realiza a través de ordenadores situados fuera de la 

mina, debido a su alto coste computacional, lo que se traduce en un alto coste de tiempo.  

En esta tesis presento como objetivo principal el diseño de un algoritmo paralelo para la 

fusión de nubes de puntos capturadas por un LiDAR y la reconstrucción de la superficie en tiempo 

real, con el fin de reducir el tiempo de procesado, teniendo en cuenta información a priori del 

patrón de barrido de los puntos. En la literatura se pueden encontrar algoritmos para la reducción 

de la densidad de puntos, sin embargo, en esta tesis, propongo la idea de suprimir estos puntos 

basándome en el principio de que la etapa de registro entre cada escaneo puede ser obtenida por 

un sistema de medición correctamente establecido, por lo tanto, no es necesario utilizar ningún 

algoritmo ICP. Además, a diferencia de los algoritmos genéricos de reconstrucción de superficies, 

propongo un nuevo algoritmo que utiliza la información a priori del sistema de escaneo que 

permite obtener la reconstrucción triangular en un tiempo menor al tiempo de escaneo del LiDAR. 

Este algoritmo se implementará en un ordenador desktop con el uso de GPUs proporcionadas por 

NVIDIA para evaluar su rendimiento y, también, se implementará en una Jetson Nano con datos 

de una mina socavón real. Finalmente, proporcionaré algunas recomendaciones y consideraciones 

a tener en cuenta en las etapas de evaluación del algoritmo secuencial, codificación del algoritmo 

paralelo e implementación en GPUs. 
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Abstract 

Mining companies are constantly searching for new technologies in order to 

increase their productivity. One of the technologies that allow them to perform surface 

reconstruction without risking the lives of their workers is the use of LiDAR sensors in 

conjunction with mobile platforms that allow them to rotate the sensor to perform a full 

scan of the structure. However, the data processing is done through computers located 

outside the mine, due to its high computational cost, resulting in a high cost of time.  

This thesis presents as principal objective the design of a parallel algorithm for the 

fusion of point clouds captured by a LiDAR and the surface reconstruction in real-time, 

in order to reduce the time processing, taking into account a priori information of the 

scanning pattern of the points. Algorithms for point density reduction can be found in the 

literature, however, in this thesis these points are suppressed based on the principle that 

the registration stage between each scan can be obtained by a measurement system 

properly stablished, therefore, it is not necessary to use any ICP algorithm. Also, unlike 

the generic surface reconstruction algorithms, a new algorithm that uses the a priori 

information of the scanning system is proposed and allows to obtain the triangular mesh 

in real-time in comparison to the LiDAR scanning time. This algorithm will be 

implemented in a desktop computer with the use of GPUs provided by NVIDIA to 

evaluate its performance and, also, will be implemented in a Jetson Nano with real data. 

Finally, some recommendations and considerations are provided to be taken into account 

in the stages of evaluation of the sequential algorithm, coding of the parallel algorithm 

and implementation on GPUs.   
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Introduction 

Those points obtained from a three-dimensional scan of an object are called a point cloud. 

This term refers to the absence of connection between the points that give the impression of 

floating in space. Among the most popular techniques for obtaining a point cloud is laser 

triangulation, which consists of the emission of a laser towards a mirror that then bounces off 

the object and is captured by a camera to then calculate the distance. The most popular sensors 

using this type of technology are called LiDAR. Also, each generated point cloud may present 

measurement errors, and to perform proper data processing it is necessary that the cloud goes 

through a filtering stage that eliminates these errors. On the other hand, to achieve a total 

representation of the object it is necessary to perform scans from different angles of the object 

and then transform the clouds obtained to the same referential coordinate system, this stage of 

cloud transformation is called registration. Finally, in most applications, surface reconstruction 

is performed, which is done by means of algorithms that connect the cloud points forming 

polygons, which are generally triangles. Currently, in mining works the scanning of structures 

is performed, for this purpose, by LiDAR sensors. In mining operations is highly important to 

obtain relevant information of the structures in real time. However, to perform the information 

processing, such as surface reconstruction or volume calculation, the data is extracted to an 

external computer of the mine due to its high computational cost, which leads to a high cost of 

time. In this thesis, a new algorithm is proposed to solved the problems presented, using parallel 

processing and an embedded system of low power consumption.  
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1 Chapter 1: Surface reconstruction of a point cloud data 

Technology of 3D reconstruction has various applications in the fields of geological 

exploration, industrial product testing, biomedicine, aerospace, among others. This 3D 

reconstruction can be summarized in the following steps: First, a scanning process of the scene 

or object; for this process, exists various methods which affects or not the object or scene [1]. 

Second, the data obtained need to be processed to be reconstructed; noise filtering, registration, 

XYZ transformation, etc. Finally, a rendering could be done to represent the data in a mesh 

structure [2]. 

1.1 State of the art 

1.2.1 Scan by laser triangulation. 

Among the most popular techniques for object scanning is laser triangulation scanning 

[2]. This type of measurement does not have contact with the object and is a type of optical 

measurement, since it depends on a light source, laser beam. It consists of the emission of a 

laser towards a mirror which then bounces off the object and is captured by a CCD (charge 

coupled device) camera [3], see Figure 1.  

 
Figure 1. Laser triangulation measurement [2] 
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To obtain the position of the object, the following data are considered: distance between 

the mirror and the camera; the camera vertex angle when it receives the bounced beam; and the 

vertex angle of the mirror. There are other additional parameters such as the time of flight of 

the laser and its energy; if these data are considered, it is possible to obtain more information 

about the object such as the type of material and the color [1]. The most popular sensors that 

use this type of technology are LiDAR (Light Detection and Ranging), which have been used 

for the reconstruction of cities, cultural heritage, forests, among others [4]. In contrast to 

photogrammetry, obtaining the point cloud by LiDAR sensors is more accurate and 

inexpensive. [5]. In Figure 2, the point cloud obtained from a LiDAR-aircraft system is 

observed and in Figure 3 the result of the its surface reconstruction is observed. In [5], the 

LiDAR information is obtained and then processed to obtain finer contours and finally rendered 

to obtain the three-dimensional surface reconstruction..  

  

Figure 2. Point cloud of an urban city [5] Figure 3. Surface reconstruction of an urban city [5] 

1.2.2 Data of a LiDAR sensor. 

From a single LiDAR scan, a large number of points associated to a local reference 

system are obtained, this is called point cloud because of the absence of connection between 

the points that give the impression of floating in the space [2]. See Figure 4, for an example of 

a point cloud. 
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Figure 4. Stanford bunny point cloud [6] 

However, to obtain a three-dimensional reconstruction, in some cases it is necessary that 

the LiDAR sensor does additional scans from different strategic stations (sensor positions) to 

obtain the necessary information for a virtual model. [7] 

1.2.3 Filter stage. 

Each generated point cloud can have measurement errors, i.e., there are points in the 

cloud, considered as noise, which are outside the contour of the real structure. [6]. To eliminate 

the noise, it is necessary that the point cloud goes through a filtering stage. There are several 

filtering methods and can be categorized into the following groups: by statistics, by 

neighborhood points, by projections and by PDEs. [6].  

The cause of measurement noise can be due to various factors depending on the scenario. 

But the most common case for LiDAR sensors is the reflection generated by the type of 

material. In [1] The reconstruction of a pot lid was obtained, see Figure 5, but a filtering stage 

to eliminate the errors generated was not considered. Another possible noise factor is not 

considering the movements that the sensor may have, as it could happen if it is moving with an 

autonomous terrestrial robot. 
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Figure 5. reconstruction of a pot lid [1]  

   
Figure 6. Noisy points detection by contour analysis [8] 

On the other hand, in [8] the analysis of which points generated noise was carried out by 

means of different scans to the contour of the real object, see Figure 6. In the right, it can be 

seen that the red points are those that generate noise to the point cloud. This type of denoising 

is performed with a priori knowledge of the real object. Another method is denoising by 

polygon, which is what was done in [9], see Figure 7, in (a) the point cloud is observed without 

filtering, and in (b) the unnecessary points are suppressed, limiting the space to be analyzed. 
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Figure 7. Point Cloud of a building [9] 

1.2.4 Registration of a point cloud. 

The process of transforming point clouds to a global reference system is called 

registration [10]. When the parameters of the global reference system are unknown, it is 

necessary to establish a point cloud as a reference and then concatenate the other point clouds 

until a matching between them is achieved. The most popular algorithm for this type of scenario 

is the iterative closest point (ICP) [2][4].  Figure 8 shows two point clouds from different 

perspectives, and Figure 9, shows the alignment by means of an ICP-based algorithm [11]. 

    

Figure 8. Point clouds of a child [11] Figure 9. Point cloud registration of 
Figure 8[11] 

For instance, in the case of [9] the map of the structure was available a priori and stations 

were established for the position of the Trimble LiDAR sensor, model TX5, see Figure 10. In 

this way a global reference system was defined for all the stations and the result of the 

concatenation of the point clouds is shown in Figures 11 and 12. 
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Figure 10. Map of the central building of the School of Engineering of UNLP 

 

Figure 11. Reconstruction of the central building of the Faculty of Engineering of the UNLP [9] 

 

Figure 12. Plan view of the central building of the UNLP School of Engineering [9] 
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1.2.5 Rendering of the point cloud. 

The last process of 3D reconstruction is rendering. Here you can define the color, texture, 

type of material and geometric shape of the structure. For the geometry of the structure, the 

points of the cloud must be connected generating polygons. This connection generates a 

polygonal mesh containing the vertices of each polygon, in general, the mesh is of triangular 

type. To solve this point connection problem, algorithms based on combinatorial structures 

(Delaunay triangulation, Voronoi diagrams and alpha forms), or approximations on implicit 

functions such as Poisson reconstruction, are often used. [2][12] 

The most commonly used algorithm for this process is the Delaunay triangulation, some 

results of this algorithm have already been presented in the Figures 3 and 5. However, Delaunay 

triangulation process requires a certain time in the order of hundreds of seconds is the proper 

hardware is not used, which makes it unfeasible for real time scenarios [6]. For this reason, 

optimal proposals are developed to obtain a rapid reconstruction of the object. In [13] a 

Delaunay-based algorithm is proposed which, unlike the traditional one, only requires a 

Delaunay calculation and does not need Voronoi information for the manifold extraction, 

which makes it robust and efficient. In the following figure some results from a dataset can be 

observed and a table that records the execution times of both the Delaunay calculation and the 

manifold extraction. 
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Figure 13. Results obtained in [13] about running times for mesh generation 

1.2 Problem Definition 

For mining operations, it is necessary to perform the surface reconstruction of the 

structures, for this, there is a LiDAR-engine system that allows us to obtain the total scanning 

of the scene. For instance, with the OS1-gen1-16 LiDAR sensor, a 360° scan can be performed 

with an azimuth elevation angle between +16.9° and -16.6°; the point cloud obtained is called 

Donut, see Figure 14. 

   
Figure 14. LiDAR OS1-gen1 scan 

It was observed that a single scan does not allow to obtain the total information of the 

space. For this reason, there is a motor that allows the rotation of the LiDAR to scan other 

zones, this configuration for the motor may vary with different models of LiDAR. For instance, 
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with the OS1-gen-16 LiDAR, the z-axis is positioned horizontally and the motor will rotate the 

sensor on the new vertical axis, the x-axis of the LiDAR, see Figure 15. For this case, in order 

to obtain a total scan of the scene at least 6 Donuts must be generated. 

 
Figure 15. Measurement systema LiDAR-motor 

In the processing stage of the rotation, it was observed that there is a large amount of 

overlapping point, i.e., there is redundant information from the scan, see Figure 16. In addition, 

the reconstruction process involves a high computational cost that cannot be performed by the 

autonomous LiDAR-motor system and the data must be extracted to an external computer to 

process the information. 

 
Figure 16. Points cloud with overlapping points 
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Therefore, it is expected that the three-dimensional reconstruction time of this system 

can be reduced if redundant information is eliminated. In addition, it is possible to perform 

previous calculations considering a priori the parameters of the measurement system to perform 

real-time processing. For this reason, this thesis proposes an algorithm that performs the 

calculation of the triangular mesh for the three-dimensional reconstruction, by means of a 

mathematical model that represents the Donuts generated by the LiDAR without overlapping, 

considering the measurement parameters of the system. In this way, this will reduce the 

computational cost compared to the generic algorithms that generate the triangular mesh. 

Finally, the triangular mesh will be presented and the point cloud fusion algorithm will be 

parallelized in order to obtain real-time results 

1.3  Objectives 

1.4.1 Main objective. 

Design a parallel algorithm for the fusion of point clouds captured by a LiDAR taking 

into account a priori information of the scanning pattern of the points. 

1.4.2 Specific objectives.  

1. Mathematically model the point cloud overlap of a standard Lidar scan. 

2. Design the sequential algorithm for merging overlapping sections of a point cloud.  

3. Parallelize the algorithm to achieve real-time processing.  

4. Implement the parallel algorithm on a GPU and evaluate its performance in terms of 

execution time and memory required. 
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2 Chapter 2: Overview of LiDAR-motor system measurement, surface 

reconstructions and basics of parallel algorithms 

In the previous chapter, the problem of the computational cost of redundant point cloud 

processing was presented, and in order to obtain a real-time processing it is necessary to know 

some theoretical fundamentals about point cloud fusion, surface rendering and parallel 

processing. Also, to explain the operation of a 360° LiDAR sensor on which the solution of 

this thesis project will be focused and to define the time range to be considered a real-time 

processing. 

2.1 Principles of point cloud merging 

In general, the merging of two point clouds can be called point cloud registration [10]. 

As explained in the previous chapter, the registration process is the transformation of point 

cloud coordinates to the same coordinate system. However, in this case the point cloud 

registration is already done but the reduction or remotion of redundant points needs to be 

solved.  

Redundant points will only be present in certain areas of the cloud; therefore, these areas 

have a higher point density. To reduce this density there are several techniques such as: 

Simplification based on normal eigenvalues [14], or based on growing neural gas [15]; and 

downsampling based on the weighted average of the farthest point [16], or based on Tensor 

Voting [17]. However, the solution proposed is to remove these redundant points, to 

accomplish this the measurement parameters of the LiDAR-engine system must be considered. 
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2.2 Definitions of the scanning method of the LiDAR-motor system 

The solution of the thesis will be focused on 360° LiDAR devices, which will be coupled 

to a mobile automaton that will rotate by a motor to get a full scan of the scene. Next, I will 

define some terms to understand the scanning principle of this system, also, the parameters and 

configuration of a 360° LiDAR, for instance the OS1-16, will be mentioned. 

Azimuth: is the block that will contain the rays, this block will have a corresponding 

angle that will belong to the horizontal plane of the LiDAR. For this case, the LiDAR has 16 

beams in each azimuth and is configured for a scan of 1024 azimuths. 

Ticks: For a scan the LiDAR performs a 360° rotation. And, an encoder counts the 

necessary pulses to completed the rotation. In this case, the device has a total of 90112 pulses 

and between each azimuth the encoder counts a total of 88 pulses. 

Altitude beam angles: This is the angle corresponding to each beam within the azimuth. 

The values of the angles corresponding to the 16 beams are shown in Figure 18. 

Azimuth offset angles: The azimuth block has a corresponding angle, however, the 

beams belonging to the same azimuth do not maintain this same angle, resulting an angle offset. 

This offset is due to calibration issues in manufacturing. Because of this, LiDAR devices have 

different offset angles, despite being of the same model. Therefore, these sensors contain a 

command to obtain these angles, which will be used to obtain the coordinates of the point cloud. 

The command is shown in the Figure 17. And for this device, the values of the angles 

corresponding to the 16 beams are shown in the Figure 18. 
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Figure 17. Command to obtain the LiDAR angles[18] 

 
Figure 18. Representation of the angle values for the beams within azimuth block 

 
Figure 19. Views of a LiDAR OS1-16 [18] 
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2.2.1 Package data of a 360° LiDAR. 

For the lidar used in this thesis, it was mentioned that the scanning involves 1024 

azimuths, and each azimuth contains 16 beams, i.e., one scan of the sensor is equivalent to 

obtaining a cloud of 16384 points. As mentioned in chapter 1, each scan performed by this 

particular sensor is called a Donut. Also, the points obtained are not in cartesian coordinates 

and must be processed. Next, I will present the information obtained from each scanned point. 

For instance, the information is received in packets containing the data of 16 azimuth 

blocks. Each azimuth block contains information such as: measurement time, measurement 

identifier, frame identifier, encoder counts, range, photon signal, reflectivity, environment 

photons, azimuth block status. But, for most applications, including this thesis work, only the 

following parameters will be used: encoder count and range. The following figure shows a 

table with the data of the package. 

 

Figure 20. Data of LiDAR packet information [18] 

The channels used by this model are the 𝑖 channels, ∀  𝑖 = 2 + 4 ∗ 𝑛  ;  𝑛 ∈ [0,15], the 

other channels have irrelevant information. Inside these "word bits" is the range information 

(length of 20 bits) and other parameters. The following figure shows the data contained in the 

"Data Block". 
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Figure 21. Data of the “Data Block” [18] 

2.2.2 Conversion to a XYZ coordinate system. 

With the range information, the encoder counts and the elevation and offset angles, it is 

possible to obtain the point cloud in the XYZ coordinates with the following formulas [18] 

𝑟 = 𝑟𝑎𝑛𝑔𝑒 𝑚𝑚 

𝜃 = 2 𝜋 (
𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝑐𝑜𝑢𝑛𝑡

90112
+

𝑏𝑒𝑎𝑚𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑛𝑔𝑙𝑒𝑠[𝑖]

360
 ) 

∅ = 2𝜋
𝑏𝑒𝑎𝑚𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑎𝑛𝑔𝑙𝑒𝑠[𝑖]

360
 

𝑥 = 𝑟𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜙)  

𝑦 = −𝑟𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜙)  

𝑥 = 𝑟𝑠𝑖𝑛(𝜙) 

2.2.3 Register with other Donuts. 

After generating the first Donut (𝑖 = 0) the motor rotates the sensor, stops, and performs 

another scan, and so on until obtain a full scan. The coordinate system for the other Donuts 

must be rotated 𝑖 times, where 𝑖 is the value of the Donut being scanned. 

To perform the rotation, I use a rotation transformation matrix for each of the points, but 

for this I must define a coordinate system. The sensor has a coordinate system defined, but the 
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axes will be changed when coupled to the motor. So, the following LiDAR axis changes will 

be made: 

𝑋𝐿 → −𝑍𝑟𝑒𝑓, 𝑌𝐿 → 𝑌𝑟𝑒𝑓, 𝑍𝐿 → 𝑋𝑟𝑒𝑓 

 
Figure 22. System coordinates of LiDAR OS1[18] 

 

Figure 23. System coordinates of LiDAR-motor [18] 

With the defined reference system, I can perform the rotation transformation for each 

data obtained from the sensor. The following rotation matrices about one axis are defined as 

follows [19]: 

𝑅𝑥(𝛼) = (1 0 0 0 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)   − (𝛼)  0 (𝛼)   𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  ) 
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𝑅𝑦(𝛼) = (𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  0 (𝛼)  0 1 0 − (𝛼)  0 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  ) 

𝑅𝑧(𝛼) = (𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  − (𝛼)  0 (𝛼)   𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)  0 0 0 1 ) 

For the case of the Donuts only the matrix 𝑅𝑧(𝛼) will be used, where alpha will be the 

angle that has been rotated in total from the referential Donut. The other matrices will be 

applied in the algorithms designed in the next chapter 

2.3 Principles of Surface Reconstruction Techniques 

Among the most popular surface reconstruction techniques are Delaunay triangulation 

and Voronoi diagrams.  

2.3.1 Delaunay triangulation. 

On the one hand, in the Delaunay case, the triangulation principle is based on obtaining 

triangles where the vertices are the points of the point cloud, and as a condition each 

circumference containing the triangle cannot have a point inside it, in addition, it has a property 

called max-min which implies that the smallest angle of the triangles is maximized. In Figure 

24.a. an instance of this triangulation is observed. 

2.3.2 Voronoi diagrams. 

On the other hand, Voronoi diagrams are made up of cells that enclose a single point of 

the point cloud. The generation of these cells is done with straight lines equidistant from the 

points formed, unlike Delaunay, the cells can be polygons where the number of sides depends 

on the number of adjacent points. [20]. In Figure 24.b an instance of Voronoi Diagram is 

observed. 
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Also, unlike Delaunay, Voronoi diagrams do not generate a triangular mesh, but generate 

cells that store each of the points. However, there is a duality between them where a 

transformation from cells to triangles is possible. Both represent the same thing but from a 

different point of view. The transformation consists of considering the vertices as centers of 

gravity of the polygon and the centers of gravity of the polygon as vertices. This rule applies 

to go from Delaunay to Voronoi and vice versa. In Figure 25 the duality can be observed. 

  
(a)      (b) 

Figure 24. (a) Delaunay triangulation. (b) Voronoi diagram [20] 

 
Figure 25. Delaunay and Voronoi duality [20] 

In addition, is defined for both Voronoi and Delaunay the "convex hull", which is the 

smallest convex polygon containing all points. That is, the boundary polygon of the polygon 

generation. [20] 
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2.4 Basis of parallel algorithms 

The goal of parallelization is to perform faster operations in order to reduce execution 

time. This need arises because there are several problems that require the processing of a large 

amount of data and lead to high execution time. Such as point cloud processing for Delaunay 

triangulation [21]. In recent years, parallel processing by GPUs has gained prominence and has 

advantages over CPUs in terms of cost and execution time [22]. In the following, some basic 

definitions of parallelization are presented, then some generalities of parallel algorithms, also 

parallel models, parallelization techniques, performance metrics and finally a generalization of 

the NVIDIA architecture. 

2.4.1 Basic definitions. 

⮚ Task: It is the basic unit of operation that the operating system controls. 
⮚ Granularity: It is the size of the tasks. 
⮚ Process: It is an instance of the program, focused more on the global state of execution. 

It contains one or more threads. 
⮚ Thread: A subset of a process that shares resources with other threads. 
⮚ Planner: Allocates the processor and/or execution time for each thread to be executed 
⮚ Map: It is the assignment of a thread to a physical unit for execution. 
⮚ Time complexity: Describes the execution time it takes to run an algorithm as a 

function of the number of inputs. 
⮚ Computational model: Simplified representation of the computer architecture where 

the algorithm is planned to be executed. 

2.4.2 Asymptotic notation. 

In computer science, time complexity is expressed asymptotically, since when 

generalizing the algorithm for different input values it is irrelevant to know the time complexity 

constants of the algorithm. Therefore, an algorithm with complexity 𝑂1(𝑛) = 3𝑛 and another 

with complexity 𝑂2(𝑛) = 7𝑛 in computer science will have the same time complexity. 
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However, in most engineering applications, the algorithm that should be chosen is the one with 

complexity 𝑂1(𝑛) = 3𝑛. [23] 

2.4.2.1 O Notation. 

 
Figure 26. O notation [23] 

It is satisfied that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if there exist two positive constants c and 𝑛0 such 

that 0 ≤ 𝑓(𝑛) ≤ 𝑐 ∗ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0  

2.4.2.2 Ω notation. 

 
Figure 27. Ω notation [23] 

It is satisfied that 𝑓(𝑛) =  𝛺(𝑔(𝑛)) if there exist two positives constant 𝑐 y 𝑛0 such that 

 0 ≤ 𝑓(𝑛) ≤ 𝑐 ∗ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0  
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2.4.2.3 Θ notation. 

 
Figure 28. Θ notation [23] 

It is satisfied that 𝑓(𝑛) =  𝛩(𝑔(𝑛)) if there exist two positive constants 𝑐1, 𝑐2 y 𝑛0 such 

that 0 ≤ 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) for all 𝑛 ≥ 𝑛0. In other words, the notation Θ exists if the 

other notations also exist, 𝑓(𝑛) = 𝛩(𝑔(𝑛)) si 𝑓(𝑛) =  𝑂(𝑔(𝑛)) y 𝑓(𝑛) =  𝛺(𝑔(𝑛)). 

2.4.3 Overview of parallel algorithms. 

⮚ P: Problem. 
⮚ n: number of inputs. 
⮚ A: parallel algorithm. 
⮚ p: number of processors. 
⮚ T*(n): Asymptotic time taken by the best-known sequential algorithm to solve problem 

P with an input of size n. 
⮚ Tp(n): Time in which A solves P using p processors. 
⮚ T1(n): Time in which A solves P using 1 processor, it should be noted that this time is 

not necessarily similar to T*(n). 
⮚ T∞(n): Time in which A solves P using infinite processors. 
⮚ T(n): Time in which A solves P using P(n) processors. 
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2.4.4 Parallel models. 

The parallel computer is a set of interconnected processors that allow the coordination of 

their activities and information exchange. In the sequential case there is a RAM model which 

is widely accepted; however, parallel models are more complex and are not widely accepted. 

This is because the candidate models for parallelization must meet: simplicity, the 

representation of the architecture cannot be complex; and implementability, the model must be 

able to be put into operation i.e., the performance of the model must reflect the actual 

performance. Some of the candidate models that meet the above are: 

⮚ DAGs (Directed Acyclic Graph): models the activities to be executed in the form of a 
directed network. 

⮚ PRAM (Parallel Random-Access Machine): It is a collection of processors that 
communicate through a shared memory and work under a common clock. Because any 
processor can access any memory location it is necessary to group algorithms according 
to memory accesses. EREW, can only be applied to memories that do not allow 
concurrent writes/reads. CREW, allows concurrent reads, but not concurrent writes. 
CRCW. Allows concurrent reads and writes. 

⮚ Distributed memory: A collection of processors communicating through an 
interconnection network, each processor has a local memory and a unique identifier. 

2.4.5 Parallelization Techniques. 

Unlike the design of sequential algorithms, the design of parallel algorithms presents 

more difficult challenges and there is no guide, but rather a collection of techniques that have 

been found to be effective in solving various problems. Even so, in some scenarios the design 

is not feasible and the time complexity cannot be reduced. Some parallelism techniques are 

presented below.  

⮚ Balanced trees 
⮚ Jumping with pointers 
⮚ Divide and conquer 
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⮚ Partitioning 
⮚ Segmentation 
⮚ Cascade acceleration 
⮚ Symmetry breaking 

2.4.6 Performance metrics. 

⮚ Acceleration: let A which solves P at Tp(n). The acceleration achieved by A is 
expressed by the following. 

𝑆𝑝(𝑛) =
𝑇∗(𝑛)

𝑇𝑝(𝑛)
 

⮚ Efficiency: Let A which solves P in Tp(n). The efficiency achieved by A evaluates how 
efficient A is in using the p processors and is expressed by the following.  

𝐸𝑝(𝑛) =
𝑇1(𝑛)

𝑝𝑇𝑝(𝑛)
 

⮚ Cost: I define the cost of a parallel algorithm as the asymptotic execution time for P(n) 
processors times the number of processors. 

𝐶(𝑛) = 𝑇 (𝑛)𝑃(𝑛) 

⮚ Work: It is the number of operations that the parallel algorithm executes without taking 
into account the number of processors. 

𝑊(𝑛) 

⮚ Weak Optimality: When the number of operations performed in sequential is the same 
as the number in parallel. 

𝑊(𝑛) = 𝛩(𝑇∗(𝑛)) 

⮚ Strict Optimality: When the asymptotic execution time in parallel is p times faster 
than the best asymptotic time in sequential. 

𝑝 = 𝑂(
𝑇∗(𝑛)

𝑇(𝑛)
) 
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2.4.7 NVIDIA architecture. 

In 2006 NVDIA released CUDA (Compute Unified Device Architecture) which is a 

GPU-based computing platform. Developers were able to access the GPU's instruction list and 

memory through CUDA and execute parallelism [22]. Over time NVDIA has evolved its GPU 

architectures, there have been noticeable changes between the early architectures, but as of 

Fermi the essence is pretty much the same. The following is a list of NVIDIA's architecture 

names [24]. 

⮚ Tesla – 2006 
⮚ Fermi – 2010 
⮚ Kepler – 2012 
⮚ Maxwell – 2014 
⮚ Pascal – 2016 
⮚ Volta – 2017 
⮚ Turing – 2018 
⮚ Ampere – 2020 

 
Figure 29. Fermi architecture [24] 
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The figure above shows the Fermi architecture. Where the orange block is called 

"GigaThread Engine" this block will be in charge of distributing the tasks to the GPU GPCs. 

On the other hand, the CPU has access to define the number of threads, grouped in blocks, and 

blocks that will be executed in the GPU, both can be defined in one dimension, two dimensions 

or three dimensions.  

 
Figure 30. Grid composition[24] 

Within the GPCs of the Fermi architecture, there are some blocks called streaming 

multiprocessor (SM), the architecture of these blocks can be observed in Figure 31. Inside the 

SM there is the Warp Scheduler that is in charge of scheduling the warps to the available 

resources of the SM. The warps are a group of 32 threads. Meanwhile, the Dispatch Unit is the 

one that sends the warps to the resources. 
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Figure 31. Architecture of the streaming multiprocessor [24] 

In the case of the Fermi architecture, the resources available to the SM are integer/float, 

load/store, SFU (transcendental operations such as power and sinusoidal). Also. Each SM 

contains a shared memory only for the blocks belonging to the SM, which also has space to act 

as L1 (level 1) cache memory. However, when the information is not found in the cache or in 

the shared memory, it accesses the L2 cache memory (level 2) where it will take an average of 

50 clocks, and if it does not get the required information in this memory either, it accesses the 

global memory with an average of hundreds of clocks, but the access to the global memory is 

through a bandwidth of 32 bytes, which could compensate the access to the global memory. 

The following figure shows the explained above. 

 
Figure 32. Memory hierarchy. [24]  
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3 Chapter 3. Overlap Removing and Mesh Generation 

 

Figure 33. Architecture of the software  

In this chapter, the method for mesh reconstruction is described. In Figure 33, the core 

idea is represented in four main stages, stages in green color run low complexity parallel 

algorithms and the stage in red color runs a sequential algorithm. Parallel techniques are applied 

in order to achieve real time process and low latency framework for 3D spheric scene 

reconstruction.  

3.1 Synthetic Sphere Generation 

In general, there are three key requirements involved in mesh reconstruction from point 

clouds: local region detection, geometric feature keeping, and resampling [25]. This work 

focuses on two of those three keys required. Local region detection is related with neighbor 

relationship of points, in other words, if the location of a point is known, the other points can 

be located with its neighbor relationship. For mesh reconstruction, geometric features should 

be kept for geometric analysis. Also, resampling converts the initial mesh into an isotropic 

mesh, the distances between points are approximately equals. 

The solution proposed focuses in maintaining the neighbor relationship of points from 

the raw data by using a priori information from the measurement system for a fast mesh 

reconstruction. In order to achieve this, its important to realized that all LiDAR follow a 
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stablish scan pattern that allows us to know, a priory, the mesh between neighboring points. In 

Figure 34, it is solved the case where the LiDAR has a vertical resolution of nBeams channels 

(with a vertical field of view VFoV) and a horizontal resolution of nAzBlk azimuths (with a 

horizontal field of view HFoV). One scan (HFoV = 360◦) rotates along its x axis and generates a 

donut (set of nBeams×nAzBlk points). Each point follows the standard (x, y, z) cartesian 

coordinates. However, to have a full scan of the scene, is necessary to perform nDonuts scans 

(rotating the LiDAR angleRot[1 . . . nDonuts] along its z axis, not exceeding VFoV per scan).  

  

(a) (b) 

Figure 34. Measurement system 

From the raw data, the points of one scan are sorted as the matrix show in Figure 35. The 

rows represent the amount of beams in one azimuth block, meanwhile the columns represent 

the amount of azimuth blocks. In general, the data obtained goes with the first nBeams in one 

azimuth block then continue with the next block of beams until sweep all the number of 

azimuths. To identify the id. of a point, the next formula proposed in Figure 35, using the 

information of the id azimuth (idAz) and the id Beam (idBeam) of a point. 
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Figure 35. Sorted matrix of raw data 

 
After a full scan (nDonuts) overlapping sections can be observed, especially in the upper 

and lower area of the XY plane, see Figure 36.b. In order to remove the overlapping points, is 

necessary to generate a synthetic sphere that represents an ideal scan of a sphere structure, this 

solution is proposed in Algorithm 1. This algorithm needs some parameters of the measurement 

system such as: the amount of azimuths per Donut scan (nAzBlk), the amount of beams in an 

azimuth block (nBeams), the amount of Donuts required to get a full scan (nDonuts), the rotation 

angle for each donut (angleRot[nDonuts]), and the elevation angle for each beam within an 

azimuth block (angleElev[nBeams]), also, the radius of the sphere is set to 1. First, it generated an 

initial azimuth block with Algorithm 1.1 (line 3), the elevation angle of each beam is used to 

generate the points of the azimuth block. Then, these points are rotated along X axis (line 5) to 

get one Donut, the referential Donut (see Figure 36.a). Finally, the Referential Donut  generated 

is rotated to get the next Donuts (line 9).  

   
(a)Referential Donut (b) Full Donut scan 

Figure 36. Donut scan 
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Algorithm 1: Synthetic Sphere Generation 
inputs: nAzBlk, nBeams, nDonuts, angleRot[nDonuts], R (Sphere radius, set to 1), angleElev[nBeams]  

(elevation angle of each beam within an azimuth). 

output: Sphere: Point cloud array of synthetic sphere 
1: procedure Synthetic_Sphere_Generation (inputs, outputs) 
2:  𝑎𝑛𝑔𝑙𝑒 ← 

360°

𝑛𝐴𝑧𝐵𝑙𝑘
                                                   ▷angle between azimuths 

  ▷Generate points for one synthetic azimuth 
3:  AzPointsxyz[1…nBeams] ←buildAzPoints(R,nBeams, angleElev) ▷Azimuth Block Generation 

4:  for i  ←0 to nAzBlk -1 in parallel do 

5:   RefDonutxyz[i × nbeams] ←rotXaxis(AzPointsxyz, angle × i) ▷Azimuth Block Rotation 

6:  end for 

   ▷Generate the synthetic sphere 

7:  nPPD ←nAzBlkxnBeams   ▷points per donuts 

8:  for i ←0 to nDonuts -1 in parallel do 

9:   Spherexyz [i ×nPPD] ← rotZaxis(RefDonutxyz, angleRot[i]) ▷Referential Donut Rotation 

10:  end for 

11: end procedure 

Azimuth Block
 Donut Generation  

Note: In this work, it is stablished that initial nBeams target to negative Z-axis (lines 3-5). 
Algorithm 1.1: Azimuth Block Generation 
inputs: nBeams, R (Sphere radius, set to 1), angleElev[nBeams]  

output: AzPointsxyz: Point cloud array with nBeams points 
1: procedure buildAzPoints(inputs, outputs) 
2:  for i  ←0 to nBeams-1 in parallel do 
3:   x ← sin(angleElev[i]) 

4:   y ← 0 

5:   z ← −cos(angleElev[i]) 

6:  end for 
7: end procedure 
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3.2 Overlap Removing 

In Figure 36.b, the overlap area can be observed. To remove redundant points, Algorithm 

2 is proposed, the general idea is to set (0,0,0) all the overlapping points as shown in Figure 

37. this algorithm does not need the actual points, just the scan pattern that is known a priory. 

As inputs, the same as Algorithm 1 are used with addition of the synthetic Sphere obtained to 

be modify, and the output will be the same Sphere point cloud but with redundant points set to 

(0,0,0). For simplicity, the top view of the synthetic sphere is taken as a reference (XY plane), 

due to the scan patten stablished by the measurement system, see Figure 38. Each donut defines 

two planes (A and B) perpendicular to the XY axis, where all the points are contained between 

those planes (e.g., Plane A and B for the yellow donut in Figure 38), in order to obtain these 

planes, two points are selected which correspond with the first horizontal Beam and the last 

horizontal nBeam, respectively (lines 2-3). Then, those points are rotated with the respectively 

angle for each donut and the equation line is defined to get the planes A and B (lines 5-6). Also, 

it is defined that all the points of the reference donut (RefDonut), blue Donut in Figure 38, are 

non-overlapping and are contained between bold blue planes. For the remaining donuts (lines 

7 - 16), each one is compared with the previous donut. Tthe points that fall below Plane A of 

the previous donut (for the left side of the sphere) and above Plane B for the right side (e.g., 

see purple donut in Figure 38) are removed. Then, the remaining points that fall inside the 

planes of the RefDonut are also removed. 

 
Figure 37. Overlap Removing result 
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Figure 38. Synthetic Sphere with no overlap points 

Algorithm 2: Overlap Removing 
inputs: nAzBlk, nBeams, nDonuts, angleRot[nDonuts], R (Sphere radius, set to 1), angleElev[nBeams] (elevation angle 

of each beam within an azimuth), Sphere (Point cloud array of the synthetic sphere from Alg.1) 

output: Sphere: Point cloud array with redundant points set to (0,0,0) 
1: procedure OvRe (inputs, outputs) 
2:  𝑥𝐴 ← 𝑅 × 𝑐𝑜𝑠(angleElev[nBeams-1])                                                
3:  𝑥𝐵 ← 𝑅 × 𝑐𝑜𝑠(angleElev[nBeams-1]) 
4:  for 𝑖 ← 1 to nDonuts −1 do 

5:   𝑃𝑙𝑎𝑛𝑒𝐴 ← 𝑟𝑜𝑡𝑃𝑙𝑎𝑛𝑒𝑍𝑎𝑥𝑖𝑠(𝑥𝐴, angleRot[𝑖]) 

6:   𝑃𝑙𝑎𝑛𝑒𝐵 ← 𝑟𝑜𝑡𝑃𝑙𝑎𝑛𝑒𝑍𝑎𝑥𝑖𝑠(𝑥𝐵, angleRot[𝑖]) 

7:   for  𝑗 ← 0 𝑡𝑜 nAzBlk × nBeams –  1 in parallel do 

8:    𝑖𝑛𝑑𝑒𝑥 ← 𝑖 × nAzBlk × nBeams +𝑗 

9:    
𝑥, 𝑦, 𝑧 ← 𝑆𝑝ℎ𝑒𝑟𝑒[𝑖𝑛𝑑𝑒𝑥] 

10:    cond1: (𝑥, 𝑦) inside 𝑅𝑒𝑓𝑍𝑜𝑛𝑒  

11:    cond2: 𝑥 < 0 AND 𝑦 < 𝑃𝑙𝑎𝑛𝑒𝐴 

12:    cond3: 𝑥 < 0 AND 𝑦 > 𝑃𝑙𝑎𝑛𝑒𝐵 

13:    if cond1 OR cond2 OR cond3 then 

14:     setPointToZero(𝑆𝑝ℎ𝑒𝑟𝑒[𝑖𝑛𝑑𝑒𝑥]) 

15:    end if 

16:   end for 

17:  end for 

18: end procedure 

 
3.3 Coarse Mesh 

With the redundant points set to (0,0,0), the surface reconstruction is next. An initial 

mesh can be generated using the scan pattern within each Donut, this is done in Algorithm 3. 

For this section, the order of the vertices of the triangles is set as counter-clockwise when the 

sphere is viewed from an external perspective. This algorithm generates two triangles per point 
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in the sphere, excluding the points scanned for the last beam, i.e., there will be 2 × (nbeams − 

1) triangles between azimuths in each donut. The main loop (lines 6-20) generates in parallel 

all the vertices. Inside the loop, for each point, its location is computed (e.g., see Figure 39, 

yellow dot) and three more neighbors are selected to generate two triangles (e.g., see Figure 

39, right side). Also, since in parallel processing race condition must be avoided, a Flag array 

is created which give us the information of which triangle should be removed or considered, 

those triangles with a vertex equal to point-zero are removed. Finally, in a sequential process 

the flag array is verified to count the amount of triangle removed and generated the final Mesh 

(line 21). This last step will remove all the overlapping triangles; however, it will create some 

gaps in the surface (see Figure 40). 

 
Figure 39. Triangle connection for Coarse Mesh 

 

 
Figure 40. Coarse mesh reconstruction 
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Algorithm 3: Coarse Mesh 
inputs: nAzBlk, nBeams, nDonuts, Sphere (Point cloud array with redundant points set to (0,0,0))  

output: Mesh (array with triangles vertices), nTriangles (number of triangles generated) 
1: procedure CoarseMesh(inputs, outputs) 
  ▷ nTh: number of threads 
2:  𝑛𝑇ℎ ← 𝑛𝐷𝑜𝑛𝑢𝑡𝑠 × 𝑛𝐴𝑧𝐵𝑙𝑘 × (𝑛𝐵𝑒𝑎𝑚𝑠 − 1) 
3:  Meshv0,v1,v2 ←emptyList() 

4:  triangleFlag ←emptyList() 

5:  countTriangles ← 0 

6:  for  𝑖 ← 0 𝑡𝑜 nTh in parallel do 

7:   idDonut ← ⌊𝑖/((𝑛𝐵𝑒𝑎𝑚𝑠 − 1) × 𝑛𝐴𝑧𝐵𝑙𝑘)⌋ 

8:   idAzBlk ← ⌊(𝑖 − 𝑖𝑑𝐷𝑜𝑛𝑢𝑡 ×  𝑛𝐴𝑧𝐵𝑙𝑘)/𝑛𝐴𝑧𝐵𝑙𝑘⌋ 

9:   idBeam ← 𝑖 − 𝑖𝑑𝐷𝑜𝑛𝑢𝑡 × nAzBlk − 𝑖𝑑𝐴𝑧𝐵𝑙𝑘 × (𝑛𝐵𝑒𝑎𝑚𝑠 − 1) 

10:   v0 ← 𝑖 

11:   v1 ← ((𝑖𝑑𝐴𝑧𝐵𝑙𝑘 + 1)%nAzBlk ) × 𝑛𝐵𝑒𝑎𝑚𝑠 +  𝑖𝑑𝐵𝑒𝑎𝑚 + 𝑖𝑑𝐷𝑜𝑛𝑢𝑡 × 𝑛𝐴𝑧𝐵𝑙𝑘 × 𝑛𝐵𝑒𝑎𝑚𝑠 

12:   v2 ← v1 +1 

13:   v3← v0 +1 

14:   𝑡𝑟𝑖1𝑣0,𝑣1,𝑣2 ←v0, v1, v2 

15:   triangleFlag [𝑖 ×2]← checkVexZero(tri1) ▷0: relevant triangle, 1: redundant triangle, must be 

removed 

16:   𝑡𝑟𝑖2𝑣0,𝑣1,𝑣2 ←v0, v2, v3 

17:   triangleFlag [𝑖 × 2 + 1]← checkVexZero(tri1) ▷0: relevant triangle, 1: redundant triangle 

18:   Meshv0,v1,v2 [𝑖 ×2], Meshv0,v1,v2 [𝑖 × 2 + 1]← 𝑡𝑟𝑖1, 𝑡𝑟𝑖2 

19:   countTriangles ← 𝑐𝑜𝑢𝑛𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 + 2 

20:  end for 

  ▷Remove triangles with a Vertex equals to point-zero 

21:  countTriangles , Mesh ←removeTrianglesVexZero(Meshv0,v1,v2, triangleFlag) 

22: end procedure 

 
3.4 Fine Mesh 

Tripivots  
Figure 41. Pivot triangles 

In the previous algorithm, the sphere obtained presents small gaps between donuts. To 

fill those gaps, it is necessary to connect the nearest points between different donuts. In most 
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gap areas only two donuts are involved but in some top and bottom areas there will be gaps 

which involve three donuts. To fill those gaps the creation of a pivot triangle is proposed.  

3.4.1 Pivot triangles generation 

Pivot triangles (tripivot) are defined as those triangles that link one point from a donut 

with two points from another adjacent donut (e.g., see Figure 41, black circles). To compute 

the tripivots, is required to divide each donut in four sectors (see Figure 42). Since Referential 

Donut has no point removed, only the next Donuts need to be analyzed. For the other Donuts 

points removed generate a particular shape in the edge, in the Figure 42.ii is shown the two 

possible shape that can be obtained, also, depending of the sector the shape can be defined as 

class A or B (see Figure 42.iii). Note that, if one side has a “stair shape” the other side of the 

Donut, in the same sector, has a “ramp shape”. 

  
Figure 42. Sectors and type of shape of a cropped Donut 

With these new properties defined, is simple to generate the pivots triangles. First, the 

algorithm finds the border points of a sector for each Donut. In the case of sector 0 or 3, a loop 

is done starting from the bottom point and the algorithm sweeps with nBeams steps until reach 

a point different to (0,0,0); for the case of the sector 1 or 2, it starts from the top and sweeps 

until reach a point different to zero. The direction of the sweep will be in a positive step if the 
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sector is 0 or 2, but it will be negative for sectors 1 and 3. After reaching the border point, the 

shape can be stablished, this property will help in the fill the gap stage. To decide the type of 

shape is necessary to check if a particular neighbor point is a zero-point if this condition meets 

the shape is a “ramp shape”, for sectors 0 and 3, or a “stair shape”, for sectors 1 and 2. The 

position of this neighbor point also depends on the sector. In Figure 43 can be observed in red 

color the neighbor point and in yellow color the border point, in this figure for both cases the 

neighbor point is different to zero-point, as a result is a “ramp shape” for sectors 1 and 3; and 

a “stair shape” for sectors 0 and 2. 

 
Figure 43. Position of neighbor point for the decision of the shape 

In general, for each border point two connections can be possible: RefDonut connection 

or PrevDonut connection, in some cases can be both. To know the type of connection is 

required to compare the alfa and beta angles of the point. the alfa angle is defined as the angle 

former between the projection of the point in the XY plane and the negative Y axis; and the 

beta angle is defined as the angle former between the projection of the border point in the XY 

plane and the rotation angle of the previous Donut of the Donut which the point belongs (see 

Figure 44). If the beta angle is minor than alfa, the connection of the pivot triangle if with the 

previous Donut, in other cases the connection is with the Referential Donut. 
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Figure 44. Alpha and Beta angles 

Then, with the Y-coordinate and Z-coordinate of the point the angle elevation with Z-

axis can be obtained with the donut stablished for the connection, two points are found and 

surround this elevation angle and those points are set as vertices V0 and V1. This process is 

repeated for all the border points of my sphere. 

In Figure 45 an example of this process is shown, on each sector it sweeps (in the white 

arrow direction, Figure 45.a) each column beam until it gets an azimuth border point (a non-

zero point). Then, that point and the two closest points of the adjacent donut defines the tripivot. 

For instance, in Figure 45.b, different tripivots triangles are shown, also, it is stablished that 

vertex V2 is always the border vertex of a Donut, and the other vertex are connected with a 

different Donut. Still, must be considered, there are some particular cases were two tripivots 

connect with three different donuts (see in Figure 45b, the middle top and bottom instances of 

tripivots triangles connected with three different donuts). With the tripivots established, the 

zone that they surround can be filled by connecting the points. There are several ways how the 

fill can be performed, in the next section all the cases presented in this work will be explained. 
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(a) Sectors of a remaining Donut (b) Instances of tripivots triangles 

Figure 45. Remaining Donut features 
Algorithm 4: Fine Mesh 
inputs: nAzBlk, nBeams, nDonuts, angleRot[nDonuts] (rotation angle of the motor for each donut), Sphere (Point cloud array 
with redundant points set to (0,0,0))  

output: Mesh (array with triangles vertices), nTriangles (number of triangles generated) 
1: procedure FineMesh(inputs, outputs) 
2:  

𝑝𝑎𝑟𝑎𝑚𝑠𝐷𝐴𝐵 ← [𝑛𝐷𝑜𝑛𝑢𝑡𝑠, 𝑛𝐴𝑧𝐵𝑙𝑘, 𝑛𝐵𝑒𝑎𝑚𝑠] 

  ▷ The first Donut does not need this mesh 
3:  for  𝑖 ← 0 𝑡𝑜 nDonuts −1 do 
   ▷ Divide the Donut in 4 zones 

4:   for  𝑠𝑒𝑐𝑡𝑜𝑟 ← 0 𝑡𝑜 3 do 

5:    𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0 

6:    𝑃𝑖𝑣𝑜𝑡𝑠 ← 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡() 

7:    for  𝐵𝑒𝑎𝑚 ← 0 𝑡𝑜 𝑛𝐵𝑒𝑎𝑚𝑠 − 1 do 

8:     azimuth ← 𝑔𝑒𝑡𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝐵𝑜𝑟𝑑𝑒𝑟𝑃𝑜𝑖𝑛𝑡(𝑠𝑒𝑐𝑡𝑜𝑟, 𝐵𝑒𝑎𝑚, 𝑛𝐴𝑧𝐵𝑙𝑘, 𝑆𝑝ℎ𝑒𝑟𝑒) 

9:     if  𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑓𝑜𝑢𝑛𝑑 then 

10:      𝑖𝑑𝑃𝑜𝑖𝑛𝑡 ← [𝑖, 𝑎𝑧𝑖𝑚𝑢𝑡ℎ, 𝐵𝑒𝑎𝑚] 

11:      𝑡𝑟𝑖𝑝𝑖𝑣𝑜𝑡𝑣𝑜,𝑣1,𝑣2 ← 𝑔𝑒𝑡𝑇𝑟𝑖𝑝𝑖𝑣𝑜𝑡(𝑖𝑑𝑃𝑜𝑖𝑛𝑡, 𝑟𝑜𝑡𝐴𝑛𝑔𝑙𝑒[𝑖], 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑆𝑝ℎ𝑒𝑟𝑒) 

12:      𝑃𝑖𝑣𝑜𝑡𝑠𝑣𝑜,𝑣1,𝑣2[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] ← 𝑡𝑟𝑖𝑝𝑖𝑣𝑜𝑡 

13:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + + 

14:     end if 

15:    end for 

16:    if  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≠ 0 then 

17:     𝐹𝑖𝑙𝑙𝑣0,𝑣1,𝑣2 ← 𝐹𝑖𝑙𝑙𝑍𝑜𝑛𝑒(𝑖, 𝑠𝑒𝑐𝑡𝑜𝑟, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, 𝑃𝑖𝑣𝑜𝑡𝑠) 

18:     𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑀𝑒𝑠ℎ, 𝑃𝑖𝑣𝑜𝑡𝑠, 𝐹𝑖𝑙𝑙) 

19:    end if 

20:   end for 

21:  end for 

22: end procedure 
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3.4.2 Filling the zone surrounded by pivot triangles (FillZone) 

Line 1 Line 2

 
Figure 46. Two-Donut Gap Fill 

Case 1: This is the most general case, an instance of this is shown in Figure 46. First, the 

two tripivots are computed (upper red circle Tp1 and lower red circle Tp2), then the blue circle 

is computed (Tp3, next beam from the lower tripivot). Starting from Tp1 I build the triangles 

sweeping the azimuths on both sides (see purple triangles). However, it ran out of azimuths on 

the green side, therefore, it keeps that point fixed (Tp3) and keeps sweeping on the other donut 

until it hit Tp2 (see yellow triangles). Depending on the sector and the type of shape the 

direction of the steps for the fill would be positive or negative, it uses the information of the 

table below. 

Sector Shape Class Donut Step-L2

1 o 2 X A Prev -

1 o 2 X B Ref +

3 o 4 X A Ref +

3 o 4 X B Prev -  
Table 1. Information for Two-Donut Gap Fill. 

 

Case 2: Despite most of the gaps are filled, there are some particular gaps in the top and 

the bottom of the sphere where three Donuts are involved, see Figure 47. 
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Figure 47. Tri-Donut Gaps 

For this particular fill, a rigorous analysis was done. There was up to 128 possibilities 

but with the new properties defined (sectors, type of shapes) it can be summarized all of them 

in Figure 48, also, in Table 2 is the information for the Fill. The information on this table only 

works if the local region was established as mentioned in previous section. The order of the 

neighboring point is important to obtain the correct fill.  

 
Figure 48. Possible scenarios of Tri-Donut Gap Fill 

Sector Shape Class V_lim1 index V_lim2 index

1 Stair B V_tripivot 3 V_trimid 1

1 Ramp A V_tripivot 3 V_trimid 3

2 Stair A V_tripivot 3 V_trimid 3

2 Ramp B V_tripivot 3 V_trimid 2

3 Stair B V_tripivot 3 V_trimid 3

3 Ramp A V_tripivot 3 V_trimid 2

4 Escalera A V_tripivot 3 V_trimid 1

4 Rampa B V_tripivot 3 V_trimid 3

Xor( sector(2),nor( sector(1),escalera ) )

For index “2”:

Not( xor( sector(2),sector(1) ) || c )

For index “1”:

 
Table 2. Information for Tri-Donut Gap Fill 
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In Figure 49 is shown the stages of this fill. The idea is to divided this complex fill into 

Two-Donut Gap Fill. First, the initial, middle and last tripivots are defined. Then, with the 

initial and the middle tripivots a parallel fill can be done, sweeping the azimuths on both sides. 

Finally, with the middle and last tripivots a Two-Donut Gap Fill can be done. 

 
Figure 49. Tri-Donut Gap Fill process 

In summary (see Figure 50), the process of the Overlap Removing and Mesh generation 

algorithm is focus on maintaining the scan pattern (local region property) and use this 

information reduce time processing. Also, it removes those redundant points with no additional 

information for its purpose. Finally, the mesh generation is done using the information of the 

local region. In addition, this mesh result can be used in a Voxel-based reduction structure in 

order to obtain an isotropic mesh and achieve an ideal mesh reconstruction. 

Scan Overlap Removing Mesh Generation  
Figure 50. Summary of the Overlap Removing and Merge Generation Algorithm 
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4 Chapter 4. Mesh Generation, Results and Analysis 

In this chapter algorithm is tested in two different experiments to obtain results of time and 

performance, also the technical specifications of the hardware used for the experiments is 

detailed. 

4.1 Technical details 

For the experiments, a 360° LiDAR sensor is used to obtain the data and an embedded 

system with a GPU integrated to test the performance of the ORaMG algorithm (Overlap 

Removing and Mesh Generation). In this thesis, two different GPUs alternatives are used for 

each experiment. 

● OS1 OUSTER LiDAR.  
- Horizontal FOV of 360° degrees 
- Vertical FOV of 33.2° 
- Amount of azimuth blocks in a 360° rotation: 1024 (nAzBlk) 
- 16 beams in each azimuth block (nBeams) 
- Scan rotation rate of 10 Hz 
- 163840 points per second 

● Desktop computer. 
- CPU Intel® CoreTM i9-9900KF @3.60GHz with 8 physical cores 
- 16GB of RAM memory 
- GPU NVIDIA® GeForce RTX 2070 

▪ 2304 CUDA cores @1.41 GHz 
▪ 8 GB RAM with a bandwidth of 448 GB/s 
▪ Turing Architecture 

● Embedded system. 
- Low power consumption Jetson Nano 2GB Developer Kit 

▪ 128 CUDA cores GPU @640 MHz 
▪ 2 GB RAM with a bandwidth of 25.6 GB/s 
▪ Maxwell architecture 
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Two experiments setups are designed for testing ORaMG: 

● Synthetic Test: In a desktop computer, running times of Algorithm 1, 2, 3 and 4, 
using a synthetic sphere of radius 1. Is expected to obtain an execution time less 
than the rotation time established in order to achieved real time. 

● Field test: In a Jetson Nano, running times and mesh reconstruction analysis using 
real point cloud data from a mine captured with a 360° LiDAR and the 
measurement system. 

4.2 Synthetic test 

In this section, the partial result and the details of each algorithm are analyzed. Also, all 

the information obtained is gathered in a table. 

4.2.1 Synthetic Sphere Generation 

 

Figure 51. Synthetic sphere generated 

As explained in chapter 3, knowing and mathematically modeling the scan patter of the 

LiDAR device, a synthetic sphere can be generated. In Figure 51, six different color is 

observed, where each color represents a Donut scan, in my case six scan was enough to do a 

total scan of the scene using a 33.5370° rotation of the motor. 

Also, is considered that the LiDAR devices has the 9 possible combinations of scan, I 

can set this combination changing the amount of beams or the amount of azimuths. Since, some 

combinations lead to point cloud with the same initial amount of points I gathered them into 

groups, which I called PCxxKp, were xx denotes the total number of points divided by 1024. 
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The information of points for the different combinations is in the next table. In addition, in  

Figure 52 the spheres obtained for the five different PCxxKp group are ilustrated. 

 
Table 3. Synthetic sphere details for different scan combination 

 

Figure 52. Spheres generated for each PCxxKp group 

4.2.2 Overlap Removing 

With Algorithm 2 (Overlap Removing) the redundant points are removed for each 

combination. In the next table I can observed that the amount of points removed is almost 

constant, in general 39% of the initial points are removed. This means that the time processing 

is considerable reduced since is only necessary to process the points remaining. In addition, in 

Figure 53 can be observed how the points remotion is done, in the top there are the synthetic 

sphere with all the points, and in the bottom the spheres with no redundant points. 
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Table 4. Details of points removed 
PC98Kp PC393Kp PC1572KpPC196Kp PC786Kp

 
Figure 53. Spheres with redundant points removed 

4.2.3 Coarse Mesh 

With Algorithm 3 the first triangles are created, this initial mesh mostly completes the 

sphere, still some gaps between donuts can be observed, see Figure 54. In general, it can be 

created the triangles block for the initial Donut, however for the rest of the donuts, Is necessary 

to remove those triangles which have a redundant point. the number of triangles created for 

each combination is detailed in Table 5. 

 
Figure 54. Coarse Mesh 
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Table 5. Numbers of triangles generated in Coarse Mesh algorithm 

4.2.4 Fine Mesh 

With the last algorithm the remaining gaps are filled, and the last numbers of triangles is 

obtained. For this stage, the triangles generated are just a few in comparison with the triangles 

generated in Coarse Mesh, see Table 6 to see this percent of triangle generated. In the next 

figure the two mesh created are illustrated, Coarse Mesh at the left and Fine Mesh at the right, 

with the combination of both the final Mesh Sphere is generated. 

 
Figure 55. Combination of both mesh, Coarse and Fine mesh 

 
Table 6. Details of triangles generated in Fine Mesh 
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In the table above, it can be deduced that Fine Mesh could not require parallel processing, 

because the number of triangles generated for the total mesh in less than 8.5%. Also, design a 

parallel algorithm for Fine Mesh algorithm would be not necessary, since Coarse Mesh requires 

all the time processing of the mesh generation and the divergence in Fine Mesh implies that a 

parallel algorithm can has negative outcome. 

4.2.5 ORaMG test running times 

Finally, the running time test for each stage and the mesh information of triangles for 

Overlap Removing and Mesh Generation (ORaMG) is gathered in Table 7. Below each 

PCxxKp the number of beams and azimuths per donut is noted. In all cases, a full sphere (6 

donuts) is scanned.  

 
Table 7. ORaMG results 

Something relevant from Table 7 is the execution time for all combinations. The LiDAR 

device takes 100ms just to do one Donut scan, that means that a sphere scan takes 600ms. These 

results show that real time can be achieved and are notably below the threshold time, even in 

the group with the maximum amount of points the running test just takes 21.7 milliseconds 

which is still below than 600 milliseconds. 
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To obtain the results on Table 7, 100 iterations are done, the first iteration is discarded 

and mean for the rest is done. In the next figure, the value for each iteration for the 4 algorithms 

of ORaMG is illustrated. 

 
(a) iterations of 16 beams and 1k azimuths 

 
(b) iterations of 16 beams and 2k azimuths 
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(c) iterations of 16 beams and 4k azimuths 

Figure 56. Iterations for 16 beams and 1k,2k,4k azimuths block 

 

 
(a) iterations of 32 beams and 1k azimuths 
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(b) iterations of 32 beams and 2k azimuths 

 

 
(c) iterations of 32 beams and 4k azimuths 

Figure 57. Iterations for 32 beams and 1k,2k,4k azimuths block 
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(a) iterations of 64 beams and 1k azimuths 

 

 
(c) iterations of 64 beams and 2k azimuths 
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(c) iterations of 64 beams and 4k azimuths 

Figure 58. Iterations for 64 beams and 1k,2k,4k azimuths block 

4.3 Field test 

For the second experiment, the algorithm is tested with real data. Inside an underground 

mining gallery, the system device is inserted to obtain the data, see Figure 59a. In this field 

test, the LiDAR device only has the combination of 16-1024 and to represent a low power 

consumption scenario the Jetson Nano device is used. The result of the running test time and 

mesh information is shown in Table 8. It can be observed that the amount of points reaming is 

lower than the synthetic sphere. This is because the sensor cannot scan its bottom and some 

wet surfaces in the mining does not allow to scan more points. However, the result gives us 

approximately an identical virtual model. 

 
(a)  (b) 

Figure 59. Mining gallery and its virtual model 
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Table 8. Field test results 

In the technical details the desktop computer has a high performance for my algorithm, 

because the amount of CUDA core is 2304. In the case of the Jetson Nano, only 128 CUDA 

cores are available (low power consumption). However, the running time in my field test 

demonstrate that with a low power embedded system it can still obtain real time results. In the 

table above the total time for my mesh generation is still below 600 ms. In addition, both 

execution times are compared in the next table, the results are promising. 

 
Table 9. Comparison jetson nano with desktop computer 

 

 

 

 

4.4 Design cost 

Finally, in the next table is exposed the cost of the hardware applied and the hours 

dedicated to this work, some devices were bought in dollars in an exchange rate of S/3.8 per 

each dollar but the values in the table are in the local currency of Peru (/S). 
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Table 10. Design cost 
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5 Conclusions 

In summary, a method to design a triangle mesh generation parallel algorithm from a 

particular point cloud in real time using low power consumption embedded system is developed 

in this work. The point cloud is obtained using the rotatory system where the angle of the motor 

is variable and works for any 360° LiDAR 3D. This algorithm can generate mesh for different 

coherent values of the angle of the motor. Also, with the considerable time remaining obtained 

gives the possibility to do other point cloud processing such odometry. 

5.1 Objectives achieved 

• The mathematical model for the scan pattern for 360° LiDAR sensors is achieved. In 

particular, the model applied for the experiments considered that the points obtained 

were previous sorted, but after this sort process the mathematical model can be applied 

for any 360° LiDAR. 

• A sequential algorithm is also done which was the basis for the design of the parallel 

algorithm. This algorithm was developed in MATLAB to analyzed the concept of the 

idea in order to design the parallel algorithm. 

• The design of a parallel algorithm (ORaMG) to merge point clouds and create an initial 

mesh using a priori information of the scan pattern of the points. Only the important 

stages were parallelized. Also, the method of the design is detailed in order to create 

similar algorithm but for other 3D LiDAR with different pattern of scanning and 

different rotation system. 
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• This algorithm was implemented in a GPU, where the most repetitive and most time 

complexity task were distributed to the CUDA cores. This algorithm was tested in a 

low power consumption embedded system using real data obtained from a mine in real 

time processing time. In particular, for a LiDAR scan that takes 600ms, the algorithm 

takes approximately 8ms for processing and obtain the final result, it means least that 

the 2% time of obtaining the data. 

The results obtained in section 4 validate that the proposed thesis is able to achieve real 

time processing. Also, this proves that keeping the neighbor relationship of points in a point 

cloud reduce significantly the computational complexity of the mesh generation 

5.2 Recommendations 

In order to replicate this algorithm for other LiDAR devices, it is highly recommend: 

First, get the mathematical model of the scan pattern, all the LiDAR follows a scan pattern that 

can be obtained by Fourier analysis or predictive methods, the precision does not have to be so 

exact, a minimal error can be considered. Second, generate a synthetic data, this could be a 

sphere in a 3D plane or a circle for 2D scans. Third, create an initial, the Coarse Mesh, for this 

it is recommend to classify the points (stablish an array with their spatial information such as 

azimuth angle, quadrant position, etc.). And finally, a Fine Mesh generation to fill the gaps 

remaining on the Coarse Mesh. 

In addition, try to parallelize only the algorithms that can give a considerable change on 

the time processing. For this, divide the code in different stages and analyze which one takes 

more processing time and parallelize it. 
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Also, in some cases is necessary to use the module operator but if the number of the 

second parameter is a power of two, the logical operator “mask” can be used instead of using 

the module operator. For instance, in this work only the range 0 to 16383 was used, all numbers 

above like 16384 were masking to keep staying in the range. 

5.3 Possible applications 

The ORaMG algorithm has significatively reduce the processing time for a mesh 

generation. At least, 90% of time is free to used. The remaining time can be used for other 

applications. This gives the possibility to do other point cloud processing such mapping, 

odometry, improve the mesh, etc. For instance, ORaMG does not give an isotropic mesh, but 

gives an initial mesh for post processing. In collaboration with other author (Huapaya C.) an 

algorithm for the improvement of the initial mesh was created, also in a real time processing. 

This method used a voxel structure downsampling which in combination with ORaMG, a mesh 

system is designed in order to obtain an isotropic mesh generation in real time, see Figure 60. 

 
Figure 60. Real time voxel downsamplig mesh system 

 

Finally, a future work application is generalizing the method for any type of LiDAR scan. 

The basic idea is to find the scan pattern to reduce the local region processing, remove the 

redundant points, generate an initial CoarseMesh and finally fill the gaps with a FineMesh. 
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