PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

USO DE INFRAESTRUCTURA DE MEDICIÓN AVANZADA EN SISTEMAS DE DISTRIBUCIÓN ELÉCTRICA EN EL PERÚ: UN ESTUDIO DE CASO

Tesis para optar el grado académico de Magíster en Regulación de los Servicios Públicos

Autor:

CÉSAR AUGUSTO CHUYES GUTIÉRREZ

Asesor:

RAÚL LIZARDO GARCÍA CARPIO

Lima, 2022

Informe de Similitud

Yo, Raúl Lizardo García Carpio, docente de la Escuela de Posgrado de la Pontificia Universidad Católica del Perú, asesor de la tesis de investigación titulada "Uso de Infraestructura de Medición Avanzada en Sistemas de Distribución Eléctrica en el Perú: Un Estudio de Caso", de César Augusto Chuyes Gutiérrez, dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 9%. Así lo consigna el reporte de similitud emitido por el software *Turnitin* el 22 de diciembre de 2022.
- He revisado con detalle dicho reporte y la Tesis o Trabajo de Suficiencia Profesional, y no se advierte indicios de plagio.
- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: 27 de diciembre de 2022

Apellidos y nombres del asesor / de la	asesora:
García Carpio, Raúl Lizardo	
DNI: 09951306	
ORCID:	Day 100 and To
0000-0001-9100-8056	The dear service of
	Firma:
	Firma:

DEDICATORIA

A mi esposa Delicias, a mis hijas Alejandra y Luciana, por todo su amor, apoyo y comprensión.

AGRADECIMIENTO

Agradezco a mis colegas y a todas las personas quienes han participado de una u otra manera en la elaboración de la presente tesis, especialmente al Ing. Helí Sifuentes Jara.

Agradezco a los profesores de la maestría de regulación de servicios públicos de la PUCP, por haber transmitido sus conocimientos, experiencias y enseñanzas durante el desarrollo de la misma y en especial al magister Raúl García Carpio por haberme apoyado en el desarrollo de esta tesis y ser mi asesor.

RESUMEN

En el presente trabajo se analiza la viabilidad de la implementación de Infraestructura medición Avanzada (AMI) que consta de tres partes: medidor inteligente (smart meter), sistema de comunicación de datos y la gestión de datos obtenidos on line; como una herramienta que contribuye a mejorar la gestión y calidad del servicio brindado, siendo una inversión que se justifica reconocer en la regulación dados sus beneficios a los usuarios, tomando como caso de estudio a Hidrandina S.A.

Si bien es cierto la calidad del servicio ha mejorado en la empresa en los últimos años, es importante la aplicación de tecnologías que permita incrementar la eficiencia y productividad que redunde en mejorar de forma sustancial la satisfacción del usuario.

Con ello importante los beneficios de introducir AMI mediante su cuantificación, así como los costos incurridos, de tal manera que se determine su viabilidad a través de resultados costo beneficio, que incluye mecanismos de reconocimiento de este tipo de inversiones en la regulación.

Importante las consideraciones de implementación y despliegue del AMI en Hidrandina: por etapas, porcentaje por años, consumos bajos en algunas zonas, tipo financiamiento, impactos por riesgos (regulatorios, sociales, financieros, seguridad, etc) que aparecerían e importante y clave mitigarlos a través de un plan integral de comunicaciones a los usuarios.

Precisar que los beneficios calculados para la distribuidora no son suficientes para ser viable el proyecto, por lo que se requieren los ahorros y beneficios de los usuarios para lograr esa viabilidad económica del proyecto.

ABSTRACT

In the present work, the feasibility of the implementation of Advanced Measurement Infrastructure (AMI) is analyzed, which consists of three parts: smart meter, data communication system and the management of data obtained online; as a tool that contributes to improving the management and quality of the service provided, being an investment that is justified in recognizing in the regulation given its benefits to users, taking Hidrandina S.A. as a case study.

Although it is true that the quality of service has improved in the company in recent years, it is important to apply technologies that allow increased efficiency and productivity that result in a substantial improvement in user satisfaction.

With this, the benefits of introducing AMI are important through their quantification, as well as the costs incurred, in such a way that their viability is determined through cost-benefit results, which includes recognition mechanisms for this type of investment in the regulation.

The implementation and deployment considerations of the AMI in Hidrandina are important: by stages, percentage per year, low consumption in some areas, type of financing, impacts due to risks (regulatory, social, financial, security, etc.) that would appear and it is important and key to mitigate them through a comprehensive communications plan for users.

Specify that the benefits calculated for the distributor are not enough to make the project viable, so the savings and benefits of the users are required to achieve the economic viability of the project.

PALABRAS CLAVES

- Infraestructura de medición avanzada
- Medidor inteligente (Smart Meter)
- Sistema de gestión datos de medida
- Costo beneficio
- Sistemas de distribución eléctrica
- Tarificación
- Normatividad regulatoria
- Innovación tecnológica
- Despliegue del AMI
- Costos de Inversión (Capex)
- Costos por gastos de operación y mantenimiento (Opex)
- Plan de comunicaciones
- Impacto y riesgos
- Plan piloto
- Análisis de sensibilidad
- Beneficios al usuario
- Consumo per cápita de energía.

ABREVIATURAS Y ACRÓNIMOS

- AMI: Infraestructura de medición avanzada
- SMI: Sistema de medición inteligente
- MDM: Sistema de gestión datos de medida
- CAPEX: Costos de Inversión
- OPEX: Costos por gastos de operación y mantenimiento
- AT, MT, BT: Alta Tensión, Media tensión, Baja Tensión.
- KV: Kilo voltios (1 000 voltios)
- OSINERGMIN: Organismo supervisor de la inversión en energía y minería.
- LCE: Ley de Concesiones Eléctricas del Perú.

- VAD: Valor agregado de distribución eléctrica
- COYM: Costo de Operación y Mantenimiento Eléctrico
- RTP: Precio en tiempo real
- RD: Respuesta a la demanda
- Hidrandina: Empresa distribuidora del servicio público de electricidad del norte medio del Perú.
- PLC: Power line comunication
- CRSE: Comisión multisectorial de la reforma del subsector eléctrico Perú.
- MINEM: Ministerio de Energía y Minas Perú
- INDECOPI: Instituto de defensa de la competencia y la propiedad intelectual
- INACAL: Instituto nacional de la calidad
- COES: Comité de Operación Económica del Sistema Interconectado Nacional
- FONAFE: Fondo nacional de financiamiento de la actividad empresarial del Estado.
- KWh -mes: Kilo watts por mes o Kilovatio por mes.
- HP: Hora punta
- HFP: Hora fuera de punta
- TIR: Tasa Interna de retorno.
- VAN: Valor actual neto
- B/C: Beneficio costo

ÍNDICE

Página

Contenio RESUM	do EN	iii
ABSTRA	ACT	iv
PALABR	RAS CLAVES, ABREVIATURAS Y ACRONIMOS	v
	DE TABLAS	
LISTA D	E GRAFICOS	xi
INTROD	DUCCIÓN	1
	LO 1	
ASPECT	TOS CONCEPTUALES	
1.1.	Sobre la industria eléctrica	
1.2.	Actividades en el sistema eléctrico	
	Generación	
	Transmisión	
1.2.3.	Operación del Sistema	7
1.2.4.	Distribución	7
1.2.5.	Comercialización	7
1.3.	Distribución y comercialización minorista de electricidad a propósito del Al	
1.4.	Tipo de consumidores	
1.5.	Pérdidas de energía de distribución	
1.6.	Tarificación en la distribución eléctrica	12
1.6.	9	
1.6.2	2. Tarificación en Tiempo Real	15
1.6.0 elec	 Efectos en los consumidores de una Mayor Respuesta a la demanda tricidad. 	
1.7.	Tipos de medición	19
1.7.1.	Medidores Electrónicos	19
1.7.2.	Medidores Inteligentes (Smart Meters)	20
1.7.3.	Infraestructura Medición Avanzada (AMI)	21
1.7.4.	Sistema gestión de datos de medida (Meter Data Management, MDM)	24
1.7.5.	Beneficios del AMI en la gestión de la empresa y servicio brindado	26
1.7.6.	Implementación del AMI en el Contexto Internacional	28
1.8.	Diseño de mercado y agentes del sector electricidad del Perú	30
1.8.1.	Diseño de mercado del Perú	30
1.8.2.	Modernización del Sistema Eléctrico Peruano	31

1.9		Agentes del sector eléctrico peruano	31
1	1.9.1.	Ministerio de Energía y Minas (MEM)	32
1	1.9.2.	Organismo Supervisor de la Inversión de la Energía y Minería (Osinergmin).	
1	1.9.3.	El Comité de Operación Económica del Sistema (COES)	33
		El Instituto de Defensa de la Competencia y la Propiedad Intelectual –	34
1	1.9.5.	El Instituto Nacional de la Calidad (INACAL)	34
1.1	0.	Regulación de Distribución y la Comercialización Minorista en el Perú	35
1.1	1.	Normatividad regulatoria referente a innovación tecnológica	39
1.1	2.	Experiencia internacional: Despliegue de Sistemas de Medición Inteligente	41
1.1		Experiencias de implementación de los SMI	
1	1.13.1	Experiencia en Perú	42
		3.1.1. Marco Normativo sobre Medición Inteligente	
	1.13	3.1.2. Despliegue del Proyecto Piloto	43
		Experiencia en la Unión Europa	
1	1.13.3	Experiencia en otros países de la región	46
	1.13	3.3.1. Chile	46
		3.3.2. Colombia	
		Problemática general en los SMI	
		LO 2	
ΑP	LICA	CIÓN DEL ENFOQUE METODOLOGICO	51
2.1		Gestión de la empresa	
	2.1.	1. Pérdidas de energía	52
	2.1.	2. Cortes y Reconexiones	52
	2.1.	3. Toma Lectura y Reparto recibos	53
	2.1.	4. Reclamos de los usuarios	54
	2.1.		
	2.1.	6. Atención de averías	54
	2.2.	Evolución de indicadores	55
2.3		Costos por inversiones (CAPEX)	56
2.4		Costos por gastos de operación (OPEX).	56
2.5		Cuantificación de beneficiarios	57
2.6	·.	Análisis beneficio - costo	58
2.7	•	Consideraciones en la implementación del AMI en Hidrandina	58
2.8		Consideraciones de impacto y riesgo para el uso de AMI	59
2.9		Despliegue del SMI	61
2	91	Provección de crecimiento anual de clientes	61

2.9.2.	Despliegue de SMI – masivo Total	62
2.9.3.	Inversión y operación y mantenimiento de AMI por año – despliegue	63
CAPITU	LO 03	66
ANALIS	S Y DISCUSION DE LOS RESULTADOS	66
3.1.	Proyecto Piloto de implementación AMI en Hidrandina	67
3.2.	Implantación total del Proyecto total	67
3.3.	Consideraciones para realizar costo beneficio	68
3.4.	Resultados costo-beneficio (CBA-siglas en inglés)	68
3.5.	Ahorro y Beneficios el proyecto	69
3.5.1.	Ahorro y Beneficios de Hidrandina	69
3.5.2.	Ahorro y Beneficios que obtiene el usuario	75
a) de a	Ahorro del consumo energía por contar con medidor inteligente (cul	
b)	Ahorro por traslado de consumos de la hora punta a fuera de punta	77
3.5.3.	Distribución de costos y beneficios.	78
3.5.	3.1. Distribución de costos con la implementación del AMI	78
3.5.	3.2. Distribución de los beneficios con la implementación del AMI	79
3.6.	CAPEX y OPEX al 70% de despliegue	81
3.7.	EVALUACION ECONOMICA	82
3.7.1.	Análisis de Sensibilidad	82
	LO 04	
PLANTE	AMIENTO PARA IMPLEMENTACION AMI	86
4.1.	Instalación del piloto del Osinergmin	87
4.2.	Implementación intensificada del AMI	89
CONCL	JSIONES	91
RECOM	ENDACIONES	93
REFERE	ENCIA BIBLIOGRAFICA	94
ANEXO	S	96
ANEX	O 1	97
Base	de datos comerciales de alimentadores de la empresa Hidrandina	97
ANEX	O 2	100
Anális	is de sensibilidad por rango de consumos evaluados	. 100

LISTA DE TABLAS

Tabla 1: Matriz de distribución de Demanda Máxima (MW) y	38
Tabla 2: Participación de los bloques horarios por Sector Típico (HP – HFP)	39
Tabla 3 Participación de clientes por empresa	44
Tabla 4: Resultado de Costo-Beneficio en Unión Europeo	46
Tabla 5: Costos y Beneficios Sistemas de Medición, Monitoreo y Control (SMMC	46
Tabla 6: Componente del Sistema de Medición, Monitoreo y Control	48
Tabla 7: Etapas de despliegue del Plan de SMI	49
Tabla 8: Indicadores de gestión - Hidrandina – Años 2015 al 2021	55
Tabla 9: Cantidad de clientes de Hidrandina – Año 2021	57
Tabla 10: Proyecto Piloto de Implementación AMI en Hidrandina	59
Tabla 11: Costo de implementación de SMI en Hidrandina	59
Tabla 12: Proyección de clientes al 2037 de Hidrandina (15 años)	62
Tabla 13: Proyección de despliegue masivo al 2037 de Hidrandina	63
Tabla 14: Inversión, Operación y Mantenimiento al 2037	64
Tabla 15: Costos Unitarios considerados por el Osinergmin	
Tabla 16: Despliegue al 100% de SMI	67
Tabla 17: Consideraciones para el ahorro costo beneficio	68
Tabla 18: Proyección de Inversiones (CAPEX y OPEX) al 2037 al 100%	
Tabla 19: Ahorros por lecturas	70
Tabla 20: Ahorro por no reparto de recibo	
Tabla 21: Ahorro por cortes y reconexión	70
Tabla 22: Ahorros por reducción de pérdidas distribución	71
Tabla 23: Datos para beneficio de reducir reclamos y quejas anual	73
Tabla 24: Beneficio por menor compra a generadores	74
Tabla 25: Rangos de consumo según segmentos de consumo en kWh	76
Tabla 26: Ahorro por menor consumo de energía	76
Tabla 27: Migración de consumo de HP a HFP	78
Tabla 28: Beneficio con el 70% de despliegue	80
Tabla 29: Proyección de despliegue piloto y masivo al 2037 de Hidrandina al 70% d	
Despliegue	
Tabla 30: Evaluación Económica con el 70% de despliegue	
Tabla 31: Sensibilidad de la tasa de descuento	
Tabla 32: Sensibilidad del ahorro por menor consumo energía	
Tabla 33: Sensibilidad del Ahorro por migración de	
Tabla 34: Parámetro: Instalación y despliegue según rangos de consumo	85

LISTA DE GRÁFICOS

Grafica 1: Actividades físicas involucradas en la provisión de electricidad	5
Grafica 2: Configuración del sistema eléctrico	9
Grafica 3: Tarifas según modelo de peak load pricing	. 14
Grafica 4: Modelo Peak Load Pricing y consumo eficiente	. 15
Grafica 5: Costos ahorrados por una mayor respuesta a la demanda	. 17
Grafica 6: Puntos de medición y gestión de datos	. 22
Grafica 7: Integración redes Eléctricas Inteligentes	. 23
Grafica 8: Participación agentes del sector eléctrico	. 32
Grafica 9: Diagrama de carga normalizado promedio – Hidrandina – BT5BR	. 37
Grafica 10: Cantidad de SMI para proyectos piloto por EDE	. 43
Grafica 11: Implementación SMMC – NTD 2017	. 47
Grafica 12: Distribución de costos con la implementación del AMI	. 79

INTRODUCCIÓN

Los últimos avances en la tecnología nos permiten acceder —oportuna y confiablemente- "on line" tanto a la información registrada en los sistemas de medición eléctrica como a la autogestión técnica — comercial. Una de las ventajas más relevantes para las empresas es permitir establecer adecuados balances de energía para multipropósitos, así como generar eficiencia en la gestión empresarial y mejorar la calidad del servicio eléctrico.

Siendo uno de los parámetros limitante el factor tiempo, dado que el incremento de consumo de los clientes y cargas nuevas por atender y la necesidad de cumplir con los plazos de facturación, supervisión y control, considerando la mejora sustancial de los procesos que se emplean en la atención de los servicios, en el presente trabajo se analiza y evalúa una propuesta de atención mediante la introducción de lo que se conoce como Infraestructura de Medición Avanzada (AMI), que consta de tres partes: medidor inteligente (smart meter), sistema de comunicación de datos y la gestión de datos obtenidos on line.

Estas mejoras se pueden dar en los distintos niveles de tensión de un sistema eléctrico (Alta, Media y Baja tensión) y su gestión en tiempo real permitirá optimizar el uso de recursos y reducir costos operativos comerciales tales como: toma de lecturas de forma presencial, evitando desplazamientos de personal; Cortes y Reconexión del servicio eléctrico a cada conexión del usuario de forma inmediata, administración eficiente de la demanda, rapidez en los balances de energía para gestión de control de pérdidas, entre otros; de tal manera que permita tomar decisiones de forma oportuna sobre gestión y operación en pro de mejorar de forma sustancial la calidad del servicio y producto entregado (electricidad) que se entrega a los clientes, que redunda en incrementar la satisfacción del cliente, principalmente por reducción de tiempos en actividades de lecturas, entregas oportunas de recibos, atenciones rápidas de interrupciones ante averías, rapidez en la reconexión del servicio eléctrico por pago de deuda y la atención de otros requerimientos de los usuarios.

Para ello, su implementación en gran escala y de forma óptima obedece a su instalación en los puntos de medición ubicados en los sistemas eléctricos, que necesitan de un sistema de comunicación para el traslado de esa información de datos que registra el medidor; cuya gestión y operación de datos de medidores esté controlada y monitoreada a través de un Meter Data Management (MDM). De otro lado, estando la regulación de estos elementos aún pendientes por el Osinergmin, el uso de este tipo de tecnología, en estos momentos por los altos costos de inversión, requiere de un exhaustivo análisis de costos y beneficios latentes, tanto para las empresas eléctricas como para los clientes, quienes tendrían también el control sobre sus consumos y diversos parámetros implícitos.

El desarrollo de este trabajo está dado en el ámbito la empresa distribuidora de energía eléctrica Hidrandina S.A que cuenta con más de 950 mil clientes en las regiones La Libertad, Ancash y Cajamarca, experiencia que serviría de aplicación y referente para otras empresas distribuidoras del Perú.

Durante los últimos años, Hidrandina S.A. viene desarrollando mejoras —de forma sostenida- en sus principales indicadores de gestión: ventas de energía, cantidad clientes, cobranzas, facturación, atención al cliente, entre otros; sin embargo, las exigencias existentes por el incremento de clientes, incremento de consumos y aparición de nuevas cargas que atender, así como la exigencia de clientes en mejorar el servicio de forma sustancial que brinda la empresa distribuidora, nos lleva a pensar que la aplicación de este tipo de tecnología seria el punto de inflexión hacia la excelencia en el servicio.

Por lo indicado, se plantea la siguiente problemática: limitaciones en obtención de consumos de clientes o puntos de medición de una forma inmediata, los cuales se realizan una sola vez al mes; limitaciones de balance de energía de forma oportuna que permita tomar decisiones respecto a pérdidas de energía; limitaciones para contar con parámetros que midan la calidad de producto entregado a los clientes; limitaciones en la gestión y control del consumo de energía familiar que favorezca al usuario y empresarial a la empresa distribuidora; carencias para efectuar corte y reconexión de servicio de manera efectiva e inmediata que garantice mejora en las cobranzas; limitaciones en los

tiempos de reposición del servicio ante una interrupción; deficiencias en toma de lectura, relectura por alguna inconsistencia durante cada proceso de facturación; deficiencias en la atención de quejas y reclamos al exceder el tiempo de atención y según normativa existente; y deficiencias en el mecanismo de reparto de recibos a los clientes, sujeto a la espera de toma de lectura. Es decir, existen limitaciones, deficiencias y carencias en la gestión de atención de Hidrandina que no le permite optimizar recursos de forma sustancial distribuidora ni una mejora en la calidad del servicio brindado a los clientes. El uso de esta tecnología AMI permite evaluar la conveniencia o no de implantarla desde el punto de vista de los costos y beneficios para la distribuidora y los usuarios.

En este contexto, la pregunta de investigación que corresponde formularnos es ¿Cuál es el efecto de la implementación y aplicación AMI sobre la gestión operativa de la distribuidora y la mejora del nivel de calidad del servicio brindado a sus clientes; el costo—beneficio tanto para la distribuidora y los usuarios, y el reconocimiento de este tipo de inversiones en la regulación?

En la presente tesis se plantea la hipótesis de que, si se considerara la aplicación del uso AMI para realizar gestión de la demanda de los clientes, obtención de consumos electricidad de forma oportuna, realizar la reposición inmediata del servicio eléctrico, reducir quejas, otros; entonces mejorara la gestión y la calidad del servicio brindado, siendo una inversión que se justifica reconocer en la regulación según los costos y beneficios a obtenerse.

En ese sentido, como objetivo de este trabajo, se analiza la viabilidad de implementación del AMI como herramienta que contribuya a mejorar la gestión y calidad del servicio brindado a los clientes, tomando como caso de estudio a Hidrandina S.A.

Finalmente, se presenta los resultados del análisis, cuantificación de los costos - beneficios, mecanismo del reconocimiento de las inversiones en la regulación, ventajas, aspectos de mejora de la gestión, entre otros; que nos permita determinar la viabilidad de implementación AMI como herramienta que contribuya a mejorar la calidad del servicio y su impacto regulatorio.

CAPÍTULO 1

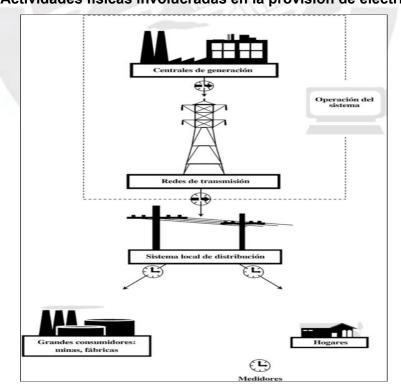
ASPECTOS CONCEPTUALES

En este primer capítulo se define los aspectos generales que a la fecha se vienen dando en el ámbito nacional y mundial; por lo cual se definirá en la medida que se plasma el tema central de la investigación. Así mismo, resulta importante manifestar las tareas que se desarrollan en la infraestructura eléctrica de redes de distribución eléctrico peruano, donde justamente se utilizan equipos de medición y se aplicará la medición inteligente, esto nos permitirá determinar la importancia de entregar información con telemando a distancia a través de una infraestructura de comunicaciones, contando con un centro de control de operaciones, donde se centre tales datos. Finalmente, se identificará la participación de los distintos agentes en el mercado y la normatividad peruana respeto a esta implementación.

1.1. Sobre la industria eléctrica

La electricidad es elemento básico y contribuye de forma importante al desarrollo económico, social y ambiental de una ciudad y de un país mejorando notablemente su calidad de vida, siendo importante contar con infraestructura eléctrica efectiva que permitan brindar un servicio de calidad a la población.

Asimismo, tiene particularidades y los desafíos de las empresas distribuidoras de electricidad están en desarrollar de forma competitiva y eficiente el mercado, de tal manera que permita ser competitivo y afrontar las exigencias de los clientes y de la sociedad. En ese sentido se hace importante promover la integración energética e inversiones en infraestructura eléctrica, garantizando la recuperación de la inversión y aplicación de nueva tecnología, reformas y nuevos modelos de negocios.


1.2. Actividades en el sistema eléctrico

Las actividades en el sistema eléctrico principalmente son tres, tales como: Generación, Transmisión y Distribución. Adicionalmente, dos funciones no físicas que son importantes, la operación del sistema y la comercialización.

La operación del sistema eléctrico está conformada por empresas generadoras, transmisoras, distribuidoras y clientes libres con el objetivo de realizar actividades de despacho a través de un sistema interconectado. Estas coordinaciones se realizan entre los centros de control de operaciones.

En cuanto a la comercialización una parte la tiene la empresa distribuidora para atender el servicio público con las ventas que hacen los generadores a los distribuidores, y otra parte está dirigida para el mercado libre para grandes clientes, donde la relación se da entre empresa generadora y clientes libres; y también está la opción entre distribuidoras y clientes libres, dándose una competencia entre generadores y distribuidores bajo un régimen de libre competencia.

En el gráfico adjunto se muestra las tres principales actividades de electricidad.

Grafica 1: Actividades físicas involucradas en la provisión de electricidad

Fuente: Hunt, 2002.

A continuación, describiremos las tres actividades de un sistema eléctrico:

1.2.1. Generación

Consiste en transformar fuentes de energía primaria extraída de la naturaleza en energía eléctrica, y es la que está en la primera fase de la producción. Tenemos según función a la fuente de energía primaria: térmica, geotérmica, hidráulica, carbón, otros. Adicionalmente, basado en fuentes de energía renovables, tenemos: solares, eólicas, entre otras.

Según el tamaño de mercado se requiere de una capacidad adicional que permita atender las necesidades o requerimientos del sistema, siendo una característica la competencia en continuidad y costo entre las diferentes tecnologías de producción. Aquí también se da estructura de costos fijos y variables para proveer de forma eficiente energía y potencia eléctrica, estando los costos fijos relacionados con la inversión; y los costos variables con la producción según el insumo que utilicen.

1.2.2. Transmisión

Corresponde actividades de trasladar la electricidad desde los puntos donde se produce hasta los puntos donde se empezará a distribuir a los clientes para su uso. Para ello se dispone de infraestructura eléctrica de transmisión diferenciada en: muy alto voltaje que es mayor a 220 kV y alto voltaje que va de valores entre 30 kV y 220kV conocida también como subtransmisión; y de centros de transformación de voltaje que van desde muy alto voltaje a alto voltaje y de alto voltaje a media tensión, lo cual permite reducir ese voltaje y pueda llegar a los hogares, predios y otros puntos que requieren consumir electricidad para usos industriales, comerciales y doméstico.

Cabe indicar que las empresas distribuidoras para llegar a sus centros de consumo cuentan con infraestructura en subtransmisión eléctrica.

1.2.3. Operación del Sistema

El sistema interconectado en operación está conformado por empresas generadoras, transmisoras, distribuidoras y clientes libres con el objetivo de realizar el despacho económico de la energía que se genera y que circula en todo el ámbito del sistema eléctrico. Ahí se realizan transferencias de potencias y energías entre empresas que inyectan o retiran del sistema. Las distribuidoras retiran para atender a sus clientes.

1.2.4. Distribución

Actividad desarrollada con la finalidad de llevar la energía eléctrica a los consumidores finales, a través de redes eléctricas que en su mayoría son de propiedad de la empresa distribuidora. Con ello las empresas pequeñas y grandes (uso industrial, comercial y otros), y predios hacen uso de la electricidad para usos productivos o de vivienda respectivamente. Con esa perspectiva, las redes de distribución cobran gran importancia dentro de la infraestructura eléctrica, por cuanto deben cuidar la seguridad del suministro y la eficiencia. Comprende las redes eléctricas con voltajes entre 1 kV y 30 kV (1000 y 30 000 voltios) y también redes de voltajes menor de 1kV (1000 voltios).

Las redes eléctricas se diseñan y construyen considerando la dispersión de los predios o locales de los clientes, de acuerdo a los accesos y espacios de las vías públicas, y considerando el criterio de eficiencia a un costo optimizado. La infraestructura y conductores eléctricos se diseñan a largo plazo y según el consumo de electricidad que van atender a los clientes, de ahí que podemos tener que una zona o localidad que puede consumir mucho más que otra.

1.2.5. Comercialización

Una parte de la comercialización la tiene la empresa distribuidora para atender a sus clientes del mercado regulado que son fijados y supervisados por el organismo regulador del Estado, y que cuenten hasta una capacidad definida de sus requerimientos en unidad de potencia o energía; y los clientes libres son aquellos que pueden negociar el precio con la empresa generadora o distribuidora bajo un régimen de libertad de precios, al superar una capacidad en potencia o energía, asignada principalmente a grandes clientes. Aquí, en este segmento, se da una competencia entre generadores y distribuidores.

Habiendo expuesto las diferentes actividades que se pueden desarrollar en la industria eléctrica, ahora corresponde profundizar en la distribución y comercialización, en la medida que es en esta donde se aplica principalmente el AMI.

Distribución y comercialización minorista de electricidad a propósito del AMI.

La distribución en sí está asociada al transporte físico de la electricidad a través de la infraestructura eléctrica existente y la comercialización es una actividad económica y financiera e independiente del proceso de abastecimiento, donde la empresa comercializadora ofrece la venta de energía y potencia e incluso otros servicios a precios competitivos para el cliente, asumiendo riesgos de comprar a los generadores en el mercado.

En el siguiente gráfico se muestra un sistema eléctrico distribución en los distintos niveles de tensión.

De la Generación y Transmisión Alta Tensión Subestación de Transmisión Media Tensión Redes y Usuario en MEDIA Equipos de Media Tensión TENSIÓN Protección y Seccionamiento Media Tensión Subestaciones de Distribución Baja Tensión BAJA Redes y **TENSIÓN** Alumbrado Usuario en Baja Tensión Público Infraestructura No Eléctrica (Oficinas, Centros de Atención al Usuario, etc.)

Grafica 2: Configuración del sistema eléctrico

Fuente: Osinergmin, S.F.

En Perú, las empresas distribuidoras a la vez son empresas comercializadoras, quien brindan el servicio eléctrico a los clientes. A través de la infraestructura eléctrica instalada que es de su propiedad se logra atender a los clientes finales, incluidos todos los servicios que son regulados.

A continuación, abordaremos aspectos clave a considerarse.

1.4. Tipo de consumidores

Podemos diferenciar a los usuarios como usuarios libres y regulados, tal como se indica a continuación:

Clientes Regulados BT, MT, AT son los consumidores que aplican a tarifas reguladas; que son fijadas por el Estado u organismo regulador.

Clientes Libres o Clientes Propios dentro de la distribuidora (MT, AT y MAT) son aquellos consumidores que negocian y acuerdan sus propios precios, bien sea con los generadores o con los distribuidores. Los consumidores pueden elegir a su suministrador como muestra de una liberalización del mercado eléctrico y por ende la elección de la tarifa. Esta elección es enmarcarse en la libre competencia para la venta de energía y potencia en dicho segmento de clientes.

1.5. Pérdidas de energía de distribución.

Las pérdidas de energía de distribución en las empresas distribuidoras se presentan en todos los componentes de sus sistemas eléctricos, desde el punto de compra hasta los puntos de entrega de los clientes finales, que incluyen pérdidas en los redes y transformadores de los subsistemas de transmisión, pérdidas en redes y transformadores de distribución y pérdidas en los suministros de las conexiones que están conformadas por la acometida eléctrica y medidor en predios que son instalados en cada uno de los predios de los clientes. En esos niveles de voltajes existen instalados medidores para que registren los consumos de electricidad y se realizan los balances de energía, asumiendo quien corresponde el consumo realizado. Dichas pérdidas de energía son de dos tipos: pérdidas físicas, que corresponden al paso de la corriente por los componentes y conductores eléctricos que permiten el paso del mismo; y las pérdidas comerciales, que son debido principalmente al hurto energía y a la no facturación adecuada u oportuna.

Las Pérdidas físicas conocidas también como pérdidas técnicas se deben a la energía consumida al paso del flujo de electricidad (electrones) por los equipos e infraestructura eléctrica instalada. Este tipo de pérdidas dependerán del estado en que se encuentren los equipos e infraestructura y la ingeniería de las mismos, del estado de conservación y de la operación

y mantenimiento establecidos en los planes establecidos por la distribuidora.

Las Pérdidas comerciales son aquellas atribuibles principalmente a hurtos mediante conexiones clandestinas, adulteración de conexiones o de equipos de medición u otras modalidades de hurto. Asimismo, se considera en el rubro de pérdidas comerciales la energía dejada de facturar por causas de la actividad comercial, tales como imprecisión o errores en los sistemas de medición, errores de lectura, errores en emisión de facturas y del grado de automatización de los procesos de comercialización y atención al cliente. Las pérdidas comerciales dependen de la gestión empresarial de las distribuidoras, las cuales es muy difícil eliminar, dado que dependen en parte de la situación social, económica y cultural de la sociedad; tanto que el organismo regulador reconoce en la tarifa un porcentaje de pérdidas denominadas pérdidas reconocidas.

De conformidad con el artículo 64º de la Ley de Concesiones Eléctricas (1992), en adelante LCE, las tarifas al cliente final son reguladas basados en criterios de eficiencia técnica y económica, por lo que, reconoce niveles de pérdidas estándares dentro de la tarifa. Dichas pérdidas estándares, tanto físicas como comerciales, se determinan de manera teórica y como medida del nivel de eficiencia de una empresa modelo idealizada – sistema económicamente adaptado a la demanda; y que las mismas empresas distribuidoras reportan y sustentan en el proceso del Valor Agregado de Distribución (VAD) cada cuatro años, incluidos los valores de pérdidas reales; en ese sentido las pérdidas reconocidas con menores que las pérdidas reales.

Las pérdidas físicas normalmente aumentan de forma directamente proporcional al volumen de energía. Las pérdidas comerciales se determinan como la diferencia de la energía de compra y las pérdidas técnicas reales; estas últimas, no se pueden medir físicamente con precisión, por lo que en las pérdidas comerciales se considera el error de estimación de estas.

Por otro lado, las pérdidas no técnicas se combaten principalmente a partir operativos antihurto de energía e inspecciones en campo que implican revisión de conexiones, que implican la detección de fraudes cuando sea factible, ya que los métodos de conexión fraudulenta han ido cambiando conforme se han ido detectando las modalidades más utilizadas, siendo casi imposible reducir los casos en su totalidad.

1.6. Tarificación en la distribución eléctrica

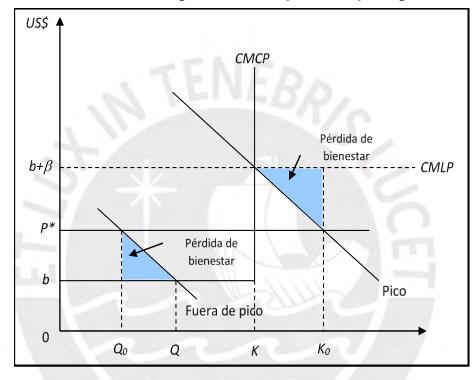
Considerando la opción que brinda el AMI en la administración de la potencia y traslado de consumo de energía en hora punta o pico a hora fuera de punta (conocido también como hora valle), dentro de la gestión de comercialización, se considera modelos de tarificación a fin de identificar las ganancias en eficiencia para los consumidores, y su aplicación práctica.

1.6.1. El modelo de tarificación de demanda Pico "Peak Load Pricing"

Considerando que los usuarios tienen la opción de consumir energía eléctrica en distintos periodos del día, es oportuno evaluar los periodos conocidos como "pico" y "fuera de pico" dado que de ello dependería el pago que realicen los usuarios, porque habría un beneficio e incentivo en ahorro para los clientes al transferir energía de un periodo pico a fuera de pico. En las horas pico, los usuarios pagaran los costos variables al requerir más potencia y energía en esa hora, y también los costos de capacidad de la empresa; en cambio en las horas fuera de pico, los sólo usuarios pagaran los costos variables de producción y no los costos de capacidad de la empresa.

Este modelo es adecuado en mercados donde la oferta tiene que responder inmediatamente a la demanda, periodos estacionales donde por el mismo

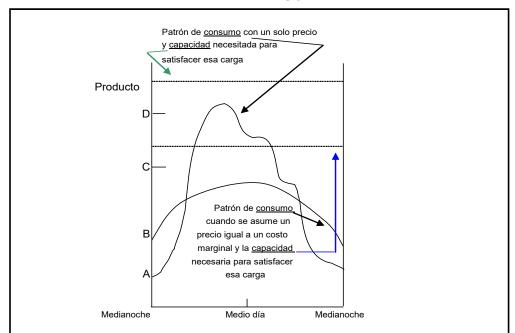
uso productivo o hábito de consumo lleva a consumir electricidad en ciertas épocas más que en otras.


En ese sentido, Boiteux (1949), traducido al inglés en 1960, consideró fijar precios para que los distribuidores se exijan en lograr precios competitivos y eficientes y que en esa relación también los clientes sean beneficiados.

El planteamiento del modelo de peak load pricing se debe a Boiteux (1949), siendo la primera formulación más usada la de Steiner (1957). Este modelo, considera que las tarifas se deben fijar considerando que los precios en los diferentes momentos deben ser iguales a los costos marginales de atender con el servicio eléctrico. Este costo en el momento en que la demanda es baja (fuera de punta) corresponde normalmente solo al costo operativo del servicio, dado que el distribuidor atiende con su capacidad determinada, mientras que en el momento en que la demanda es alta (hora punta) corresponde al costo operativo más el costo de invertir en nueva capacidad o fuente de energía para atender el servicio eléctrico que requieren en ese periodo los consumidores ($b+\beta$). Es importante que quede claro que los consumidores que ocasionan la hora punta de demanda al consumir en ese periodo tienen que asumir el costo de esta inversión en capacidad o costos fijos.

Este tipo de tarificación genera los incentivos correctos para los consumidores en los diferentes periodos, ya sean pico o fuera de pico, dado que sabrán que los precios que incurrirán estarán en relación al periodo que consuman; y esta ventaja te la otorga los sistemas AMI, al estar los medidores configurados para registrar parámetros en esos periodos y no solamente con medidores convencionales que registran solamente energía total, no registran potencia.

En la siguiente gráfica, Viscusi (1996), este resultado se aprecia asumiendo un valor P* constante (fijo) que es intermedio entre precio pico y precio no pico; y en este caso la demanda en el período pico sería mayor a la socialmente deseable (k), obligando a una mayor inversión (k0) dado que


se requeriría de mayor capacidad para atender el servicio eléctrico de los consumidores y elevando los costos. Respecto al caso de periodo fuera de pico para una demanda (Q_0) sería menor a la deseable por la sociedad (Q). Esta situación generaría, tanto en la hora pico como fuera de pico, pérdidas de bienestar social representadas por las zonas que se muestran sombreado en el gráfico que se muestra continuación.

Grafica 3: Tarifas según modelo de peak load pricing

Fuente: Viscusi 1996.

A su vez, de fijarse un precio uniforme, el patrón de consumo sería más variable y con una demanda pico mayor porque para el consumidor es indiferente las horas de usos de la electricidad, que en el caso de que se aplicara el modelo de *peak load pricing*.. El distribuidor debe contar con una capacidad para atender ese requerimiento generado en la hora pico. Se aprecia también en la gráfica que con el modelo de *peak load pricing* la curva de la demanda disminuye su consumo pico y esto se hace cada vez más eficiente cuando los consumidores tengan en cuenta ello y que cuentan con incentivo para ello.

Grafica 4: Modelo Peak Load Pricing y consumo eficiente

Fuente: Sheperd (1998)

1.6.2. Tarificación en Tiempo Real

Mediante la implementación de la Tarifación en Tiempo Real (Real Time Pricing, RTP), los clientes pueden estar muy atentos al precio y monto de su recibo de electricidad, el mismo que está relacionado con la cantidad de electricidad que consumen. El servicio que presta las distribuidoras está regulado, que operan con contratos en tiempo real, en ese sentido es oportuno considerar mecanismo que permita mejorar de forma importante la volatilidad de la factura en relación a los horarios de uso del consumidor y a través de un óptimo sistema de tarifas que se implemente.

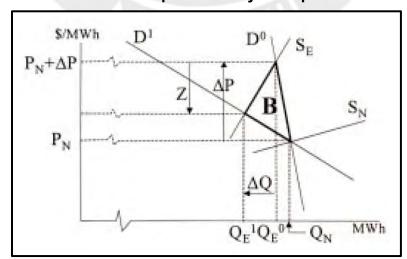
En el mercado minorista en tiempo real que está sujeto a cambios frecuentes prácticamente durante cada hora, se convierte en un componente clave para un mercado de electricidad. Ejemplos al respecto existen, como en la crisis de electricidad California 2000-2001 donde hubiera sido oportuno aplicar el criterio de precio en tiempo real (RTP).

Incluir un modelo RTP en un sistema eléctrico, mejora su eficiencia dado que disminuiría la demanda y capacidad de reserva, evitaría que las redes eléctricas se sobrecarguen dado que la demanda en horas pico se desplazaría a horas no pico, haría la demanda más elástica al precio.

La probabilidad para los clientes con mayor consumo, la ganancia de eficiencia con este modelo RTP es adecuado, y disminuye para clientes pequeños en consumo de ahí que corresponde evaluar costo beneficio. De ahí que hay tres factores principales a considerar para que un RTP se dé a gran escala según Borenstein (2006):

- Costo de medidores sofisticados y facturación en tiempo real para los clientes pequeños.
- Transferencias de riqueza entre clientes respecto por ejemplo a
 facturaciones de tarifa plana que considera precio pico y no pico.
 Según el enfoque actual de facturación los clientes que consumen de
 manera desproporcionada altos consumos son subsidiadas por
 quienes consumen bajo en ese momento. Esto implica que unos
 clientes se vean perjudicados en caso se eliminen estos subsidios.
- Volatilidad de las facturas de los clientes que se presentarían. Esto sería inicialmente, dado que los clientes luego responderían a las horas de mayor precio consumiendo menos. Las estrategias de cobertura son importantes para que se pueda eliminar esta volatilidad.

Asimismo, el riesgo de altos montos en la factura se eliminaría con contratos simples de compra a plazo definido que cubren el riesgo del precio para una cantidad fija de potencia.


1.6.3. Efectos en los consumidores de una Mayor Respuesta a la demanda de electricidad.

De acuerdo a Ruff (2002) la respuesta a la demanda (en adelante denominaremos RD) se concentra en la disminución de la demanda como parte de la respuesta a los picos de los precios durante los periodos denominados críticos. El ejemplo más resaltable de ello es la crisis ocurrida

en el Oeste de Estados Unidos durante el periodo 2000-2001 donde la demanda creció de forma importante y una de las alternativas en respuesta a ello correspondía reducir la demanda ante los incrementos de corto plazo en los precios, o incluso en aumentos permanentes de precios.

Para mejorar la RD se requiere inversión en infraestructura eléctrica y tecnología bien orientadas, garantizando con ello el aumento de la RD, se logrará reducir los costos totales, en el entendido que el beneficio neto de disminuir la demanda es la reducción resultante en los costos por el lado de la oferta menos el aumento de los costos del lado de la demanda. Existe expectativa por aumentar la RD de que pequeñas disminuciones de la demanda; sin embargo, hay que tener en cuenta que la reducción de estas facturas que supere la reducción de los costos de los proveedores al contratar menor potencia es una transferencia también de reducción en las tarifas, donde distribuidor y consumir obtengan beneficios, relación de ganar; y que se deban tener en cuenta impuestos y otros conceptos que correspondieran.

Reducir costos totales mediante aumento de la RD y el ahorro de costos en comparación con otros beneficios se pueden observar a continuación, en el gráfico 5.

Grafica 5: Costos ahorrados por una mayor respuesta a la demanda

Fuente: Ruff (2002)

El comportamiento según la figura es el siguiente: la curva de oferta SN normal cambia a SE durante eventos que reducen oferta y provocan picos de precios. En condiciones normales el precio es PN y aumenta durante el pico de precios que depende de la RD a los aumentos de precios. Inicialmente la demanda es muy inelástica como lo es la recta de demanda Do, disminuyendo la demanda de QN a QE0 y el precio de mercado aumenta de PN + Delta de P. Luego se hace algo para que la demanda sea más elástica como se ilustra en la curva de demanda D1, donde la demanda se reduce durante los picos de precios de QE0 a QE1y los picos de precios se reducen en valor Z. La reducción de los costos totales resulta del aumento de la RD es el área B. Esta expresión indica que el beneficio económico de aumentar RD depende de los picos de precios, pero no depende de cuantos picos de precios sean reducidos (Z); es decir los beneficios no dependen de ello sino de los picos de los precios.

1.6.4. Opciones tarifarias y Formas de Cobro a Clientes Finales

Las opciones tarifarias se clasifican en Tarifas de Media Tensión (MT) y Baja Tensión (BT). Para los clientes conectados a la red de MT deben contar con un sistema eléctrico propio y llegar a su predio; y que al tener mayores consumos que clientes residenciales o comerciales, cuentan con la opción de mejorar su opción tarifaria a fin de reducir costos y están atentos a las señales de mercado e invierten en dichos sistemas de utilización y asumen el costo de operación y mantenimiento. Generalmente consumen energía y potencia en horas punta.

Los clientes en BT en su mayoría, cerca del 99% son con tarifa que solamente mide energía y no potencia que son los clientes denominados de uso residencial (uso de vivienda) y pequeños negocios, es decir una tarifa monomia. Algunos clientes en cantidad, menor al 0.1%, cuentan con tarifa en hora punta y fuera de punta. La regulación reconoce vía tarifa la inversión incluso para la reposición de la misma, también los montos que se incurren en la operación y el mantenimiento, que incluye cuadrillas de

trabajo para resolver las averías, emergencias y actividades de prevención que garanticen la continuidad del servicio eléctrico de los consumidores.

En el Perú las opciones tarifarias contemplan dos bloques horarios conocidos como horarios de punta (pico) que son desde las 18:00 a 23:00 horas y el horario fuera de punta (no pico) que son el resto del día, los cuales se aplican a tarifas binomias que miden energía y potencia.

Actualmente en países de avanzada cuentan con AMI instalados a gran parte de los clientes que permite utilizar tarifas diferenciadas con más bloques horarios, incentivando al usuario a modificar sus hábitos de consumo y lograr benéficos de ambas partes, es decir para el cliente y la empresa distribuidora.

1.7. Tipos de medición

1.7.1. Medidores Electrónicos

El contador eléctrico se encarga de medir el consumo de electricidad usuario, ya sea de potencia o energía, incluso algunos miden otros parámetros técnicos. Aún existen dos tipos de medidores: analógicos y digitales; respecto a los analógicos se vienen dando de baja paulatinamente y en el tiempo se han ido renovando e incluyendo nuevas tecnologías, considerando que también en el tiempo vienen disminuyendo los precios de los medidores electrónicos.

Dentro de la gama de medidores electrónicos existen medidores electrónicos que puedan ser telemedidos o telegestionados. En Hidrandina, para los usuarios residenciales no cuentan con tele medición, mientras que los clientes con característica de medición binomia si cuentan con tele medición, generalmente son clientes de mediano y gran consumo, y que amerita realizar ese tipo de medición (potencia y energía).

Los medidores electrónicos que registran los parámetros técnicos de medida, lo hacen por un proceso analógico – digital (sistema totalmente electrónico) utilizando un microprocesador y memorias y distintos componentes electrónicos. Los últimos fabricados cuentan con pantalla digital con display para lectura de los parámetros. Se clasifican como:

- Medidores de registro de energía, usados principalmente para usuarios de uso domiciliario o que no se requiera medir potencia. Registran el consumo total en todo instante del día.
- Medidores Multifunción que registran parámetros de energía y potencia en todo instante, incluso cuentan con memoria que almacena información. Aplicado en suministros con tarifas que diferencia los consumos en hora punta y fuera punta, programables según contrato o acuerdo entre empresa y cliente, y según normatividad.

1.7.2. Medidores Inteligentes (Smart Meters)

La medición inteligente tiene como funciones principales permitir medir, almacenar y enviar las variables eléctricas registradas a una base para gestionar la medida. Los parámetros eléctricos registrados permiten determinar diferencias de niveles de voltaje del servicio eléctrico, diferencia de frecuencia, cantidad de corriente que fluye por el suministro, potencias, entre otras variables. Además, permite realizar funciones para gestión del suministro tales como la conexión y desconexión del servicio por falta de pago o emergencias, detección de fraudes y múltiples funciones para la Gestión de la Demanda en caso de restricciones técnicas en la red.

También cuenta con funcionalidades para programar periodos de tiempo para horarios en las distintas temporadas de estacionalidad durante el año, días laborables o festivos y estos relacionarlos con tarifas a ser aplicados; asimismo detectar o registrar eventos y generar alarmas para alertar sobre situaciones de mala calidad de servicio o intento de fraude u otros.

El equipamiento de medición inteligente, son parte integral de un sistema de comunicaciones que recoge e integra la medida para sus múltiples aplicaciones. El equipamiento de comunicaciones se acopla al medidor como una unidad interna, es decir, el modem de comunicaciones está integrado en el propio contador por razones de costos y facilidad de instalación, aunque también hay equipos con comunicaciones externas, dándole flexibilidad al equipo en comunicación. Dentro de los tipos de comunicación tenemos por conexión física a través de la red eléctrica conocidos como PLC (Power Line Comunication) o inalámbricas como (GPRS, 4G, radiofrecuencia, otros)

Debido a que el medidor inteligente actúa en conjunto con un sistema de comunicación para trasmitir la data al centro de gestión de información, se crea una infraestructura de medición y comunicaciones conocido como AMI (Advanced Metering Infrastructure o infraestructura de medición avanzada).

1.7.3. Infraestructura Medición Avanzada (AMI)

Como sabemos existen diversos conceptos que puede variar de autor o del lugar de origen; la tecnología en aplicación y su uso del AMI es variada, siendo en sí, se encuentren comunicados de forma remota para entregar información con una infraestructura de comunicaciones. Asimismo, deberá contar con una central de operaciones donde se concentre los datos de dichas mediciones para permitir la gestión óptima y su operación adecuada.

En el mercado existen distintas gamas de medidores inteligentes y alternativas tecnológicas de comunicación necesarias para obtener la información en línea de dichos medidores.

Debido a que las empresas distribuidoras atienden consumos desde mayor a menor escala según su nivel de tensión en que se encuentre; esto considerando que también realiza actividades de subtransmisión, de tal manera que en su configuración presentan puntos de medición en distintos niveles de voltaje, necesarios para realizar balances de energía, obtención

de parámetros eléctricos relacionados con la calidad del servicio que se requieren para la operación adecuada. A continuación, en el grafico se muestra como estarían instalados los puntos de medición en los distintos niveles de tensión, que formaría parte de una tecnología AMI:

Meters

Meters

Mat Art

Meters

Meters

Mat Art

Meters

Meters

Mat Art

Meters

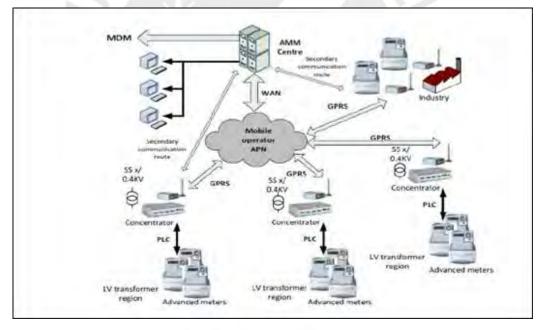
Meter

Grafica 6: Puntos de medición y gestión de datos

AMI: Infraestructura de Telegestión Avanzada

MDM: Gestión y operación de datos de mediciones

Fuente: Propia.


La infraestructura de los AMI está constituida por los siguientes elementos:

- 1. Los equipos de medición inteligentes (smart meter).
- 2. Concentradores de medida.
- 3. Central gestión de medidores (AMM Advanced Metering Management).
- 4. Sistema gestión y operación de datos de mediciones (MDM)

En el caso de la comunicación GPRS es directa entre el equipo de medida dotado con modem GPRS y el AMM, y es a través de la red del operador de comunicaciones. En el caso de la comunicación PLC, aparece un concentrador de medidas, típicamente situado en el centro de

transformación de MT/BT. Este equipo comunica con el sistema de gestión de contadores (MDM) vía GPRS y con el contador vía PLC, es decir, a través de la propia red física de BT. El objetivo de esta arquitectura es reducir las conexiones a la red GPRS de comunicaciones de los equipos individuales, concentrando la medida en un elemento intermedio, el concentrador de PLC, que es el que accede a través de la red de BT a los datos de los equipos de medida.

A continuación, se muestra un esquema donde equipos de medida de grandes clientes se conectan directamente mediante una red GPRS a la red del operador móvil y equipos domésticos comunicando sobre una red PLC con concentradores de medida, y éstos últimos, a la red GPRS.

Grafica 7: Integración redes Eléctricas Inteligentes

Fuente: INDRA, 2012.

La transmisión de datos debe ser precisos y en ambos sentidos, de tal forma que exista el intercambio de información coherente. La comunicación entre el sistema central de contadores AMM y los componentes de la infraestructura AMI se realiza a través de una red WAN (red de área amplia) de la que dispone de forma particular la distribuidora.

Aspecto muy importante es que la información a ser transmitida en línea esté protegida con elementos de ciberseguridad para que terceros no accedan inescrupulosamente y sin autorización a los registros. En el caso de usuarios del sector industrial, es recomendable considerar en las comunicaciones, dos vías de comunicación que sería lo recomendable dada la criticidad de acceso a la gestión de estos clientes. Es importante tener en cuenta que no siempre se tiene disponibles medios de comunicación y que, en algunas zonas generalmente rurales o alejadas de la zona urbana no siempre existen, o existen limitaciones al no proporcionar comunicación continua.

Las características del AMI permiten:

- Decidir hábitos de consumo a partir de mejoras en las tarifas y horarios.
- Controlar la calidad del producto, según parámetros eléctricos como voltaje, corriente, frecuencia.
- Medición bidireccional, es decir el usuario puede recibir electricidad de forma externa, que generalmente abastece la distribuidora; y que él también puede generar e inyectar energía a la red eléctrica.
- Mayor grado de precisión.

1.7.4. Sistema gestión de datos de medida (Meter Data Management, MDM)

El sistema de gestión de la medida MDM recibe información a través del canal de comunicación, de los datos de los medidores, calcula los valores de consumo a través de configuraciones previamente realizadas y almacena los datos, y permite el acceso a los datos del resto de componentes de la red AMI. Debe estar configurado con una alta capacidad de proceso, dado el volumen de datos y elementos de la red.

En la configuración se debe tener un hardware y software que asegure la comunicación bidireccional aguas arriba y abajo del medidor, con

información confiable, oportuna y precisa que garantice una relación entre los clientes y la empresa distribuidora. Un aspecto muy importante para considerar es la compatibilidad que debe existir entre la tecnología elegida y las nuevas que van apareciendo en el mercado, en este sentido se requieren una tecnología que sea múltiple sistema, es decir que permita interactuar con otros proveedores, sino se corre el riesgo de quedar enganchado a la tecnología de un único proveedor.

En relación con las funciones que cumplen MDM, INDRA (2012) indica:

- 1. Reciben y actualizan los datos enviados por el sistema central de gestión de contadores AMM.
- 2. Reciben y actualizan otros datos como que registran los medidores inteligentes como: voltajes altos o bajos, alarmas, interrupciones, etc.
- 3. Validan la medida obtenida y permiten su edición.
- 4. Almacenan y sirven a otros sistemas/agentes la medida.
- 5. Disponen de algoritmos para realizar balances energéticos para garantizar la coherencia de los datos, en base a consumos, etc.
- 6. Garantizan la trazabilidad de los datos, tanto del valor en origen como del calculado.
- 7. Gestionan la información a intercambiar entre los distintos agentes, tales como: gestor operación para registros de datos de los distintos puntos del sistema eléctrico, programación de mantenimientos, puntos de alerta; gestor comercial que recibe las lecturas de los consumos para su facturación, consumo eficiente según horarios, cumplimiento del contrato en cuanto a parámetros eléctricos o de conexión, desconexión; y nuevos agentes del sistema como generación distribuida, vehículos eléctricos.(p. 100).

Debido a los avances de innovaciones tecnológicas en los últimos años en medición, ha conllevado a realizar cambios importantes y relevantes que parten desde el Ministerio de Energía y Minas como ente normativo y van de la mano en estrecha coordinación con el Osinergmin para efectivizar y optimizar las lecturas y como consecuencia volúmenes de información de

los medidores. En el Perú hay empresas que han implementado a baja escala ello, sin haberse obtenido resultados importantes, esto también porque además de los sistemas de medición, también es importante los canales de comunicación a distancia con el propósito de trasladar los datos de un lugar a otro, especialmente en zona rural.

1.7.5. Beneficios del AMI en la gestión de la empresa y servicio brindado

Está claro que AMI cuenta con múltiples ventajas respecto a sistemas tradicionales de medición que se traducen en beneficios económicos, sin embargo hay que detenerse a evaluar sobre los costos y su remuneración del mismo, la pregunta clave es quien reconoce la inversión a realizar? Las mejoras y beneficios en toda la cadena de valor del servicio brindado, es posible el reconocimiento en la regulación teniendo como justificación el ahorro de costos en su conjunto.

Contar con AMI brinda beneficios inmediatos, tales como se indican a continuación:

• Reducción de tiempos de interrupciones del servicio ante falla

Detección de falla de forma inmediata, dado que, al recibir información de forma automática, no se esperará la alerta del cliente afectado, la empresa estará enterada en línea y actuará, como consecuencia se darán ahorros y reducción de pago de compensaciones al cliente, incluso al haber menores interrupciones, la energía dejada de vender será menor.

• Reducción de costos de tomas de lecturas

Cuando no se dispone de toma lecturas remotas, la lectura debe obtenerse a través de inspecciones de campo, in situ, lo cual implica un costo de personal y el tiempo dedicado a básicamente al desplazamiento.

Disponibilidad de la lectura del medidor

Si la lectura al medidor es realizada de forma remota el tiempo que se tarda en obtenerla es más corto que el tiempo requerido para un proceso manual. Este tiempo es importante en procesos de facturación y operación.

Corte y reconexión

Ante los retrasos por falta de pago de los clientes, se hace necesario proceder a cortar el servicio eléctrico según normatividad vigente y como elemento disuasivo del no pago, de tal manera que se garantice la mejora de la gestión de cobranzas. Una de las ventajas es que al pagar el cliente su factura o recibo, la distribuidora restituirá el servicio eléctrico de forma inmediata.

Gestión de la demanda

Los sistemas AMI tiene la ventaja de medir potencia y energía en hora punta y fuera de punta de tal manera que los clientes puedan trasladar energía y potencia en diferentes horarios, según su uso productivo o hábito de consumo, y tenga incentivo para usar en uno u otro horario.

Con el AMI es posible que los consumos se conozcan en línea, de manera que el usuario pueda definir claramente su modalidad de consumo, administrar su carga y elegir entre toda una gama de tarifas. Según Muñoz, Perez, Murrieta y Vela (2019) es posible que el comportamiento de los consumos cambie dado que al tener incentivo el cliente tendrá esa opción de ahorrar y trasladar consumos de potencia y energía de hora punta a fuera punta donde el precio es menor. La curva de la demanda se modificará y el factor de potencia mejorara, representando también ahorro importante y beneficio para el distribuidor dado que comprara menos potencia al generador y energía a menor precio; asimismo como beneficio menos inversiones en infraestructura eléctrica, dado que estas están dimensionadas según la capacidad de potencia que se requiera a tender según la planificación eléctrica realizada, que se realiza con la demanda en hora punta. De esta manera obtendría un mayor ahorro por la adecuada administración de la demanda, aplanándose los picos con lo que se disminuye los márgenes de reserva.

En ese sentido debe incentivarse un marco regulatorio efectivo de manera tal que las distribuidoras estén motivadas a proponer a los usuarios tarifas avanzadas que fomenten una adecuada gestión de la demanda.

Cambio de potencia contratada

Para garantizar que el cliente no demande más potencia de la que tiene contratada según contrato, se instala un limitador de potencia, garantizando que no se consuma más potencia de la que tiene autorizada. Estos valores se ajustan y programan, en caso de excederse se procede a la interrupción del servicio eléctrico. El medidor inteligente tiene control sobre el equipo limitador y se puede modificar cuando el cliente lo requiera o ha llegado a un acuerdo con la empresa distribuidora, es que se hará de forma remota.

Esto permite la reducción de costos de personal dado que evita a tener que ir in situ y realizar en campo ese cambio o tener que cambiar los equipos limitadores instalados; y, además le da a la distribuidora mayores opciones para planificar el crecimiento de su infraestructura eléctrica en los distintos niveles de voltaje.

• Reducción de pérdidas de energía

Permitirá Balances de Energía en los distintos sistemas, subestaciones o alimentadores que se requieran para la identificación de las pérdidas de distribución de forma rápida y oportuna y direccionar los recursos logrando una optimización de las actividades de control y reducción de pérdidas. Por otro lado, los medidores inteligentes cuentan con dispositivos que detectan la manipulación por personas extrañas, alertando a través de alarmas al operador del Control de Gestión de Datos de la empresa.

Atención comercial

Permiten una mejor atención hacia el cliente debido a las acciones de medida y control automático, mejorando los tiempos de actuación y de respuesta ante sus requerimientos y de la gestión de los procesos. Esta inmediatez de respuesta ayuda en la satisfacción para el cliente y que el ahorro en tiempo efectuado permite mejorar otras atenciones comerciales que se requieran.

1.7.6. Implementación del AMI en el Contexto Internacional

Según Muñoz et al. (2019) la implementación de AMI ha incrementado de forma importante en los últimos años, siendo el abanderado en ello China

que cuenta con una cantidad considerable de clientes habiendo instalado prácticamente al 100% con tecnología AMI e incluso son fabricantes de medidores para atender su requerimiento y venta a otros países. Países como Japón, España, Italia y Francia están preparados para lograr un despliegue completo en el corto plazo, y es posible que por periodo de pandemia hayan retrasado la instalación, sin embargo, su proyección es llegar a un despliegue total.

Estados Unidos (EEUU) y Unión Europea se ha instalado en más de la mitad de los clientes. En EEUU al año 2016 existían 76 millones de medidores inteligentes instalados y se incrementó a 90 millones el año 2021; y en Unión Europea se instaló cerca de 200 millones al año 2021, lo que representaría más del 70% de clientes.

En cuanto a la India y sudeste asiático ha sido lento hasta la fecha, y existen planes para que al año 2025 se obtenga un avance importante que supere el 60% de despliegue. Incluso por periodo de pandemia esto se extendería un periodo de uno o dos años adicionales.

Como en toda tecnología la reducción de costos en AMI y las lecciones aprendidas permiten mayor penetración en mercados emergentes, que permitirían un mayor avance en el despliegue. Un dato importante es que la mayoría de los países que han realizado despliegues a gran escala cuentan con apoyo del gobierno y lo realizan bajo políticas obligatorias y con financiamiento que son reconocidos a las empresas distribuidoras a través de la tarifa; y que es importante tener en cuenta la parte social, cultural y económica de los países de ese lado del continente, en comparación con la realidad peruana, dado que la campaña de comunicación a los clientes es clave en que se permita un mayor porcentaje de despliegue.

En América Latina los países que han logrado mayor penetración son México y Chile con alrededor del 15%; Uruguay cerca al 20% y proyecta llegar a más del 80% en los próximos tres años. En Perú prácticamente el

porcentaje de despliegue es mínimo, habiéndose comenzado con proyectos piloto que son menos del 1% de instalación; otros países de la región como Brasil, Argentina, Colombia tienen planes para implementar entre 5 y 10 años más del 80% de medidores inteligentes. El periodo de pandemia COVID 19 y otras situaciones presentadas hace que no se haya avanzado en un mayor despliegue.

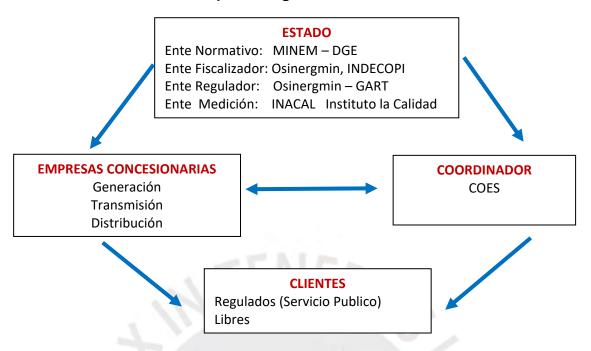
1.8. Diseño de mercado y agentes del sector electricidad del Perú

Para el Ministerio Energía y Minas (2021), en la Publicación para la consulta

1.8.1. Diseño de mercado del Perú

pública, presentó el Proyecto de Decreto Supremo que aprueba modificatorias relacionadas a implementaciones de los sistemas de medición inteligente, precisando "En el caso de Perú, el modelo instrumentado mediante la Ley de Concesiones Eléctricas (1992) es el de precio límite (Price Cap) con un periodo de revisión cada cuatro años" (p.3). Se parte de la empresa ideal eficiente en base a los costos que las distribuidoras mismas presentan con los sustentos respectivos para calcular el monto de la inversión a partir de la anualidad de la base tarifaria que se conoce como Valor Nuevo de Reemplazo o VNR, más los costos de operación y mantenimiento que se incurre que se conoce como COYM, resulta lo que se conoce como valor agregado Distribución o VAD. La consideración que se tiene en cuenta es que la empresa real es reconocida como una empresa ideal y que tiene que lograr eficiencia para ser competitiva, de ahí que tiene que realizar una mayor explotación de su infraestructura eléctrica y lograr tener una rentabilidad que garantice el negocio. Por ello es que el precio límite garantiza el ingreso y que aplica tecnologías justamente para ser eficiente y logre utilidades que permite garantizar su sostenibilidad. Incluye en la evaluación económica la Tasa Interna de Retorno conocida como TIR, que actualmente está en 12% y en el análisis y evaluación no debe diferir más de 4%, es decir valor superior de 16% e inferior de hasta 8% Ministerio Energía y Minas (2021).

1.8.2. Modernización del Sistema Eléctrico Peruano


El Ministerio de Energía y Minas (2021) a través del mecanismo de Resolución Suprema N° 006-2019-EM creó la Comisión Multisectorial de la Reforma del Subsector Electricidad (CRSE) que dentro de sus funciones está en proponer mejorar sustancial en el sector eléctrico de distribución principalmente a lo largo del tiempo, de tal manera que se logre una mayor competitividad. Considera como base tarifaria correspondiente a costos de inversión conocido como CAPEX que tiene como base el plan de inversiones que las mismas distribuidoras plantean y que son supervisadas y fiscalizadas por el organismo regulador Osinergmin; y el OPEX que corresponde a los gastos de mantenimiento u operación conocidos como costos de explotación se determinan en base costos competitivos con ajustes de otros parámetros como inflación, tipo cambio del dólar, otros; de tal manera que se logre una mayor eficiencia.

De esta manera se considera los activos de la distribuidora y las tareas de operación y mantenimiento que realmente se incurren y ya no tomando lo que es la empresa modelo ideal.

1.9. Agentes del sector eléctrico peruano

Intervienen en el Perú entidades o agentes concesionarios, normativos, fiscalizadores, reguladores, coordinadores y usuarios; como se indica:

Grafica 8: Participación agentes del sector eléctrico

Fuente: Elaboración Propia (2021).

1.9.1. Ministerio de Energía y Minas (MEM)

Es el ente normativo a nivel nacional de las actividades relacionadas con el subsector energía y el subsector minas, incluido las políticas generales de la base regulatoria. En el presente trabajo nos ocuparemos de lo relacionado al subsector energía y electricidad.

Asimismo, promotor de inversiones, normas generales relacionadas a su ámbito, tales como Resoluciones Ministeriales, participa en Decretos Supremos, entre otros. Basa su marco legal en la Ley Concesiones Eléctricas y su Reglamento promulgados el año 1993.

También promueve el plan anual energético, políticas energéticas que permitan aprovechar los recursos existentes y cuidando la salud y medioambiente.

El MINEM tiene a su cargo el otorgamiento de concesiones y autorizaciones a las empresas distribuidoras su órgano de línea, la Dirección General de Electricidad (DGE).

1.9.2. Organismo Supervisor de la Inversión de la Energía y Minería (Osinergmin).

Ente regulador, supervisor y fiscalizador de las empresas eléctricas y del sector energía en general de tal forma que se garantice la calidad, medidas de seguridad y eficiencia con que se atiende a los clientes. Asimismo, también se encarga que las distribuidoras reciban tarifas que reconozcan las inversiones en infraestructura, eficiencia y productividad.

En la Ley de Concesiones Eléctricas (1993) también se precisa que el Osinergmin revisa y fija las tarifas eléctricas según información que entrega cada empresa distribuidora en cada proceso del Valor Agregado Distribución, que se lleva cada cuatro años. El pliego de tarifas se actualiza cada mes según la variación de indicadores macroeconómicos, tipo de cambio, precios de metales, etc.

Las tarifas eléctricas están compuestas por los rubros de generación (tarifas en barra y precio a nivel generación), transmisión (peajes) y distribución (VAD); y es el Osinergmin quien las regula tanto en el mercado libre y mercado regulado, siendo la diferencia entre estos mercados que para los clientes libres la parte de generación es bajo un régimen de libertad de precios.

1.9.3. El Comité de Operación Económica del Sistema (COES)

Agrupa a los titulares de las empresas generadoras, transmisoras, distribuidoras y clientes libres, con el objetivo fundamental de efectuar el despacho económico del sistema de generación, calcular las transferencias que se realizan en el sistema interconectado entre las empresas

integrantes y administrar el mercado spot de acuerdo con lo establecido en la LCE.

1.9.4. El Instituto de Defensa de la Competencia y la Propiedad Intelectual – INDECOPI

Es un ente que protege a los consumidores frente a la compra de productos y servicios en general. Pertenece al Estado y depende directamente de Presidencia del Consejo de ministros. Supervisa y fiscaliza el libre mercado y la competencia en las actividades del sector, en particular el cumplimiento de Ley N° 26876 - Ley Antimonopolio y Anti oligopolio que está enmarcada en el sector eléctrico.

La electricidad es importante en la vida de los consumidores, por lo que la protección al consumidor en lo que a calidad del servicio brindado y seguridad respecta toma un carácter relevante. El distribuidor debe brindar al cliente una atención satisfactoria con un trato amable, razonable y sin esperas largas, resolviendo reclamo o quejas, información de sus derechos y deberes; y facturación adecuada, real, dentro de plazos y sin errores en los consumos.

En el mercado eléctrico los clientes no pueden identificar si los medidores están funcionando adecuadamente, sin perjudicarlos.

1.9.5. El Instituto Nacional de la Calidad (INACAL)

El **INACAL** es un ente público técnico especializado adscrito al Ministerio de la Producción de Perú. Creado en el año 2014 mediante el Decreto Ley nº 30224, iniciando sus funciones el 01 de junio de 2015.

El INACAL parte del objetivo de la estandarización, acreditación de productos y metrología de las normas con el fin de contribuir al desarrollo y cumplimiento de la política nacional de calidad. Anteriormente, esta labor era competencia del INDECOPI.

En el sector electricidad, especialmente en la Distribución eléctrica, es el organismo donde se realiza el contraste de los medidores para verificar que se esté registrando el consumo real por dicho medidor; y es quien certifica y acredita a otras empresas contrastadoras del país.

Adicionalmente participan las empresas concesionarias presentes en el mercado eléctrico peruano, donde las distribuidoras comercializan en el mercado regulado y mercado libre, y las empresas de Generación también comercializan en el mercado libre. Este mercado en los últimos años ha venido en aumento debido al desarrollo de proyectos mineros, industriales y comerciales que han impulsado el crecimiento económico del país.

Según normatividad peruana, basada en la LCE y Reglamento de Usuarios Libres de Electricidad Decreto Supremo Nº 022-2009-EM, tenemos:

- consumidores que utilicen menos de 200 kW mensual durante un año son clientes regulados.
- consumidores que consumen más a 2500 kW son definitivamente usuarios libres.
- Consumidores cuyo consumo se encuentra entre 200 kW y 2500 kW al mes, pueden elegir de forma optativa si son usuarios regulados o libres.

1.10. Regulación de la Distribución y la Comercialización Minorista en el Perú

Siendo que la distribución de energía eléctrica tiene todas las características de un monopolio natural, y que además esta característica sustenta la eficiencia para que sea una sola empresa la que opere en lugar de varias empresas, es necesaria la intervención reguladora del estado. Con ello se consigue establecer el precio justo que el cliente requiere para acceder al servicio y el precio justo que la empresa requiere para cubrir sus gastos en la provisión del servicio.

La Ley Concesiones Eléctricas (1993) indica que la tarifa en distribución corresponde al VAD y se determina cada 4 años, considerando también costos relacionados al usuario independientemente de sus consumos (pagos por toma de lectura, proceso de facturación, reparto y cobranza), pérdidas reconocidas y costos de inversión, operación y mantenimiento; tomando como unidad de medida, la unidad de potencia (kW) correspondiente a la Máxima Demanda.

Como se ha indicado, el cálculo del VAD es según modelo empresa eficiente, y la particularidad de los costos considerados no es de los que incurre la empresa real sino de una empresa eficiente y que los recupere en el largo plazo, asumiendo el riesgo de obsolescencia y a un menor costo posible, aplicando tecnología y cumplimiento de parámetros de calidad de servicio.

Este modelo considera incentiva a que las empresas sean eficientes a partir de su rentabilidad normal, siendo en caso ocurra ineficiencias que estas sean asumidas por los propietarios de las empresas y no por los clientes. Asimismo, al tener periodos fijos definidos para la fijación tarifaria, las empresas absorberían sus mejoras en productividad, los que exige a mejorar su eficiencia.

Según la Ley Concesiones Eléctricas (1993) la metodología de cálculo del VAD ha sido establecida por el OSINERGMIN y se calcula como un costo al año equivalente a la suma de la anualidad de la inversión (VNR) y los costos de operación y mantenimiento (COYM) por unidad de potencia. El VNR es el costo de reponer infraestructura eléctrica que presta servicio con aporte de tecnología y precios vigentes, añade los gastos financieros durante el periodo de la construcción, con Tasa de Actualización máxima del 12% y un periodo de vida útil de 30 años; asimismo incluye otros gastos por supervisión, ingeniería y servidumbre.

Un caso dentro de la infraestructura a construir o atender a los clientes, tiene que ver con el grado de dispersión y densidad de los clientes dentro del su área de influencia. En el Reglamento de la Ley Concesiones Eléctricas (1993) se considerada el criterio de sectores típicos de distribución, que se refieren a agrupaciones de instalaciones de distribución con características similares,

homogéneas en cuanto a la carga, así como a los costos por VNR y COYM. La determinación de los sectores típico considera parámetros técnicos basado justamente en la densidad de la carga y extensión de la red, consumos promedio, consumo máximo, entre otros. De esta manera el Osinergmin determina el número de Sectores Típicos (ST) y los utiliza para hacer una réplica de cada empresa, pero con los costos estándares o eficientes. Actualmente disponemos de cinco sectores típicos de distribución:

- ST Distribución 1 Sector urbano de alta densidad de carga.
- ST Distribución 2 Sector urbano de media y baja densidad de carga
- ST Distribución 3 Sector urbano rural de baja densidad de carga
- ST Distribución 4 Sector rural de baja densidad de carga
- ST SER: Sector rural de baja densidad de carga a efectos de la Ley de Electrificación Rural.

En el caso de Hidrandina vemos el comportamiento del consumo de los clientes residenciales varia de un sector típico a otro y este es un tema a considerar dado el patrón de uso de electricidad de los clientes y el sistema AMI a instalar y los beneficios correspondientes.

A continuación, se muestra en el gráfico de diagrama de carga para una tarifa Residencial BT5, que es destinada para uso de vivienda.

Grafica 9: Diagrama de carga normalizado promedio - Hidrandina - BT5BR

Fuente: Estudio Hidrandina, 2020.

En el diagrama, se muestra los factores de carga (Fc) por sector típico y tipo de tarifa promedio resultantes por tarifa predominante y sector típico. En la Tabla 01 se agrega la máxima demanda (MW) como se indica:

Tabla 1: Matriz de distribución de Demanda Máxima (MW) y

Fc promedio por tarifa y sector típico

	BT5BR	МТЗ	MT4	
Máxima Demanda (MW) H.P	83,70	26,45	0,73	Máxima Demanda (MW) H.P
ST2	0,66	0,72	- 19	50,58
ST3	0,62	0,71	-	22,55
ST4	0,51	0,75	-	12,23
ST5	0,52	- 1/2	0,51	4,95
ST6	0.54		-	10,44

Fuente: Estudio Caracterización de la carga Hidrandina 2019

Los clientes que cuentan con bajo consumo de electricidad, especialmente en potencia, no están interesados en evitar consumo en las horas pico porque para ellos el precio de electricidad es indistinto y al tener ese valor de consumo, no están muy interesados porque la reducción del monto en su factura será pequeña. En ese sentido corresponde analizar, para que conjuntamente con clientes industriales y comerciales se considere una variedad de opciones tarifarias a fin de contar con productos económicamente más competitivos en cuanto a eficiencia energética.

Por otro lado, la relación del grupo horario entre la Hora Punta (HP) y Hora Fuera de Punta (HFP) es como se indica en la Tabla 2:

Tabla 2: Participación bloques horarios por Sector Típico (HP – HFP)

Grupo Horario	ST2	ST3	ST4
HP	54%	53%	55%
HFP	46%	47%	45%

Fuente: Elaboración propia (2022)

Durante este último proceso de regulación, a diferencia del anterior, Hidrandina tuvo un propio estudio VAD, realizando el análisis del total de sus sistemas eléctricos en las distintas regiones donde atiende, de acuerdo con la calificación del Sector Típico de Distribución.

Adicionalmente, según Ministerio Energía y Minas (2016) precisa en la Décima Disposición Complementaria Transitoria del Decreto Supremo 018-2016-EM que las empresas podrán plantear en el estudio VAD un plan de despliegue gradual de reemplazo a sistemas de medición inteligente (AMI), de hasta 8 años. Inicialmente deberá considerarse un proyecto piloto para luego proseguir con el despliegue del proyecto.

1.11. Normatividad regulatoria referente a innovación tecnológica

El Decreto Legislativo N° 1221 (2015) publicado el 24 de noviembre del 2015, entre los diversos cambios relacionados a la regulación del Valor Agregado de Distribución, considera adicionar un cargo asociado a innovación tecnológica para los sistemas de distribución eléctrica, valorizados y llevados a un porcentaje que represente los costos y la sostenibilidad en corto plazo del desarrollo de proyectos de innovación tecnológica y/o eficiencia energética, lo cual tendrá la posibilidad de realizar propuestas por parte de las empresas distribuidoras sustentados ante el ente regulador para su definición y aprobación correspondiente por el ente regulador.

Por lo indicado en el párrafo anterior, las empresas distribuidoras de energía eléctrica y ya desarrollado el proceso regulatorio del Valor Agregado de Distribución para el periodo 2019-2023 correspondiente al Grupo 2 para su

fijación tarifaria, donde está comprendido a la empresa Hidrandina, se plantearía un plan gradual de reemplazo a Sistema de Medición Inteligente para todo el mercado de sus clientes estimándose un horizonte de ocho (08) años para su implementación.

Por otro lado, el Ministerio de Energía y Minas (2021) a través del Decreto Supremo N° 028-2021-EM, que aprueba disposiciones modificatorias relacionadas a la implementación de los Sistemas de Medición Inteligente (SMI) entre otras Disposiciones; menciona lo siguiente:

"DÉCIMA.- IMPLEMENTACIÓN DE SISTEMAS DE MEDICIÓN INTELIGENTE (SMI)

... previsto en la Ley Nº 27345, las EDEs proponen al OSINERGMIN, un plan gradual de reemplazo a SMI en cada proceso de fijación tarifaria... **Artículo 163.-** Para la obtención de un suministro de energía eléctrica, el usuario solicita a la EDE el servicio respectivo y abona el presupuesto de instalación que incluye el costo de la acometida, del equipo de medición y protección y su respectiva caja, quedando estas inversiones en favor del predio. Cuando el suministro cuente con los SMI, el medidor será de propiedad de la EDE y su costo no se incluye en el referido presupuesto de instalación, quedando el resto de las inversiones en favor del predio.

Por lo indicado, aún no está definido los aspectos que conciernen a la inversión propiamente, a la fecha Hidrandina contempla un presupuesto aprobado por el Osinergmin en la regulación de fijación tarifaria del VAD el 2019, basado en el desarrollo de un piloto cuya representatividad es el orden del 1% del parque que atiende la empresa.

(p.4)

Aún está pendiente normar los aspectos que conciernen al despliegue en general, por lo cual Hidrandina viene haciendo sus esfuerzos en plantear un despliegue masivo, considerando criterios basados en la realidad y las prácticas internacionales; muy a pesar de ello, existen distintas barreras en su etapa de aprendizaje, por lo cual en esta tesis se pretende plantear aspectos

técnicos y soluciones posibles en el contexto que enmarca la Ley de Concesiones Eléctricas.

1.12. Experiencia internacional: Despliegue de Sistemas de Medición Inteligente

Al respecto, existen distintas publicaciones que hacen referencia a su desarrollo y despliegue de sus sistemas de medición inteligente, que iniciaron con su ejecución como el año 2015, como referencia se visualiza un panorama general de estas experiencias internacionales, en este caso se puntualiza a dos (02) países de gran importancia como son España y Reino Unido, quienes en cuanto al desarrollo de su despliegue de sistemas de medición inteligente tuvieron cambios radicales en sus reformas tarifarias y principalmente se han basado en esquemas de incentivos a aspectos críticos y relevantes, tales como la calidad del servicio, las pérdidas de energía y otros aspectos relacionados a la innovación tecnológicas, donde se incide al sistema de medición inteligente como parte de la gestión de las empresas.

Por otro lado, otro aspecto que se tomó en cuenta es determinar un sistema de incentivo a la innovación tecnológica que implica la subvención parcial de proyectos que brinden viabilidad y valor al usuario por el costo que correspondería el mismo; asimismo, existe otro canal de subvención a los proyectos realizados por las empresas distribuidoras sino también los que sean desarrollados por empresas terceras.

Con lo cual, estos panoramas dan alcances y motivaciones a poder plantear y definir escenarios de atención y planeamiento a los proyectos que se relacionan al sistema de medición inteligente. Con lo cual esta tesis toma ciertas consideraciones que se irán conociendo en este documento.

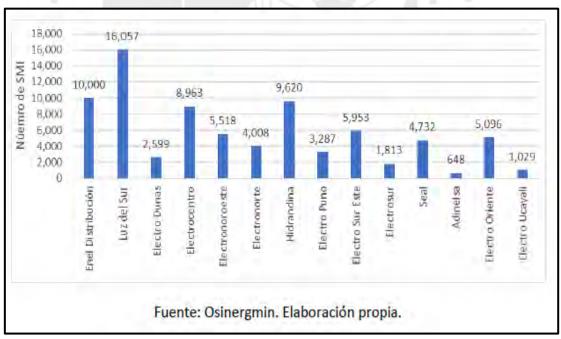
1.13. Experiencias de implementación de los SMI

1.13.1. Experiencia en Perú

1.13.1.1. Marco Normativo sobre Medición Inteligente

Osinergmin (2022), según la Resolución del Osinergmin N° 013-2022-OS/CD con su Informe Técnico N° 043-2022-GRT publicó los Términos de Referencia para la Elaboración del Estudio de Costo del Valor Agregado de Distribución que comprenderá además el periodo 2023-2027, con lo cual será la base del desarrollo de la propuesta por parte de Hidrandina, sobre la ejecución del plan piloto aprobado en la regulación vigente del año 2019 y que además se planteará y evaluará el despliegue masivo, estos términos de referencia plantean ciertas consideraciones a tomarse en cuenta durante el planteamiento hacia el regulador:

- Registro de lecturas de potencia y energía en períodos de 15 minutos.
- Deberá ser con medición bidireccional, a fin de poder medir los retiros e ingresos que los usuarios efectúen en el sistema eléctrico, además formará parte la energía reactiva.
- El sistema de medición inteligente debe permitir gestionar a la empresa los consumos y demandas y permitir informar al usuario en tiempo real sobre sus consumos u otros aspectos relacionados a su medición y que permita evaluar costos y aplicaciones necesarias.
- Debe contener las opciones de Corte y reposición de manera inmediata y en remoto.


Por otro lado, considera evaluar distintas tecnologías, que acojan aspectos propios de cada realidad empresarial, en este caso para Hidrandina al ser una empresa que abarca regiones tanto de costa como de sierra, contempla distintas ubicaciones y principalmente de generar la comunicación entre los elementos de comunicación propia del medidor inteligente.

Por indicado, se considera tomar en consideración aspectos de arquitectura, infraestructura, topología geográfica del terreno, aspectos medioambientales tales como los fenómenos naturales, seguridad de la información, posibles contingencias, entre otros.

Precisa que la empresa podrá solicitar aprobación de un segundo proyecto piloto, debiendo demostrar el cumplimiento de haber reemplazado por lo menos el 50% de la ejecución del primer proyecto piloto acreditando el pleno funcionamiento de los medidores inteligentes.

1.13.1.2. Despliegue del Proyecto Piloto

Osinergmin (2019), en la fijación tarifaria anterior vigente del 2019, aprobó para las 14 Empresas eléctricas de distribución en el contexto peruano, entre ellas Hidrandina, la elaboración de proyectos piloto, tal como se muestra a continuación:

Grafica 10: Cantidad de SMI para proyectos piloto por EDE

Según lo informado por el Osinergmin, el número de clientes beneficiados del proyecto piloto representa el 1.09% del total de clientes correspondientes a las 14 empresas distribuidoras, como se muestra en el siguiente cuadro:

Tabla 3 Participación de clientes por empresa del proyecto piloto aprobado por Osinergmin

Empresa	Clientes	Medidores Proyecto Piloto	% Medidores vs. Clientes
Enel Distribución	1,404,073	10,000	0.71%
Luz del Sur	1,101,588	16,057	1.46%
Electro Dunas	233,806	2,599	1.11%
Electrocentro	807,541	8,963	1.11%
Electronoroeste	497,230	5,518	1.11%
Electronorte	361,200	4,008	1.11%
Hidrandina	866,579	9,620	1.11%
Electro Puno	296,130	3,287	1.11%
Electro Sur Este	536,315	5,953	1.11%
Electrosur	163,395	1,813	1.11%
Seal	426,395	4,732	1.11%
Adinelsa	58,951	648	1.10%
Electro Oriente	459,153	5,096	1.11%
Electro Ucayali	92,734	1,029	1.11%

Fuente: Osinergmin. Elaboración propia.

Según el Osinergmin manifiesta que, hasta abril del 2021, no hubo proyectos piloto aprobados que hayan concluido en su totalidad, y los motivos fueron diversos, destacando la situación que se interpuso y generando restricciones por efecto de la pandemia del COVID-19.

Además, el Osinergmin manifiesta que ninguna de las empresas estatales administrados por FONAFE ha adquirido medidores inteligentes para usuarios residenciales. Mientras tanto las empresas privadas, indicaron haber adquirido los medidores inteligentes, pero no contaban con la instalación correspondiente; a excepción de la empresa Luz del Sur si había instalado solo el 41%.

A pesar de ello, como resultado de la fijación tarifaria del 2019, se viene remunerando vía tarifa los sistemas de medición inteligente por todos los clientes a nivel nacional.

Por otro lado, las empresas del Grupo Distriluz, entre ellas Hidrandina vienen desarrollando el plan piloto establecido en la última regulación del VAD, lo cual presenta distintas barreras, que se vienen dando en el aprendizaje para

poder aterrizar la confirmación de su implementación; al respecto se tiene previsto iniciar la instalación del SMI para inicios del año 2023, y conclusión y puesta en operación a fin de ese año, con miras a evaluar su performance durante el periodo de dos (02) años posteriores.

1.13.2. Experiencia en la Unión Europa

La implementación al 100% de los SMI se planteó en un plazo máximo 10 años y una cobertura del 80% de los consumidores hacia el año 2020.

Dentro de sus planes normativos plantearon esquemas similares a España y Reino Unido tales como: Mejoras en la planificación de la red; permitir lecturas de forma remota; bidireccionales; proporcionar análisis multitarifas; realizar el corte y reconexión y/o la limitación de la potencia; seguridad en el sistema; para generación distribuida, poder inyectar energía, medición energía reactiva.

Plantearon que se evaluaría el año 2019 en relación a los resultados y medir la performance de su uso y aplicación; debiendo plantear un mecanismo en caso el resultado sea negativo a fin de garantizar la continuidad de los planes operativos; por lo indicado, se planteó hacer una revisión de los costos beneficio para el periodo de cuatro (04) años siguientes, considerando la evolución de la tecnología y el comportamiento del mercado.

La Comisión Europea evaluó los desarrollos de despliegue dentro de su comunidad donde se destaca la evolución de los mismos que como resultado del seguimiento fueron positivos, destacando algunos impases durante su ejecución como es el caso de Alemania, Latvia e Irlanda, que demoró su despliegue. A continuación se muestra el resultado de Costo-Beneficio en la Unión Europea:

Tabla 4: Resultado de Costo-Beneficio en Unión Europeo

Estado	Resultado de ACB (A Julio 2013)	Resultado de ACB (A Julio 2018)	Fecha de último análisis costo - beneficio
Alemania	Negativo	Negativo	2013
España	No realizado	No realizado	No realizado
Latvia	Negativo	Positívo	2017
Luxemburgo	Positivo	Positivo	2016
Irlanda	Positivo	Negativo	2017
Italia	No realizado	Positívo	2014

Fuente: Comisión Europea (Benchmarking smart metering deployment in the EU-28,2019). Elaboración propia.

1.13.3. Experiencia en otros países de la región

1.13.3.1. Chile

A nivel sudamericano, Chile despego de manera mas acelerada, pero en el camino se presentaron distintos obstaculos; El año 2012 su normativa a traves de la Ley 20.571 habilitó la inyección de excedentes de energía por parte de usuarios regulados y su posterior descuento en sus respectivas facturaciones. Por otro lado, se consideró distintos aspectos tecnicos necesarios para viabilizar la implementación de los mismos y que fueron abordados a traves de la Norma Técnica de Calidad de Servicio en Distribución. A continuación se observa las considerasciones para el analisis de costo beneficio:

Tabla 5: Costos y Beneficios de los Sistemas de Medición, Monitoreo y Control (SMMC)

Costo/Beneficio	Descripción
	Unidades de Medida
	 UM monofásicos.
	 UM trifásicos.
	 UM para monitoreo del sistema de distribución.
	Unidades Concentradoras o Colectores
Costos	Comunicación y Seguridad
	 Hardware, software y licencias.
	Mantenimiento
	 Medidores.
	Operación y Mantenimiento
	 Centro de Telemedida.
Beneficios	Ahorro de costo de lectura (reducción del gasto de la empresa).

Fuente: CNE. VAD 2018 – 2020 (Anexo Planes de Inversión y Costos SMMC). Elaboración propia.

El 2017, inició su plan gradual de masificación de sistemas de medición inteligente, dando obligatoriedad a su implementación por parte de las empresas concesionarias; en el transcurso los usuarios iniciaron un proceso de reclamos de forma masiva, primero por la pérdida de la titularidad de los medidores inteligentes y segundo por el incremento de la facturación por efecto de la subida tarifaria, finalmente en el año 2019 se modificó la disposición normativa, dejando sin efecto la obligación de realizar el cambio de medidor convencional a medidor inteligente.

Otro aspecto para destacar durante el despliegue de los sistemas de medición inteligente, tuvo inicio con la indicación normativa el año 2017, estableciéndose un plan de despliegue para el periodo de site (07) años, ósea hasta el año 2025.

El plan consideraba un cronograma con las siguientes metas anuales:

Grafica 11: Implementación SMMC – NTD 2017

Fuente: CNE. Modificación de la NTD (Sesión 3)

Por el problema suscitado el año 2019 y siendo modificada, se procedió a anular el cronograma y a razón de ello se estableció nuevas condiciones para la instalación de SMI incorporados al Sistema de Medición, Monitoreo y Control.

Finalmente, el año 2020 esta modificación no tuvo efecto favorable debido a el reclamo de una Cooperativa Regional Eléctrica Llanquihue Limitada, siendo sentenciado por contravenir la obligatoriedad.

Las características de los sistemas de medición inteligente para el 2019, considera que estos deben estar conformados por unidades de medida, concentradores de información, sistemas de gestión de la información, de comunicaciones y de seguridad. El detalle de los componentes de una Sistema de Medición, Monitoreo y Control se muestra en la siguiente tabla:

Tabla 6: Componente del Sistema de Medición, Monitoreo y Control

Componente	Descripción
Unidad de Medida	Conformado por los medidores de energía con registro horario, transformadores de medida, unidad de comunicaciones, visualizador de registros, dispositivos de conexión, desconexión y limitación de potencia.
Unidad Concentradora	Recolector de datos de medición de múltiples unidades de medida para reportes de gestión y operación.
Sistema de Gestión y Operación	Administra, controla y gestionarla información, datos y comandos relacionados con la medición y control del suministro de las Unidades de Medida o Unidades Concentradoras.
Almacén de Datos y Reportes	Almacén descentralizado que contiene los datos e información procesada y agregada.
Sistema de Comunicaciones	Componentes que permiten la transferencia de datos entre los diferentes componentes del SMMC.
Sistema de Seguridad	Asegura la confidencialidad, disponibilidad, trazabilidad e integridad de las comunicaciones y la información prohibiendo accesos no autorizados y evitando manipulación de la información.

Fuente: CNE. NTD 2019. Elaboración propia.

1.13.3.2. Colombia

El año 2019, a través de su Ministerio de Minas y Energía tipifica que las inversiones y el acondicionamiento de las redes para los SMI, serán remuneradas vía ajustes tarifarios.

Luego de iniciarse el 2019 la implementación de SMI con el objetivo de cubrir al 75% de los usuarios hasta el año 2030, que además deberá contar con análisis económico, basados en los beneficios y ahorros que traería el plan.

Los planes serán evaluados de manera escalonada cada cinco (05) años, en caso exista una deflexión negativa en los planes, se podrá hacer acciones correctivas dentro de los dos (02) años, y en adelante los planes aprobados

pueden actualizarse cada 2 años, con metas para los siguientes 5 años, considerando análisis de proyección y aprobados por el ente regulador.

Tabla 7: Etapas de despliegue del Plan de SMI

Desarrollo del plan	Tiempo de ejecución	Objetivo			
Fase 1	18 meses como máximo	Remplazo de medidores en usuarios con consumo mayor a 1000 kWh/mes y en autogeneración a pequeña escala.			
Fase 2	60 meses como máximo	Reemplazo de 100% de los medidores aprobados			
Fuente: CREG. Resolución CREG 2019 de 2020. Elaboración propia.					

Finalmente, el regulador, **CREG (2019)** prevé para el 2020 considerar un Gestor de Datos e Información encargados de administrar la información a fin de asegurar la integridad, confidencialidad y disponibilidad de la información de los usuarios.

1.14. Problemática general en los SMI

Respecto a los despliegues desarrollados a nivel nacional e internacional muestra en su experiencia durante el desarrollo del despliegue de los SMI además de las acciones gubernamentales a la necesidad energética a fin de mejorar la eficiencia y optimizar la infraestructura para el mejor desempeño energético con tecnología avanzada.

Distinto países han reformado sus leyes en favor del manejo y control de la inserción a la medición inteligente como prioridad y efectividad en un largo plazo, aplicando así el ingreso a una era digital y de interacción entre usuario, empresa y gobierno, generando nuevos argumentos en la definición tarifaria y la gestión de la información de manera eficiente.

Por otro lado, ya durante la experiencia de los pilotos o integración a un nuevo sistema y debido a ser una nueva experiencia con SMI, aún es incierto la efectividad de los balances de energía, para lo cual se debe realizar evaluaciones beneficio-costo periódicas conforme avanzan los SMI.

Estas evaluaciones pueden ir generando durante el avance de la performance de la operación de los SMI, se deberá ir evaluando las funcionalidades tecnologías, desarrollo de los cambios tarifarios y posibles nuevos servicios que aporten utilidad tanto a los usuarios como a la empresa.

Por lo tanto, en el Perú, aun es lento el avance de definición a nivel nacional, salvo las empresas privadas quienes vienen dando saltos agigantados y vienen realizando distintas pruebas y análisis, principalmente el contraste de los análisis de beneficio/costo planteado inicialmente. Además, es fundamental realizar estos ejercicios, a fin de prever posibles contingencias de tipo técnico, social y económico.

Uno de los problemas que viene preocupando a los entes gubernamentales, es que a la fecha ya se viene remunerando vía tarifa el costo del despliegue del plan piloto aprobado por el Osinergmin, que ya fue ampliado un periodo regulatorio adicional, ósea cuatro (04) años adicionales para poder cumplir con el plan inicial.

Por la experiencia dada en Chile y Colombia, los usuarios cumplen un rol fiscalizador, es por ello, que el Osinergmin tiene un rol protagónico en definir mecanismos y determinar las reglas claras para aligerar los posibles perjuicios económico principalmente por la masificación y hacer que los clientes tengan que migrar al SMI.

CAPÍTULO 2 APLICACIÓN DEL ENFOQUE METODOLÓGICO

En el segundo capítulo evaluaremos la gestión de la empresa respecto a las variables que pueden tener un impacto importante en la misma, tales como: pérdidas de energía, tiempo de reconexión ante una o por pago de deuda, corte del servicio por deuda, reducción costos operativos en los que incurre la empresa, tiempos de atención al cliente; los beneficios de aplicación de tecnología AMI. Asimismo, resulta importante el reconocimiento tarifario de estas inversiones en la regulación, de ahí que se analizará la metodología que se puede usar, la revisión de los beneficios al cliente y su impacto en las tarifas.

2.1. Gestión de la empresa

Hidrandina atiende actualmente cerca del millón de clientes en las Regiones de La Libertad, Cajamarca y Ancash, brindando servicio en distribución y comercialización de electricidad en dichas regiones. Es una de las cuatro empresas que ppertenece al Grupo Distriluz y se encuentra bajo el ámbito del Fondo Nacional de Financiamiento de la Actividad Empresarial del Estado (Fonafe).

En los últimos años, Hidrandina ha mejorado en cuanto a su gestión, sin embargo, estas mejoras no son significativas en cuanto al servicio brindado dada la exigencia cada vez mayor de los clientes. Dentro de los indicadores de gestión tenemos: pérdidas de energía, cobranzas, facturación, atención al cliente, tiempos de cortes y reconexiones, entre otros.

Con el AMI se hace viable obtener los datos de los medidores sin intervención humana y de forma automática de tal manera que se agilice la gestión respecto a lo que actualmente viene brindando. Importante las consideraciones a tener en cuenta para su implementación y despliegue del AMI en Hidrandina:

Por etapas, % por años, horizonte, tipo financiamiento, quien asume el costo. Asimismo, impactos y riesgos que aparecerían e importante mitigarlos.

El desarrollo actual que se viene dando, se muestra a continuación.

2.1.1. Pérdidas de energía

Actualmente las pérdidas de distribución se calculan con la data que se obtiene de los sistemas de medición instalados en los puntos de compra, centrales de generación hidráulico o térmicas, de las subestaciones de potencia, de los alimentadores, de las subestaciones distribución, de los clientes instalados en sus fachadas; realizándose el balance de energía según los niveles de voltaje respectivos que corresponden a Alta, Media y Baja Tensión. Esto se culmina los días 12 (doce) de cada mes.

Las pérdidas de distribución son de dos tipos: pérdidas físicas (técnicas) y pérdidas comerciales (no técnicas).

Con el balance de energía detallado se sectoriza las zonas de mayor volumen y porcentaje de pérdidas y dirigir los recursos para las acciones respectiva, sea que corresponda a la parte técnica o comercial. Estas últimas están relacionadas con hurto de energía por conexiones clandestinas, adulteración de quipos de medición, manipulación de la conexión u otras modalidades; así como fallas propias de los medidores o conexiones, inadecuada facturación. El control y reducción de este tipo de pérdidas corresponde a la gestión comercial misma y se requiere contar con balances de energía en línea (on line) para monitorear y controlar las mismas e iniciar las acciones prioritarias y oportunas y no luego de varios días transcurridos.

2.1.2. Cortes y Reconexiones

Según artículo 90 de la LCE, la concesionaria está facultada a realizar el corte por deuda cunado el cliente tenga pendiente de pago dos o más recibos del servicio de electricidad. Se repone el servicio una vez el cliente efectué el pago, teniéndose como plazo 24 horas para reconectar según normatividad vigente.

Para realizar el procedimiento actualmente de Cortes y Reconexiones por la distribuidora se considera:

- Elaborar cronograma de actividades
- Secuencia de cortes a seguir
- Enviar al contratista relación de Cortes /Reconexiones a ejecutar en campo a través de Orden de Trabajo del sistema comercial.
- Con ello contratista se desplaza al predio para efectuar el Corte.
- Contratista elabora informe de actividades desarrolladas y no desarrolladas.
- Realiza supervisión de las actividades realizadas, de forma muestral.

2.1.3. Toma Lectura y Reparto recibos

Actualmente estas actividades se desarrollan teniendo en cuenta lo siguiente:

- Rutas de lecturas y reparto.
- Cronograma de lectura, facturación y reparto por mes.
- Servicio contratado para toma lectura del medidor en campo a través de un dispositivo móvil (celular).
- Relación de observaciones o irregularidades detectadas en campo para que se subsanen o corrija. Esas observaciones tenemos: predios no ubicados o en construcción, medidores sin acceso lectura, medición no legible, factor externo impide la lectura, medidores con consumo que no figuran en el registro o listado, etc.
- A través de aplicativo móvil y software instalados en dispositivo celular se valida los consumos en línea, de existir incremento de consumo importante se toma fotografía con dispositivo celular.
- Las lecturas son "on line" y se almacenan en Servidor de Base Datos.
- Revisión y supervisión de actividades en campo.
- De existir inconsistencia se define verificaciones adicionales.

 Realizado el cálculo se procede a emisión e impresión física de los Recibos del servicio de electricidad para su posterior entrega al cliente en su predio (debajo de su puerta), de acuerdo a cronograma definido y según rutas definidas.

2.1.4. Reclamos de los usuarios

El Cliente tiene derecho a presentar reclamo en oficinas de empresa o por medio virtual como correo electrónico, whatsapp, WEB o a través del Call Center. De acuerdo al suministro del cliente, Hidrandina procede de la manera siguiente:

- Toma conocimiento de lo requerido
- Para exceso de consumo, verifica lectura del medidor en campo y se analiza su coherencia con lecturas y consumos facturados en Recibo.
- Contratista determina en campo si la falla es interna (al interior del predio), es decir en instalaciones propiedad del cliente; o externa.
- Tiempo que demanda detectar la causa de falla y solución definitiva, por parte de la contratista.

2.1.5. Tiempos de atención

Las atenciones en cuanto a quejas, consumo excesivo facturado, errores en las lecturas, resolución de un requerimiento, entre otros; se resuelven con inspecciones en campo para resolver los mismos. En cuanto a la percepción del cliente muestra una demora en el plazo de atención, incluso transcurren varios días, afectando la calidad del servicio de atención brindado y generando desmejora del indicador de satisfacción al cliente.

2.1.6. Atención de averías

Según Norma técnica del Servicio Eléctrico (NTCSE) y sus modificaciones, la calidad del producto, en este caso la electricidad, debe entregarse dentro

d ellos márgenes permisibles para ello, como son los parámetros de frecuencia, voltaje, perturbaciones, tiempos máximos de interrupción del servicio. Actualmente, la contratista se dirige al predio para evaluar y realizar la atención según corresponda. Es ahí donde se determina la reparación y solución definitiva.

2.2. Evolución de indicadores

En el Cuadro 01 se muestra los indicadores a nivel empresa de Hidrandina correspondiente a los cinco últimos años, del 2015 al 2021.

Tabla 8: Indicadores de gestión - Hidrandina - Años 2015 al 2021

Descripción	Unidad	2015	2016	2017	2018	2019	2020	2021
Clientes menores	Cantidad	795,169	826,878	863,926	898,674	925,493	943,591	986,214
Clientes mayores	Cantidad	3,008	3,031	3,004	3,049	3,092	3,098	3,109
Clientes Libres	Cantidad	6	10	68	96	110	115	112
Clientes Total		798,183	829,919	866,998	901,819	928,695	946,804	989,435
Venta	GWh	1,792	1,797	1,672	1,745	1,809	1,742	1,821
Producción Hidráulica	GWh	52.8	52.2	44.7	50.1	36.5	36.6	36.2
Reclamos	Cantidad	18,034	17,699	19,836	21,299	33,043	57,294	62,547
Reclamos Fundado	Cantidad	3,332	3,898	4,526	4,927	6,233	10,776	5,004
Reclamos Fundados	%	18.5%	22.0%	22.8%	23.1%	18.9%	18.8%	8.0%
Pérdidas de energía	%	9.53%	9.42%	9.57%	9.47%	9.43%	10.16%	10.49%
Cortes emitidos	Cantidad	287,662	292,694	303,852	351,402	310,266	65,764	528,189
Reconexiones	Cantidad	189,483	190,924	193,007	228,396	221,121	44,103	172,046
Efectividad de cortes	%	66%	65%	64%	65%	71%	65%	41%
Tiempo Reconex.	Horas	9.00	9.61	6.18	8.77	9.55	9.10	9.38
Cobranza total	%	74.2%	74.0%	72.5%	72.2%	71.2%	52.3%	63.8%
Cobranza corriente	%	71.1%	69.6%	67.5%	66.7%	65.7%	45.5%	57.9%
Morosidad	%	3.1%	3.1%	3.9%	3.6%	4.1%	30.8%	21.1%

Fuente: Elaboración propia, 2022

En los indicadores se aprecia la evolución positiva de los clientes, tanto regulados como libres; y la venta de energía que son los ingresos principales de la empresa. Respecto a los reclamos estos se han incrementado a razón de la pandemia por el Covid 19, y la cantidad de reclamos fundados respecto al número de reclamos totales pero este último año 2021 se ha reducido considerablemente se encuentra alrededor del 8%; las pérdidas de distribución se vienen incrementando superando el

10%, lo cual representa una merma en su utilidad, dado que las pérdidas reconocidas según la tarifa son 5,71% al cierre del año 2021.

La efectividad de los cortes ha disminuido en el último año 2021 estando en el orden del 41%. Hidrandina factura al cliente el servicio del corte y de reconexión después de realizado, dado que se aplica en el próximo Recibo del Servicio de Electricidad.

2.3. Costos por inversiones (CAPEX)

Los costos de inversiones a incurrir por Hidrandina, denominado CAPEX, para el despliegue masivo del AMI considera los siguientes rubros:

- Plataforma de gestión, que permitirá obtener la información de los medidores inteligentes y procesarla para los objetivos respectivos.
- Plataforma de comunicaciones, que es el medio para trasladar la información desde el medidor inteligente hasta el centro de control de información respectivo. Incluye los concentradores de datos según e tipo de comunicaciones.
- Servicio de implementación, cuya mano de obra y equipamiento permitirá instalación de medidores inteligentes, medios de comunicación y MDM.
- Medidores inteligentes, según los requerimientos y características correspondientes que permitan su funcionalidad y beneficios. Equipos deberán estar debidamente homologados y certificados.

2.4. Costos por gastos de operación (OPEX).

Los costos por gastos operativos a incurrir por Hidrandina al aplicar esta nueva tecnología, denominado OPEX, para el despliegue masivo del AMI considera los siguientes rubros:

 operación y mantenimiento del AMI, que este asociado a los costos con los sistemas de gestión para su atención remota.

- operación y mantenimiento de sistemas de comunicación, que incluye contratar el servicio de traslado de datos del medidor al MDM.
- operación y mantenimiento de campo, son aquellos que podrían aparecer por reemplazo de medidores inteligentes por mal funcionamiento según tasa de falla (Tounquet, 2018), ambientes para equipos electrónicos que se requieran, capacitaciones, mala señal de comunicación, no instalación por impedimentos técnicos o debido a causas externas, operaciones técnicas remotas sin éxito, otros.

2.5. Cuantificación de beneficiarios

A continuación, se muestra la cantidad de clientes por rangos de consumo, siendo la cantidad importante porque de ello va a depender los montos a invertir, por etapas, despliegue de medidores, etc.

Tabla 9: Cantidad de clientes de Hidrandina – Año 2021

	Escala de consumos kWh/mes	La Libertad	Chimbote	Cajamarca	La Libertad Norte	La Libertad	Huaraz	Total
	00. Consumo cero (0)	21,091	17,719	58,396	10,184	17,012	19,763	144,165
	01. De 1 a 30	46,479	34,842	75,300	31,344	57,874	60,298	306,137
Mercado	02. De 31 a 100	97,740	57,036	45,376	41,822	18,664	37,821	298,459
Regulado	03. De 101 a 150	45,712	22,702	12,234	11,286	3,028	9,480	104,442
Cartera	04. De 151 a 300	47,825	19,438	10,597	6,825	2,413	7,494	94,592
Menores	05. De 301 a 500	12,970	4,374	2,261	1,301	839	1,851	23,596
	06. De 501 a 750	3,464	1,145	723	427	324	621	6,704
	07. De 751 a 1000	1,216	402	288	155	137	245	2,443
	08. Mayores a 1001	2,679	1,076	662	437	262	561	5,677
	Total Cartera Menores	279,176	158,734	205,837	103,781	100,553	138,134	986,215
Mercado	01. De 0 a 1000	209	116	92	91	34	215	757
Regulado	02. De 1001 a 5000	378	221	164	135	60	248	1,206
Cartera	03. De 5001 a 20000	336	180	68	108	13	68	773
Mayores	04. De 20001 a mas	158	108	22	58	8	19	373
	Total Cartera Mayores	1,081	625	346	392	115	550	3,109
Mercado	01. De 10001 a 50000	1	5		7			13
Libre	02. De 50001 a 100000	7	3		6			16
Cartera	03. De 100001 a 40000	25	22	1	12	2	1	63
Mayores	04. De 401000 a mas	9	3	1	3	1	2	19
	Total Cartera Mayores	42	33	2	28	3	3	111
Total Client	es Hidrandina	280,299	159,392	206,185	104,201	100,671	138,687	989,435

Se tiene más de 53 mil medidores prepago-monofásicos en Unidad Negocios Cajamarca

Fuente: Hidrandina, 2022.

2.6. Análisis beneficio - costo

El análisis costo-beneficio de instalación masiva del AMI implica considerar escenarios para lograr alternativas viables, por lo que habrá que considerarse los siguientes criterios:

- Precio del sistema de medición inteligente dado que debe cumplir ciertas características y especificaciones para cumplir con funciones, incluida el medio de comunicación que se necesitara para la obtención de datos de forma oportuna, tal como está contemplado. De ello dependerá el precio también.
 - Funcionalidades básicas para cumplir con las ventajas de forma remota, tales como lectura, reconexiones, bidireccional, etc.
- Cantidad de clientes dado que está relacionado con la cantidad de medidores a instalar. Es importante el consumo promedio mensual a fin de priorizar dado el costo de implementar AMI.
- Período de instalación masivo. Si se hará por etapas y definir el horizonte o años de instalación.

2.7. Consideraciones en la implementación del AMI en Hidrandina

De acuerdo a los contemplado por el Ministerio Energía y Minas (2016), conforme a lo establecido por la Décima Disposición Complementaria Transitoria y la actualización del Art. 163 del Reglamento de la Ley de Concesiones Eléctricas, en el Estudio del Valor Agregado de Distribución periodo 2019-2023 donde se actualiza el valor de las tarifas para los próximos cuatro años, se considera que las distribuidoras proponen al Osinergmin un plan gradual, por etapas, de reemplazo a AMI. Inicialmente como inicio debe considerarse el desarrollo de proyectos piloto hasta por el monto de 1% de los ingresos de las empresas distribuidoras. En el caso de Hidrandina, ha considerado para este piloto 10 650 medidores inteligentes para reemplazo en conexiones de clientes de usos residencial.

Tabla 10: Proyecto Piloto de Implementación AMI en Hidrandina

Empresa	Ubicación	#SED	Medidores Monofásicos Directos (2 hilos)	Medidores Trifásicos Directos (3 hilos)	Medidores Trifásicos Directos (4 hilos)	Total de Medidores	Tele comunicaciones	Plataforma de Recolección de Datos MDC
	Sistema 1	36	6,384	0	591	6975	RF LPWAN	MDC1
l listus matica s	Sistema 2	1	554	0	15	569	RF MESH	MDC3
Hidrandina	Sistema 3	8	1,469	0	37	1506	PLC PRIME	MDC2
	Sistema 4	5	1,532	0	68	1600	PLC PRIME	MDC2

Fuente: Hidrandina, 2022.

Tabla 11: Costo de implementación de SMI en Hidrandina

DESCRIPCION	C.U. (\$)	CANTIDAD	MONTO \$	
CAPEX: Compra de equipos,				
Instalación, Comunicación e	160	10,650	1,704,000.00	
Integración				
OPEX: Mantenimiento	20	10,650	213,000.00	
TOTAL	180	10,650	1,917,000.00	

Fuente: Hidrandina, 2022.

2.8. Consideraciones de impacto y riesgo para el uso de AMI

En la coyuntura actual es necesario considerar el impacto y riesgo que se tendría al implementar AMI de forma masiva y sectorizada. En otros países como Chile la introducción e instalación del AMI no ha sido tarea sencilla dado principalmente por la percepción de los clientes respecto a sus beneficios. El tema regulatorio requiere de un gran esfuerzo con participación de los agentes del sector, el tema técnico para cumplir con las características y especificaciones y lograr su correcto funcionamiento y operación; y el tema social dada la tecnología a instalar en cada uno de los predios de los clientes y los beneficios que estos representarían para ellos.

La instalación del AMI no es tarea sencilla. Pocos países han desarrollado la instalación de forma masiva, otros están en proceso de adecuación de marco regulatorio, evaluación del costo beneficio, proyectos piloto, etapas de despliegue que no se han cumplido en su totalidad, entre otras.

Según Muñoz, Perez, Murrieta y Vela (2019), entre las principales limitaciones que se tendría para instalar los sistemas AMI como reemplazo en las conexiones (predios) de los clientes tenemos:

- Limitaciones tecnológicas, dado que la precisión de estos equipos es sensible a fallas y que quedarían afectados ante el menor impacto.
- Limitaciones en la regulación, dada la experiencia en Chile es importante para para una instalación masiva de sistema AMI se realice un plan de comunicaciones para difundir y educar a la población donde participen distintos entes como: empresas distribuidoras, MEM, Osinergmin, Defensoría del Pueblo, Colegio de Ingenieros, entre otros.

Caso contrario, la misma población genera oposición y no va a dejar instalar los medidores y otros componentes. Generalmente piensan que las distribuidoras se favorecen con la instalación masiva de medidores, que estos están adulterados para perjudícalos en su consumo, que son costos y ellos asumen el pago, o que la distribuidora se asocia con el Estado para beneficiarse. Actualmente, no hay una regulación sobre sistemas AMI.

Limitaciones sociales dado que los clientes consideran que al ser un medidor multifunción y se puede monitorear en todo momento el usos y consumo eléctrico, entonces la distribuidora podrá conocer si el cliente está o no en su casa, a qué hora se acuestan, sus hábitos en cierto momento del día. Esta preocupación, hace los clientes no estén dispuestos a autorizar o proporcionar esta información.

Asimismo, considerar que las ondas electromagnéticas que van a existir y que en un despliegue importante del AMI, los clientes entenderían que afectara su salud. Estas informaciones o incertidumbre también se han dado en la población respecto a las redes eléctrica o líneas de transmisión que pasan cerca de sus viviendas. Sin embargo, existen estudios de organismos de salud internacional, como The Public Health England (PHE) que han

- demostrado que no existe evidencia de riesgo de afectación de la salud debido a la tecnología de medidores Inteligentes.
- Impacto debido a la precisión de los medidores, aumentando la facturación, afectando la economía de los clientes. Existen antecedentes que demuestran que, al realizar cambios de medidores con mejor precisión de la medida, los consumos de energía se incrementan, o que también la distribuidora lo calibra a su favor. Los medidores cuentan con un certificado de aferición, que avala que se encuentran dentro de os rangos permisibles de calibración.

2.9. Despliegue del SMI

2.9.1. Proyección de crecimiento anual de clientes

Sobre la base planteada el año 2020, Hidrandina tomó conocimiento de la disposición aprobada por el Osinergmin para realizar un plan piloto en cada una de las distribuidoras a nivel Perú, y que en su caso específico correspondía ejecutar la ejecución del plan piloto para instalar 10 650 medidores inteligentes con sistema AMI, integrado a comunicaciones, software y operación, básicamente a usuarios regulados.

Al respecto, tomando la base de clientes existentes del año 2021 se realizó la proyección del crecimiento de los clientes hasta el año 2037.

Cabe indicar que, a la fecha, Hidrandina y como las demás empresas a nivel nacional vienen teniendo dificultades en el desarrollo del piloto, peor aún para el despliegue ya que aún no cuenta con la normativa del mismo; para lo cual se ha desarrollado la proyección de los clientes con crecimientos en el orden del 4% anual, valor promedio a nivel estadística. En la siguiente tabla se indica la proyección de Hidrandina para los próximos 15 años.

Tabla 12: Proyección de clientes al 2037 de Hidrandina (15 años)

		Residen	cial		No Resi	idencial			
AÑO	Residencial	Monofásico	Trifásico	No Residencial (Comercial)	Monofásico	Trifásico	Industrial, Comercial	Libres	Total
2021	861,637	857,701	3,936	64,819	42,281	22,538	3,153	112	929,721
2022	897,163	893,212	3,951	66,439	43,871	22,568	3,203	105	966,910
2023	934,133	930,167	3,966	68,100	45,502	22,598	3,253	100	1,005,586
2024	972,605	968,624	3,981	69,803	47,175	22,628	3,303	98	1,045,809
2025	1,012,645	1,008,649	3,996	71,548	48,890	22,658	3,353	95	1,087,641
2026	1,054,310	1,050,299	4,011	73,337	50,649	22,688	3,403	97	1,131,147
2027	1,097,671	1,093,645	4,026	75,170	52,452	22,718	3,453	99	1,176,393
2028	1,142,796	1,138,755	4,041	77,049	54,301	22,748	3,503	101	1,223,449
2029	1,189,756	1,185,700	4,056	78,975	56,197	22,778	3,553	103	1,272,387
2030	1,238,625	1,234,554	4,071	80,949	58,141	22,808	3,603	105	1,323,282
2031	1,289,480	1,285,394	4,086	82,973	60,135	22,838	3,653	107	1,376,213
2032	1,342,403	1,338,302	4,101	85,047	62,179	22,868	3,703	109	1,431,262
2033	1,397,475	1,393,359	4,116	87,173	64,275	22,898	3,753	111	1,488,512
2034	1,454,784	1,450,653	4,131	89,352	66,424	22,928	3,803	113	1,548,052
2035	1,514,420	1,510,274	4,146	91,586	68,628	22,958	3,853	115	1,609,974
2036	1,576,477	1,572,316	4,161	93,876	70,888	22,988	3,903	117	1,674,373
2037	1,641,053	1,636,877	4,176	96,223	73,205	23,018	3,953	119	1,741,348

Fuente: Elaboración propia, 2022.

Cabe indicar que para implementación AMI, no se considera medidores prepagos, que son 57 119 medidores prepago a nivel empresa.

2.9.2. Despliegue de SMI – masivo Total

Considerando el crecimiento del número de clientes de Hidrandina, se ha planteado un despliegue masivo para cubrir la demanda de la instalación de los SMI, según lo planteado en las normativas correspondientes.

Al respecto, una primera parte está referida al despliegue del **Plan piloto**, que cubriría un 1.14% del número de clientes totales de la empresa; y como segunda parte, sería el **despliegue masivo** como se plantea en el siguiente cuadro:

Tabla 13: Proyección de despliegue masivo al 2037 de Hidrandina

	Tipo	Despliegue Anual Total	Despliegue Total Acumulado	Residencial	Monofásico	Trifásico	No Residencial (Comercial)	Monofásico	Trifásico	Industrial, Comercial	Libres	Total SMI Instalado	Acumulado SMI	Proyec. % SMI Residencial
	2021	0.34%	0%	•			-			3,153	-	3,153	3,153	0%
	2022	0.02%	0.02%		-	•	-	-	-	203	-	203	3,356	0%
1	2023	1.06%	1.09%	10,650	10,650	٠	•			50	•	10,700	14,056	1.14%
2	2024	4.99%	6.07%	48,630	48,431	199	3,490	2,359	1,131	50	(2)	52,168	66,224	5.00%
3	2025	9.97%	16.05%	101,265	100,865	400	7,155	4,889	2,266	50	(3)	108,467	174,691	10.00%
4	2026	14.96%	31.00%	158,147	157,545	602	11,000	7,597	3,403	50	2	169,199	343,890	15.00%
5	2027	19.94%	50.95%	219,534	218,729	805	15,034	10,490	4,544	50	2	234,620	578,510	20.00%
6	2028	19.95%	70.89%	228,559	227,751	808	15,410	10,860	4,550	50	2	244,021	822,531	20.00%
7	2029	19.95%	90.84%	237,951	237,140	811	15,795	11,239	4,556	50	2	253,798	1,076,329	20.00%
8	2030	9.16%	100.00%	113,706	113,332	374	7,431	5,337	2,094	50	2	121,189	1,197,518	9.18%
9	2031	3.85%	103.84%	50,855	50,840	15	2,024	1,994	30	50	2	52,931	1,250,449	4.07%
10	2032	3.85%	107.69%	52,923	52,908	15	2,074	2,044	30	50	2	55,049	1,305,498	4.05%
11	2033	3.85%	111.54%	55,072	55,057	15	2,126	2,096	30	50	2	57,250	1,362,748	4.04%
12	2034	3.85%	115.38%	57,309	57,294	15	2,179	2,149	30	50	2	59,540	1,422,288	4.03%
13	2035	3.85%	119.23%	59,636	59,621	15	2,234	2,204	30	50	2	61,922	1,484,210	4.02%
14	2036	3.85%	123.08%	62,057	62,042	15	2,290	2,260	30	50	2	64,399	1,548,609	4.01%
15	2037	3.85%	126.92%	64,576	64,561	15	2,347	2,317	30	50	2	66,975	1,615,584	4.00%

Fuente: Elaboración propia, 2022.

Cabe indicar, que según la disposición gubernamental, el despliegue masivo total debe contar con un análisis de costo beneficio aprobado por el Osinergmin.

2.9.3. Inversión y operación y mantenimiento de AMI por año – despliegue

Considerando los cálculos planteados para el plan gradual, se tiene planteado un valor referencial como se señala a continuación:

Tabla 14: Inversión, Operación y Mantenimiento al 2037

		CA	PEX		OPEX	
Tipo	Plataforma de gestión	Plataforma de Comunicaciones	Servicios de Implementación	Medidor Inteligente	Costos de OyM Plan de Medic. Intel.	Total US\$
2021	32,775	18,879	32,775	346,830	56,754	488,014
2022	2,110	1,215	2,110	22,330	3,654	31,420
2023	111,227	64,067	111,227	1,177,000	192,600	1,656,120
2024	542,287	312,357	542,287	5,738,480	939,024	8,074,435
2025	1,127,516	649,449	1,127,516	11,931,370	1,952,406	16,788,256
2026	1,758,825	1,013,083	1,758,825	18,611,890	3,045,582	26,188,206
2027	2,438,877	1,404,793	2,438,877	25,808,200	4,223,160	36,313,908
2028	2,536,601	1,461,082	2,536,601	26,842,310	4,392,378	37,768,972
2029	2,638,233	1,519,622	2,638,233	27,917,780	4,568,364	39,282,232
2030	1,259,761	725,622	1,259,761	13,330,790	2,181,402	18,757,336
2031	550,218	316,926	550,218	5,822,410	952,758	8,192,530
2032	572,235	329,607	572,235	6,055,390	990,882	8,520,349
2033	595,114	342,786	595,114	6,297,500	1,030,500	8,861,015
2034	618,919	356,497	618,919	6,549,400	1,071,720	9,215,455
2035	643,680	370,760	643,680	6,811,420	1,114,596	9,584,135
2036	669,428	385,591	669,428	7,083,890	1,159,182	9,967,519
2037	696,206	401,015	696,206	7,367,250	1,205,550	10,366,226
TOTAL	12,448,212	7,170,170	12,448,212	131,726,980	21,555,324	250,056,128

Fuente: Elaboración propia, 2022. Considera valores en US\$

Los costos que se indican corresponden a concursos y/o licitaciones considerando el criterio de economías de escala. Asimismo, estos costos son en base a la cantidad de clientes de Hidrandina que se mostró en la Tabla 12 y considerando que los clientes con medidores prepago no son incluidos dado el tipo de servicio que reciben y su fin al que están destinados.

Se ha tomado en cuenta como valor estimado y referencial propuesto por el Osinergmin en la última regulación del VAD 2019, valores en dólares que considera los siguientes procesos:

Tabla 15: Costos Unitarios considerados por el Osinergmin

Descripción	US\$
Plataforma de gestión	10.40
Plataforma de Comunicaciones	5.99
Servicios de Implementación	10.40
Costo de medidor	110.00
Costos de OyM Plan de Med. Intel.	18.00
	154.78

Fuente: Osinergmin, 2019. Valores en US\$.

Para el despliegue de los medidores trifásicos, su incidencia será relativamente pequeño, debido al volumen que mantiene la empresa Hidrandina, el cual representa el orden del 1 %, cuyo valor es irrelevante para fines del análisis.

CAPITULO 03 ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS

La viabilidad de implementar este tipo de tecnología AMI para mejorar la eficiencia y competitividad permitirá mejorar la calidad del servicio prestado con una mejora sustancial en la satisfacción del cliente, principalmente por reducción de tiempos en actividades operativas tales como toma de lecturas, entregas oportunas de recibos y atención de requerimientos de los usuarios, reposición inmediata del servicio eléctrico, entre otros.

Para ello es importante que se busquen los mecanismos que permitan reconocer y hacer viable económicamente este tipo de inversiones dado los beneficios que se obtiene para los clientes. En este capítulo se cuantifica los beneficios, mecanismo del reconocimiento de las inversiones en la regulación, ventajas, tipos de comunicación, aspectos de mejora de la gestión, entre otros; que nos permita determinar y proponer alternativas para obtener dicha viabilidad. El sistema AMI da como beneficio:

- Disminuir tiempo de interrupciones ante una falla y localización inmediata ante una avería o emergencia. Asimismo, determinar si la causa es por falla en redes de la distribuidora o instalaciones internas del usuario.
- Reducción de costos operativos tales como toma lectura incluido lugares inaccesibles, reparto de recibo o factura, procesamiento de datos para emisión de factura, atención reclamos y quejas
- Disminuir tiempo reconexiones ante el pago que efectúa usuario por corte por deuda; mejorando también la gestión cobranzas.
- Menor pago de compensaciones como parte de penalidades según la regulación actual existente.
- Facilitar detección y alertar hurto de energía, balance de energía que permita optimizar recursos de detección de irregularidades en la conexión.
- Obtener de forma rápida de parámetros técnicos (voltaje, corriente, energía) que permite programar mantenimiento preventivo o correctivo,

planeamiento de inversiones en infraestructura eléctrica (redes eléctricas, equipos de protección, transformadores distribución, etc.).

3.1. Proyecto Piloto de implementación AMI en Hidrandina

Dentro del Estudio VAD del Osinergmin 2018-2023, se consideró la implementación de un piloto de 10 650 medidores monofásicos para uso residencial, en las zonas elegidas por el mismo Hidrandina. Cabe indicar que los medidores trifásicos que son muy pocos asumían Hidrandina, de tal manera que todos los suministros eléctrica de esas zonas a instalar contaran con medidores inteligentes.

El cronograma del piloto es instalarlos al 100% el año 2023; el año 2022 se realizan las actividades necesarias para lograr su compra bajo procedimiento logístico de la Ley de Contrataciones del Estado.

3.2. Implantación total del Proyecto total

Medidores Inteligentes a instalar por año, hasta llegar a una cobertura del 100%:

Tabla 16: Despliegue al 100% de SMI

Año	Porcentaje despliegue
2023	1.14%
2024	5.00%
2025	10.00%
2026	15.00%
2027	20.00%
2028	20.00%
2029	20.00%
2030	9.18%
Total	100%

3.3. Consideraciones para realizar costo beneficio

Las consideraciones son:

Tabla 17: Consideraciones para el ahorro costo beneficio

Descripción	Cantidad	Fuente
Tasa descuento análisis	12%	Ley de Concesiones Eléctrica
financiero		Perú, 1992
Tasa de cambio	3.8	BCRP, 2022
Crecimiento clientes	4%	Propia, Hidrandina
Vida útil medidor	15 años	Fabricantes y normatividad
		Osinergmin
Despliegue	8 años	Propia, Hidrandina
Periodo de análisis	15 años	Propio
Precio promedio de venta	0.7688	Osinergmin, pliego tarifario al
energía Soles/KWh		cliente final, mayo 2022.
Precio promedio de compra	0.3513	Propia, Hidrandina
Soles/KWh		
Diferencia Precio HP vs HFP	0.0559	Osinergmin, pliego tarifario.
(Soles/KWh)		Tarifa BT2, BT3 de junio 2022
Desplazamiento del consumo	5%	Propia, Hidrandina
energía de HP a HFP		
Ahorro por menor consumo	3%	Propia, Hidrandina
de energía		

3.4. Resultados costo-beneficio (CBA-siglas en inglés)

El análisis costo - beneficio considera todos los costos correspondientes a la inversión, a costos de explotación y la suma total de los beneficios que podría obtener Hidrandina; y de acuerdo con ello determinar la viabilidad económica. con indicadores definidos para ello.

De ser positiva la comparación considerando valores actuales netos, implica que Hidrandina no requiere ayuda económica y si es negativa la comparación va a requerir de mecanismos que participen de tal manera que la hagan viable.

La inversión se obtiene de las cantidades a ejecutar según valores reales y proyectados y de los costos unitarios según Tabla 15.

Tabla 18: Proyección de Inversiones (CAPEX y OPEX) al 2037 de Hidrandina al 100%

		CA	OPEX			
Tipo	Plataforma de gestión	Plataforma de Comunicaciones	Servicios de Implementación	Medidor Inteligente	Costos de OyM Plan de Medic. Intel.	Total US\$
2021	32,775	18,879	32,775	346,830	56,754	488,014
2022	2,110	1,215	2,110	22,330	3,654	31,420
2023	111,227	64,067	111,227	1,177,000	192,600	1,656,120
2024	542,287	312,357	542,287	5,738,480	939,024	8,074,435
2025	1,127,516	649,449	1,127,516	11,931,370	1,952,406	16,788,256
2026	1,758,825	1,013,083	1,758,825	18,611,890	3,045,582	26,188,206
2027	2,438,877	1,404,793	2,438,877	25,808,200	4,223,160	36,313,908
2028	2,536,601	1,461,082	2,536,601	26,842,310	4,392,378	37,768,972
2029	2,638,233	1,519,622	2,638,233	27,917,780	4,568,364	39,282,232
2030	1,259,761	725,622	1,259,761	13,330,790	2,181,402	18,757,336
2031	550,218	316,926	550,218	5,822,410	952,758	8,192,530
2032	572,235	329,607	572,235	6,055,390	990,882	8,520,349
2033	595,114	342,786	595,114	6,297,500	1,030,500	8,861,015
2034	618,919	356,497	618,919	6,549,400	1,071,720	9,215,455
2035	643,680	370,760	643,680	6,811,420	1,114,596	9,584,135
2036	669,428	385,591	669,428	7,083,890	1,159,182	9,967,519
2037	696,206	401,015	696,206	7,367,250	1,205,550	10,366,226
TOTAL	12,448,212	7,170,170	12,448,212	131,726,980	21,555,324	250,056,128

Fuente: Elaboración propia. Considera valores en US\$

3.5. Ahorro y Beneficios el proyecto

3.5.1. Ahorro y Beneficios de Hidrandina

Los Beneficios de Hidrandina se dan como se indica a continuación:

- Por menor costo al realizarse la lectura de forma remota, no se requerirá de cuadrillas o personal que se apersoné en físico al predio para realizar a lectura. Este trabajo actualmente lo realiza la contratista comercial. Para el cálculo del beneficio se considera cantidad de clientes según se vayan instalando sistema AMI por año y costo unitario.

Tabla 19: Ahorros por lecturas

Descripción	Cantidad/Costo S/
# de lecturas	100%
Costo de lectura promedio	0.70
(varios tipos)	
Fuente: Confidencial, 2022	

- Por menor costo al no tenerse que realizar en físico el reparto de recibos, tal como se hace hoy, que se imprime y tiene que entregarse en el predio.

Este ahorro es considerando que la entrega sería digital y al tenerse los datos de recibo prácticamente en línea de forma remota. Para el cálculo del beneficio se considera cantidad de clientes según se vayan instalando sistema AMI por año y costo unitario.

Tabla 20: Ahorro por no reparto de recibo

Concepto	Cantidad/Costo S/
# de Recibos a repartir	100%
Costo de reparto de recibo	0.60

Fuente: Confidencial, 2022

 Reducción costos por corte y reconexión dado que se realizará de forma remota e instantáneo, y no será necesario ir físicamente hasta la zona del predio. Para el cálculo se considera la cantidad de clientes a medida que se van instalando sistema AMI y costos unitarios.

Tabla 21: Ahorro por cortes y reconexión

Descripción	Cantidad/Costo S/
Cortes de volumen de clientes en un	33.5%
año	
Reconexiones por año (de volumen	30%
de clientes)	
Cortes Repaso	5%
Costo corte de suministro	6.96
Costo de reconexiones	8.39

Fuente: Confidencial, 2022

 Optimización de las zonas o puntos de mayor volumen o porcentaje de pérdidas de energía dado que podrá direccionar las actividades de ejecución en campo con mayor efectividad; esto trae consigo la disminución de la energía dejada de perder y el incremento de una parte de ello en ventas de energía a usuarios.

Tabla 22: Ahorros por reducción de pérdidas distribución comerciales durante escenario evaluado

Descripción/Año	2018	2019	2020	2021
Pérdidas Distribución	9.47%	9.43%	10.16%	10.49%
Venta GWh	1 745	1 809	1 742	1 821
Pérdidas GWh	207 138	211394	224 572	249 833
Pérdidas Millones S/	55, 62	58,16	66,07	78,06
Pérdidas Reconocidas %	5,91%	5,71%	5,68%	5,65%
Pérdidas NO	20,91	22,96	29,13	36.03
Reconocidas Millones S/				

Fuente: Propia, 2022.

Se considera en la evaluación y cálculo el % de pérdidas según valores del proceso fijación tarifarias VAD del OSINERGMIN 2019-2023 y pérdidas reales. Para este periodo las pérdidas reconocidas distribución son 5,7%, lo cual representa un exceso de más de 4% en promedio. Recordemos que el factor pandemia COVID 19 (año 2020 -2022), al estar las actividades de control y reducción de pérdidas limitadas, así como efecto social y económico de los usuarios, han ocasionado que las pérdidas de distribución se incrementen.

Al contar con medición inteligente, la efectividad de detección de irregularidades aumenta, proyectada entre 20 a 50% en una primera fase según experiencia en Hidrandina; y en cuanto a detección de anomalías técnicas al tenerlas ubicadas es posible disminuirlas prácticamente al 0%. Se incluye en el beneficio el cálculo por recuperos de energía que en Hidrandina están cerca de 2,1 millones de soles anuales los seis últimos años.

Tenemos como promedio el año 2018 y 2019 una pérdida de 22 millones de soles al año, resultando un per cápita de 23,6 soles/cliente; siendo la meta de llegar a los valores de pérdidas reconocidas al instalar en su totalidad la tecnología AMI.

Para el cálculo del beneficio se considera también el despliegue que se va realizando cada año, de forma gradual.

Reducción de compensaciones por menor tiempo de interrupciones al detectar la falla de forma inmediata al estar el sistema de forma automática. La empresa estará enterada en línea y actuará, sin esperar que sea alertado necesariamente por el usuario, dándose como consecuencia ahorros y reducción de pagos al cliente.

Tenemos que el promedio de los seis últimos años (2016-2021) por compensaciones corresponde a 2873 Miles de Soles anuales, los cuales considerando el número de clientes se obtiene el beneficio del costo unitario, llegando a reducir las compensaciones en un 75% como valor prudencial. Asimismo, se considera el despliegue que se va realizando cada año con la instalación del sistema AMI.

están relacionados con una mejor calidad y satisfacción a los clientes en cuanto a la atención; al contar con la información y por mejora del servicio al contar con tecnología AMI. Se tiene actividades del Front Office que es cuando el cliente llega a los módulos de atención sea de forma presencial o virtual, personal para atender las resoluciones de los reclamos o respuesta a sus requerimientos (Back Office), también se cuenta con una Central Telefónica con operación las 24 horas del día, todos los días del año. Al disminuir estas actividades disminuye el costo por mejora del servicio (disminución errores en lecturas, en los repartos de recibos, información oportuna, seguimiento a consumos según registro en medidores, información sobre interrupciones y atención rápida de las cuadrillas, etc).

Tabla 23: Datos para beneficio de reducir reclamos y quejas - anual

Descripción	Costo Soles
Costo de atender reclamo Central Telefónica	1.8
Costo de atender reclamo (Back Office)	18
Concepto	Cantidad
Cantidad de reclamos Central Telefónica anual	60 000
Cantidad de Reclamos (Back office) anual	32 500
Fuente: Confidencial, 2022.	

En el cálculo del beneficio se considera cantidad de reclamos y su costo asumido actualmente por contratistas, el cual se irá reduciendo según e ingreso en operación de esta tecnología. Costo unitario de 0.7167 soles por cliente (costo total /número de clientes).

También, cabe acotar que hay otros beneficios en menor grado que no se ha considerado y que suma con el uso del AMI, como parte de la mejora del servicio al cliente, tales como:

- una mayor venta de energía al ser más rápida la reconexión luego de haberse efectuado el corte del servicio por deuda, en el periodo de corte de servicio por deuda.
- Una mayor venta de energía al reducirse el tiempo de reposición de averías, fallas en la infraestructura eléctrica, otros; al detectarse oportunamente y direccionar a las cuadrillas para su atención en campo.
- Reducción del costo por contrastación del medidor tal como lo exige la normativa actual y que, al instalarse medidor inteligente nuevo, ya no sería necesario. Este tema realmente falta definir según normativa a actualizar con participación del Osinergmin e Inacal. Los medidores electrónicos cuentan con un certificado de pruebas en fábrica que no es necesario realizar pruebas de contrastación.
- En el costo de inversión del medidor habría un ahorro al no instalar un medidor convencional considerando que se instala el medidor inteligente.

Este tema también se tendrá que definir en la normativa porque por definición la conexión es propiedad del cliente el cual adquirió en su momento o compraría en adelante, así como el costo de mantenimiento y reposición (CRM) de la conexión que mensualmente paga el cliente, donde se incluye la acometida, caja y medidor.

Disminución de compra de potencia por menor consumo d ellos clientes en Hora Punta (achatar el pico). La curva de la demanda se modificará y el factor de potencia mejorara, representando también ahorro importante y beneficio para el distribuidor dado que comprara menos potencia al generador; asimismo como beneficio menos inversiones en infraestructura eléctrica, dado que estas están dimensionadas según la capacidad de potencia que se requiera a tender según la planificación eléctrica realizada, que se realiza con la demanda en hora punta. De esta manera obtendría un mayor ahorro por la adecuada administración de la demanda, aplanándose los picos con lo que se disminuye los márgenes de reserva.

El usuario al contar con la oportunidad de varias tarifas, disgregado en hora punta y fuera de punta, permitirá que desplace su uso de hora punta a fuera de punta de un porcentaje entre 4 y 7%, especialmente considerando que actualmente para los clientes es indiferente usar la electricidad y que con una campaña se puede lograr ello. De forma prudencial, se considera 5%, dada la realidad y cultura desarrollada en la zona donde atiende Hidrandina.

A continuación, se muestra la energía que migra de HP a HFP en KWh, y su cálculo en potencia considerando las NHUHP – Número de Horas de Uso en Hora Punta (5 horas los 365 días del año = 1 825 horas), factor de carga y los soles de beneficio.

Tabla 24: Beneficio por menor compra a generadores

AÑO	Consumo KWh Clientes consumo mayor 50 KWh/mes	KWh-año Energía migrada de HP a HFP (5%)	FC	NHUHP - año	KW-año	P.U S/KW	TOTAL SOLES
1	874,067,921	43,703,396	0.56	1825	42,763	60.0	2,565,757
2	909,030,638	45,451,532	0.56	1825	44,473	60.0	2,668,387
3	945,391,863	47,269,593	0.56	1825	46,252	60.0	2,775,123
4	983,207,538	49,160,377	0.56	1825	48,102	60.0	2,886,128
5	1,022,535,839	51,126,792	0.56	1825	50,026	60.0	3,001,573
6	1,063,437,273	53,171,864	0.56	1825	52,027	60.0	3,121,636
7	1,105,974,764	55,298,738	0.56	1825	54,108	60.0	3,246,501
8	1,150,213,754	57,510,688	0.56	1825	56,273	60.0	3,376,361
9	1,196,222,304	59,811,115	0.56	1825	58,524	60.0	3,511,416
10	1,244,071,197	62,203,560	0.56	1825	60,865	60.0	3,651,872
11	1,293,834,044	64,691,702	0.56	1825	63,299	60.0	3,797,947
12	1,345,587,406	67,279,370	0.56	1825	65,831	60.0	3,949,865
13	1,399,410,902	69,970,545	0.56	1825	68,464	60.0	4,107,860
14	1,455,387,339	72,769,367	0.56	1825	71,203	60.0	4,272,174
15	1,513,602,832	75,680,142	0.56	1825	74,051	60.0	4,443,061
		875,098,781			856,261.04		51,375,662

Reducción del costo de la supervisión de campo, dado que con esta tecnología prácticamente se eliminará los trabajos de inspecciones y control en toma de lecturas, cortes, reconexiones, atención de averías, reclamos, actividades de control y reducción de pérdidas, entre otros.

Tenemos que el promedio de los seis últimos años (2016-2021) por costos de supervisión corresponde a 1041 miles de soles al año, los cuales considerando el número de clientes se obtiene el beneficio del costo unitario. Asimismo, para el total del beneficio se considera el despliegue que se va realizando cada año con la instalación del sistema AMI.

Importante detallar también el beneficio del cliente.

3.5.2. Ahorro y Beneficios que obtiene el usuario

Los ahorros y beneficios del usuario corresponden principalmente a:

a) Ahorro del consumo energía por contar con medidor inteligente (cultura de ahorro)

El usuario al contar con la oportunidad de varias tarifas, disgregado en hora punta y fuera de punta, permitirá administrar su demanda con un uso responsable y lograr un ahorro al reducir 2 – 4 % su consumo de energía mensual y anual, de forma prudencial estamos considerando 3%, tal como se está considerando dada la realidad y cultura desarrollada en la zona donde atiende Hidrandina. El ahorro en otros países indica un ahorro de 1.5% (Tounquet, 2018).

Tenemos que considerar que este beneficio es según los rangos de consumo de los clientes, por ejemplo, para el rango menor a **50** KWh/mes no consideramos beneficio; si para el rango mayor a 50 KWh/mes. Por otro lado, en el rango de los consumidores mayores a 50 KWh representan un per cápita de 104 KWh/mes, referido a clientes residenciales.

A continuación, se muestra los rangos de consumos según segmentos de los usuarios según tipo, indicando el % de beneficio y la participación en el total del consumo energía. Ver detalle en Anexo 01.

Tabla 25: Rangos de consumo según segmentos de consumo en kWh

Rango consumo del usuario	Cantidad usuario	Consumo MWh	% Ahorro considerado	Numero de Alimentadores	Percápita
Residencial < 50			0.00 %	71	27
KWh/mes	30%	98,596			
Residencial > 50 KWh/mes	70%	874,068	3.00 %	125	104
Fuente: Elaboració	n propia	MAN	MAN		

Estos segmentos permiten calcular el ahorro de energía en KWh que se puede obtener al emplear un sistema AMI. A continuación, se muestra los ahorros totales en KWh, en soles y participación gradual en cada año.

Tabla 26: Ahorro por menor consumo de energía

		Reducción en su consumo KWh		Tarifa BT5B R	
AÑO	Consumo KWh	3.00%	Participac. Gradual	P.U ctmS//KWh	AHORRO S/
1	874,067,921	26,222,038	0.80%	0.7688	160,886
2	909,030,638	27,270,919	5.80%	0.7803	1,233,850
3	945,391,863	28,361,756	15.80%	0.7920	3,548,808
4	983,207,538	29,496,226	30.80%	0.8039	7,303,002
5	1,022,535,839	30,676,075	50.80%	0.8160	12,715,239
6	1,063,437,273	31,903,118	70.80%	0.8282	18,706,740
7	1,105,974,764	33,179,243	90.80%	0.8406	25,325,189
8	1,150,213,754	34,506,413	99.98%	0.8532	29,436,096
9	1,196,222,304	35,886,669	102.82%	0.8660	31,957,534
10	1,244,071,197	37,322,136	105.66%	0.8790	34,665,353
11	1,293,834,044	38,815,021	108.49%	0.8922	37,572,433
12	1,345,587,406	40,367,622	111.31%	0.9056	40,692,573
13	1,399,410,902	41,982,327	114.12%	0.9192	44,040,465
14	1,455,387,339	43,661,620	116.93%	0.9330	47,631,779
15	1,513,602,832	45,408,085	119.73%	0.9470	51,483,232
		525,059,268	. \ \	7741	386,473,180

Fuente: Elaboración propia

b) Ahorro por traslado de consumos de la hora punta a fuera de punta

Permite una reducción del pico de la máxima demanda tanto para el usuario y como consecuencia a Hidrandina, permitiendo al mercado el registro de menores precios de acuerdo a la metodología de cálculo en las tarifas, con el beneficio que dichas reducciones se trasladan al usuario

Como hemos indicado en el numeral 3.5.1, de forma prudencial estamos considerando 5%, dada la realidad y cultura desarrollada en la zona donde atiende Hidrandina.

A continuación, se muestra la energía que migra de HP a HFP en KWh, en soles en soles y participación gradual en cada año.

Tabla 27: Migración de consumo de HP a HFP

		Energía		Diferencia	
		migrada de HP		Tarifaria entre	
		a HFP KWh		HP y HFP	
AÑO	Consumo KWh	5.00%	Participac.	P.U	AHORRO S/
ANO	Consumo Rvvii	5.00 /6	Gradual	ctmS//KWh	AHORRO 3/
1	874,067,921	43,703,396	0.80%	0.0559	19,497
2	909,030,638	45,451,532	5.80%	0.0565	148,787
3	945,391,863	47,269,593	15.80%	0.0570	425,834
4	983,207,538	49,160,377	30.80%	0.0576	871,996
5	1,022,535,839	51,126,792	50.80%	0.0582	1,510,751
6	1,063,437,273	53,171,864	70.80%	0.0588	2,211,678
7	1,105,974,764	55,298,738	90.80%	0.0593	2,979,421
8	1,150,213,754	57,510,688	99.98%	0.0599	3,445,996
9	1,196,222,304	59,811,115	102.82%	0.0605	3,722,743
10	1,244,071,197	62,203,560	105.66%	0.0611	4,018,286
11	1,293,834,044	64,691,702	108.49%	0.0617	4,333,809
12	1,345,587,406	67,279,370	111.31%	0.0624	4,670,582
13	1,399,410,902	69,970,545	114.12%	0.0630	5,029,943
14	1,455,387,339	72,769,367	116.93%	0.0636	5,413,315
15	1,513,602,832	75,680,142	119.73%	0.0643	5,822,207
		875,098,781	7 4		44,624,845

Fuente: Elaboración propia

La diferencia considerada en el precio de HP y FP en Soles/KWh es de 0.0559 basado en la diferencia tarifaria HP vs HFP para los clientes BT2 y BT3 que el Osinergmin emplea en los pliegos tarifarios reportados en lo que va del año 2022, y que estará alrededor de ello.

3.5.3. Distribución de costos y beneficios.

Dentro de los costos a incurrir y los beneficios a obtener considerando el despliegue al 70% obtenemos:

3.5.3.1. Distribución de costos con la implementación del AMI Incluye CAPEX y OPEX durante los 15 años de horizonte de evaluación.

INVERSION y OyM (US\$)

11,768,673; 3% 6,778,755; 2%

11,768,673; 4%

124,536,093; 37%

• CAPEX Plataf gestión
• CAPEX Servic Implement
• OPEX Costos de OyM

• CAPEX Medidor Inteligente

Grafica 12: Distribución de costos con la implementación del AMI

Fuente: Elaboración propia

3.5.3.2. Distribución de los beneficios con la implementación del AMI

Incluye los beneficios de la empresa distribuidora y los ahorros del cliente; y que en su total hacen viable el proyecto.

A continuación, se muestra un cuadro resumen que compara la distribución de los beneficios totales con los beneficios para la empresa distribuidora y los beneficios de los usuarios, resultando que los beneficios están alrededor del 53 y 47% respectivamente:

Beneficio en soles - 70% de Despliegue.

	BENEFICIOS DE LA EMPRESA DISTRIBUIDORA									BENEFICIOS DEL CLIENTE	
Cortes x deuda	Reconexión x pago	Toma Lecturas	Pérdidas Energía comercia	Reparto recibos	Reducción de Compensa- ciones	gestion de Reclamos	Descuento en Compra x menor consumo HP	Menor costo supervisión	Ahorro x menor consumo	Migración de HP a HFP	TOTAL
23,315,501	20,882,345	84,009,435	190,021,341	72,008,087	23,186,545	7,167,966	51,375,662	10,001,123	386,473,180	44,624,845	913,066,031
	481968006							43109	98025		
	53% 47%								100%		

Asimismo, mostramos cuadros resumen con los porcentajes de participación de los montos de beneficios para la empresa distribuidora siendo los más representativos las pérdidas de energía (39,4%), Tomas de Lecturas (17.4%) y Reparto de Recibos (14.9%); igualmente los porcentajes de participación de los montos de beneficios de los usuarios, que corresponde a Ahorro por menor consumo (90%) y Migración de HP a HFP (10%). Detalle de los beneficios se muestra en la Tabla 28.

Tabla 28: Beneficio en Soles con el 70% de despliegue

BENEFICIOS DE LA EMPRESA DISTRIBUIDORA - MONTOS EN SOLES									
Cortes x deuda	Reconexión x pago	Toma Lecturas	Pérdidas Energía comercia	Reparto recibos	Reducción de Compensa- ciones	gestion de Reclamos	Descuento en Compra x menor consumo HP	Menor costo supervisión	TOTAL
23,315,501	20,882,345	84,009,435	190,021,341	72,008,087	23,186,545	7,167,966	51,375,662	10,001,123	481,968,006
4.8%	4.3%	17.4%	39.4%	14.9%	4.8%	1.5%	10.7%	2.1%	100.0%

BENEFICIOS DEL CLIENTE - EN SOLES							
Ahorro x menor consumo Migración de HP a HFP TOTAL							
386,473,180	44,624,845	431,098,025					
90%	10%	100%					

Tipo	Cortes por deuda	Reconexión por pago	Toma Lecturas	Pérdidas Energía comerciales (Reducción y Recupero)	Reparto de recibos	Reducción de Compensaciones (menor duración) y multas	mejora en la gestion de Reclamos	Descuento en Compra por menor consumo en HP (Achatar pico)	Menor costo de supervición (Cuadrilla, recursos)	Ahorro por menor consumo de energía	Migración de consumo de HP a HFP	TOTAL S/
2021	7,351	6,583	26,485	59,907	22,702	7,310	2,260		3,153			135,751
2022	7,824	7,007	28,190	63,764	24,163	7,781	2,405		3,356			144,491
2023	25,320	22,678	91,232	206,359	78,199	25,180	7,784	2,565,757	10,861	160,886	19,497	3,213,754
2024	110,487	98,957	398,101	900,467	341,230	109,876	33,967	2,668,387	47,393	1,233,850	148,787	6,091,501
2025	287,527	257,521	1,036,006	2,343,346	888,005	285,937	88,395	2,775,123	123,334	3,548,808	425,834	12,059,836
2026	563,680	504,855	2,031,027	4,593,989	1,740,880	560,562	173,294	2,886,128	241,789	7,303,002	871,996	21,471,201
2027	946,593	847,808	3,410,723	7,714,732	2,923,477	941,357	291,014	3,001,573	406,039	12,715,239	1,510,751	34,709,306
2028	1,344,847	1,204,502	4,845,698	10,960,507	4,153,455	1,337,409	413,451	3,121,636	576,869	18,706,740	2,211,678	48,876,793
2029	1,759,057	1,575,486	6,338,161	14,336,317	5,432,710	1,749,328	540,793	3,246,501	754,543	25,325,189	2,979,421	64,037,506
2030	1,956,862	1,752,648	7,050,884	15,948,427	6,043,614	1,946,039	601,605	3,376,361	839,391	29,436,096	3,445,996	72,397,923
2031	2,043,277	1,830,045	7,362,249	16,652,706	6,310,499	2,031,975	628,172	3,511,416	876,458	31,957,534	3,722,743	76,927,074
2032	2,133,148	1,910,537	7,686,068	17,385,154	6,588,058	2,121,349	655,801	3,651,872	915,008	34,665,353	4,018,286	81,730,635
2033	2,226,610	1,994,246	8,022,829	18,146,875	6,876,711	2,214,295	684,535	3,797,947	955,099	37,572,433	4,333,809	86,825,390
2034	2,323,810	2,081,302	8,373,055	18,939,054	7,176,905	2,310,957	714,417	3,949,865	996,792	40,692,573	4,670,582	92,229,313
2035	2,424,897	2,171,840	8,737,288	19,762,913	7,489,104	2,411,485	745,495	4,107,860	1,040,153	44,040,465	5,029,943	97,961,442
2036	2,530,026	2,265,998	9,116,085	20,619,716	7,813,787	2,516,033	777,815	4,272,174	1,085,248	47,631,779	5,413,315	104,041,977
2037	2,639,359	2,363,921	9,510,029	21,510,780	8,151,453	2,624,761	811,428	4,443,061	1,132,146	51,483,232	5,822,207	110,492,377
TOTAL	23,315,501	20,882,345	84,009,435	190,021,341	72,008,087	23,186,545	7,167,966	51,375,662	10,001,123	386,473,180	44,624,845	913,066,031

Fuente: Elaboración propia. Considera valores en Soles

Cabe precisar que el ahorro en menor compra a los generadores es un beneficio para la empresa distribuidora, dado que al desplazarse el consumo a hora fuera de punta mejora el factor de carga y la potencia que paga la distribuidora al generador en hora punta es menor; que es diferente a los otros beneficios que se trasladan a favor del cliente que corresponden al registrar menor precios según la distinta gama de tarifas en hora punta y fuera de punta, y al ahorro de energía que hace por el hecho de contar con mayor control y seguimiento de su consumo.

3.6. CAPEX y OPEX al 70% de despliegue

Para un horizonte de 15 años y que un 30% de despliegue se realizaría en otra etapa posterior, dado los bajos consumos de los clientes especialmente en sistemas eléctricos de bajo consumo per cápita, consideramos para la evaluación un 70% de despliegue masivo.

Tabla 29: Proyección de despliegue piloto y masivo al 2037 de Hidrandina al 70% de Despliegue

		CA	PEX		OPEX	
Tipo	Plataforma de gestión	Plataforma de Comunicaciones	Servicios de Implementación	Medidor Inteligente	Costos de OyM Plan de Medic. Intel.	Total US\$
2021	32,775	18,879	32,775	346,830	56,754	488,014
2022	2,110	1,215	2,110	22,330	3,654	31,420
2023	78,015	44,936	78,015	825,550	135,090	1,161,605
2024	379,751	218,736	379,751	4,018,520	657,576	5,654,333
2025	789,407	454,699	789,407	8,353,510	1,366,938	11,753,962
2026	1,231,340	709,252	1,231,340	13,030,039	2,132,188	18,334,159
2027	1,707,376	983,449	1,707,376	18,067,456	2,956,493	25,422,150
2028	1,775,783	1,022,851	1,775,783	18,791,333	3,074,945	26,440,695
2029	1,846,925	1,063,829	1,846,925	19,544,162	3,198,136	27,499,977
2030	881,995	508,029	881,995	9,333,269	1,527,262	13,132,550
2031	385,315	221,941	385,315	4,077,403	667,211	5,737,186
2032	400,727	230,819	400,727	4,240,489	693,898	5,966,659
2033	416,742	240,044	416,742	4,409,966	721,631	6,205,125
2034	433,405	249,642	433,405	4,586,296	750,485	6,453,233
2035	450,738	259,625	450,738	4,769,710	780,498	6,711,309
2036	468,762	270,007	468,762	4,960,439	811,708	6,979,678
2037	487,506	280,804	487,506	5,158,791	844,166	7,258,773
TOTAL	11,768,673	6,778,755	11,768,673	124,536,093	20,378,633	175,230,827

Fuente: Elaboración propia. Considera valores en dólares

3.7. EVALUACIÓN ECONÓMICA

Considerando la inversión, los costos incurridos por operación y mantenimiento a todo el sistema AMI (Opex), los beneficios operativos a favor de la distribuidora y del cliente a partir del año 2023 por un periodo de 15 años, según el 70% de despliegue tenemos:

Inversión 665,877 175,231 miles US\$ Total Miles S/ CAPEX + OPEX 3.8 Tipo cambio 12% tasa = Miles S/ INVERSIÓN INGRESOS EGRESOS NETO ACUM 0 0 -644 3,901 3,214 (721)-644 18,988 (13,097)6,092 201 -10.441-11,085 12,060 547 (27,958)-19,900 -30,985 39,471 1,087 -26,173 -57,158 21.471 (41.184)61.567 85,369 34 709 1.836 (52.496)-29 788 -86 945 88,790 48,877 2,615 (42,528)-21,546 -108,492 92,347 64,038 3,425 (31,735)-14,355 -122,847 3,812 8 44,100 72 398 24,486 9.889 -112 958 Q 19,266 76,927 3,981 53,680 19.357 -93,600 10 81,731 4,157 57,537 18,525 -75,075 20,036 17.722 4 340 -57 352 20.837 86 825 61 648 11 12 21,670 92,229 4.530 66,029 16,948 -40,404 13 97,961 4,728 70,697 16,202 -24,203 23,438 104,042 4,933 15,484 -8,719 14 75.670 5,147 15 110,492 80.970 14,793 24,376 6.074 6,074 TIR 12.78%

Tabla 30: Evaluación económica con el 70% de despliegue

Fuente: Elaboración propia. Considera valores en Soles

Del escenario evaluado, aun considerando un despliegue del 70% de medidores, se obtiene un VAN (Valor Actual Neto) positivo de 6.074 millones de soles hasta el año 15 del despliegue, considerando los beneficios para el cliente en dicha evaluación; de ahí que se hace necesario evaluar soluciones en relación con la regulación tarifaria u otros aspectos gubernamentales a fin de no generar incremento económico a los clientes.

3.7.1. Análisis de Sensibilidad

Según Muñoz, et al. (2019) precisan que este análisis consiste en considerar variación de algunos parámetros en la evaluación económica para considerar el

comportamiento de la viabilidad del proyecto ante factores que se podrían presentar, tales como algunas experiencias exitosas ya sean locales o internacionales, incluye temas regulatorios, de economía de comportamiento social, entre otros.

En el presente trabajo en Hidrandina, para nuestros escenarios consideramos un análisis de sensibilidad en la tasa de descuento empleada, en los beneficios a los clientes y con el % despliegue de AMI, tal como se indica en las variables a continuación:

- Tasa de descuento
- Ahorro del consumo de energía por contar con medidor inteligente (cultura de ahorro)
- Ahorro por migración de consumos de HP a HFP
- Porcentaje de despliegue de instalación de medidores

Mostramos resultados obtenidos:

Tabla 31: Sensibilidad de la tasa de descuento

Tasa de descuento	VAN Soles	TIR %	B/C
7%	67,449.32	12.78%	1.17
8%	51,269.70	12.78%	1.14
10%	25,304.35	12.78%	1.08
11%	14,962.61	12.78%	1.05
12%	6,073.90	12.78%	1.02

Fuente: Elaboración propia,2022

El análisis inicialmente se hizo con una tasa de descuento del 12%, que se emplea en base a la Ley de Concesiones Eléctrica del año 1992, y a medida que disminuye esta tasa (11, 10, 8 y 7%) aumenta el VAN y mejora la viabilidad económica.

Tabla 32: Sensibilidad del ahorro por menor consumo energía

Ahorro de energía				
usuarios residenciales	VAN Miles			
con consumos	Soles	TIR %	B/C	
mayores a 50	30163			
KWh/mes				
1.00%	- 74,931.43	1.23%	0.74	
1.50%	- 54,680.10	4.41%	0.81	
2.00%	- 34,428.77	7.36%	0.88	
2.50%	- 14,177.44	10.13%	0.95	
3.00%	6,073.90	12.78%	1.02	

Fuente: Elaboración propia, 2022

El análisis inicialmente se hizo considerando un ahorro mensual en su consumo de energía del 3% debido que un consumo promedio de 100 KWh -mes (consumo promedio de clientes en baja tensión a nivel Hidrandina) es viable que ahorre 3 KWh-mes en una primera etapa y considerando un valor realista y prudencial, de lo que actualmente se tiene en Hidrandina S.A. y en Perú.

Al disminuir ese porcentaje de ahorro a valores de 2.5%, 2, 1.5 y 1 se aprecia el VAN negativo, con lo cual no sería viable económicamente el proyecto.

Tabla 33: Sensibilidad del Ahorro por migración de consumo de energía de HP a HFP

Ahorro por migración				
de consumo de energía	VAN Soles	TIR %	B/C	
de HP a HFP				
1.00%	- 22,434.14	9.19%	0.92	
2.00%	- 15,307.13	10.07%	0.95	
3.00%	- 8,180.12	10.96%	0.97	
4.00%	- 1,053.11	11.87%	1.00	
5.00%	6,073.90	12.78%	1.02	

Fuente: Elaboración propia, 2022

El análisis inicialmente se hizo considerando un ahorro mensual en su consumo de energía del 5% debido al traslado o migración del consumo de hora punta a fuera de punta, dado que actualmente el usuario no tiene incentivo para cambiar su hábito de consumo, para él es indistinto utilizar la electricidad en hora punta

o fuera de punta. Este porcentaje es en una primera etapa y considerando un valor realista y prudencial, el cual ira mejorando con campañas de educación y de comunicación por parte de la distribuidora y otros agentes.

Al disminuir ese porcentaje de ahorro a valores de 4%, 3, 2 y 1 se aprecia que el VAN se hace negativo, con lo cual no sería viable económicamente el proyecto; de ahí la importancia de tener en cuenta este parámetro.

Tabla 34: Parámetro: Instalación y despliegue según rangos de consumo

Rangos de Consumo mensual	Percapita Promedio (KWh- mes)/cliente	% despliegue	Numero de clientes	volumen de consumo (kwh-año)	VAN Miles Soles	TIR	B/C
Mayores a 50 KWh	103.8	70.11%	701,572	874,067,921	6,073.90	12.78%	1.02
Mayores a 70 KWh	114.9	55.84%	558,778	770,308,052	16,466.73	14.67%	1.07
Mayores a 100 KWh	135.1	34.03%	340,563	552,062,961	23,177.40	18.21%	1.16
Mayores a 140 KWh	160.4	14.16%	141,717	272,717,839	16,808.58	23.08%	1.28

Fuente: Elaboración propia, 2022

Se ha considerado para el análisis todos los alimentadores de sistema eléctrico de Hidrandina, de los 197 alimentadores se han calculado los valores per cápita de consumo mensual por cliente y se ha ordenado de mayor consumo a menor consumo, y obtener los rangos de consumo mensual, tales como:

- Mayores a 50 KWh-mes
- Mayores a 70 KWh-mes
- Mayores a 100 KWh-mes (actualmente el FOSE, donde existe un subsidio cruzado a favor de los clientes residenciales menores a 100KWh-mes)
- Mayores a 140 KWh-mes (actualmente en proyecto ley para incrementar el rango de 100 a 140 KWh-mes como beneficiario del FOSE)

Ver Anexo 1 y 2.

Finalmente indicar, que del análisis de sensibilidad realizados según los distintos parámetros (04), se nota que es beneficioso realizar el proyecto y que hay mejoras para los usuarios con la mejora en la satisfacción del servicio, por lo que es necesario y viable desarrollar es presente proyecto.

CAPITULO 04

PLANTEAMIENTO PARA IMPLEMENTACIÓN AMI

Actualmente se viene realizando proyectos piloto en las empresas distribuidoras a nivel país, con instalación de sistemas AMI que no llegan ni al 1% de la cantidad de clientes, para el caso de Hidrandina se tiene 10 650 unidades medidores inteligentes. Teniendo en cuenta lo definido por el Ministerio de energía y minas según el Decreto Supremo N° 018-2016-EM que se mencionó en el capítulo 01, donde las empresas distribuidoras estaban comprometidas a presentar un plan gradual de reemplazo de hasta 8 años. A partir del proceso de regulación del VAD vigente en el periodo 2019 al 2023 se está considerando en las tarifas y aún la mayoría de distribuidoras no ha iniciado la ejecución del proyecto piloto, lo cual muestra que no será tan simple el despliegue en los 8 años que se indica, siendo una de las principales limitaciones el poco desarrollo y experiencia de los sistemas de comunicaciones para su adquisición y uso de los sistemas AMI respectivos.

Asimismo, respecto a ello, el año 2021 aparece el Decreto Supremo N° 028-2021-EM, donde se indica que las distribuidoras que por distintos motivos no han culminado con el cambio de sus medidores convencionales por medidores inteligentes del proyecto piloto, deben culminar dicho piloto como máximo el próximo periodo del VAD (2023-2027).

Aún hay un camino por recorrer en cuanto a definición de normas técnicas y regulatorias, relacionadas con esta nueva tecnología en comunicaciones, medidores inteligentes, plan de comunicaciones a los clientes que es tan importante para el éxito del proyecto, entre otros; para asegurar el despliegue y la viabilidad según el análisis costo beneficio; donde permita la viabilidad del proyecto al obtenerse los beneficios para la sociedad de tal manera que se mejore la satisfacción del cliente.

A nivel internacional se cuenta con experiencias de países europeos que de alguna manera tiene porcentajes de despliegue mayores que los países de América Latina, donde también se tiene que unos han avanzado más que otros

en cuanto a porcentaje de despliegue y con éxitos diferentes, pues el tema no simple como pareciera serlo, dado que existen barreras tecnológicas, sociales, regulatorias, etc., que limitan o restringen una implementación masiva; y más aún en Hidrandina donde se plantea un despliegue al 70% del total de clientes. Los proyectos pilotos que se mencionan en Perú, donde incluimos a Hidrandina, son clave para a partir de ello ir avanzando con un mayor despliegue tal como se tiene proyectado y que los riesgos existentes se puedan reducir o eliminar.

Luego de contar con experiencias de otras distribuidoras, experiencias internacionales y teniendo en cuenta y mercado que atiende Hidrandina, el mercado peruano y experiencias internacionales y haber considerado situaciones distintas que brindan criterios necesarios para realizar un planteamiento del uso de AMI, tal como indica:

4.1. Instalación del piloto del Osinergmin

Según el Estudio del VAD periodo 2019-2023, para el caso de Hidrandina, del periodo 2019-2023, se consideraron cantidades (10 650 medidores), características y especificaciones técnicas de forma general de sistemas AMI, que es importante adaptar según los resultados que se obtengan y siguiendo criterios de eficiencia, costo beneficio y adaptabilidad según sea el caso; y que sirvan para ese despliegue masivo al cual proyectamos.

Estas características corresponden a funcionalidades de toma de lecturas; corte y reconexión remota; datos técnicos como potencia, energía hora punta y fuera de punta, corriente, frecuencia, voltaje, etc., medios de comunicación como GPRS, PLC, Radio Frecuencia, etc. según las zonas geográficas y distribución de los sistemas eléctricos. El elegir una u otra dependerá de las conclusiones, consideraciones y realidad que se obtenga en cuanto al performance de cada una.

El resultado de la evaluación económica que se ha desarrollado nos muestra claramente que la implementación del sistema AMI depende tanto del beneficio obtenido por la empresa concesionaria en los beneficios operativos como en los

beneficios del cliente conocidos como beneficio a la sociedad. Los criterios considerados como productividad, eficiencia, administración de la demanda, la transferencia del consumo de energía de la hora punta a la hora fuera de punta serán beneficiosos para clientes cuya tarifa permita diferenciar y exista incentivos para los clientes y no que sea indiferente para el cliente como ocurre actualmente, dado que se cuenta para la gran mayoría de los clientes (más del 99%) con una tarifa BT5 que solo mide energía en forma total, que no permite diferenciar la hora punta de la fuera de punta con precios para cada uno de esos periodos. Emplear y desarrollar estos conceptos permite beneficios importantes de cara al desarrollo de nuevas tecnologías y emprendimientos de proyectos que requieran desarrollarse dada la planificación que realizan las empresas distribuidoras y que tiene que estar un paso adelante en cuanto a innovación y mejora de la calidad del servicio a los clientes. Incluso los sistemas AMI están asociados con nuevas oportunidades de negocios como: generación distribuida, micro generación distribuida, vehículos eléctricos (autos, buses, motos, taxis, scooter, etc.).

En los pilotos debe incluirse una evaluación regulatoria en los clientes seleccionados, las oportunidades que aparecerán, una relación ganar ganar de la empresa distribuidora y del cliente. El plan de comunicaciones es clave en este tema, dado que el cliente desconoce de este tipo de tecnologías y las experiencias que ya ha tenido respecto a cambios de medidores, tema sensible y crucial, que si no es manejado adecuadamente, tranquilamente haría no viable la ejecución e instalación del AMI al considerar el cliente que más bien trae consigo incremento de consumo por mejor precisión de la medida del medidor, afectación a su salud, incremento en el precio de la tarifa, facturación en su recibo del sistema AMI, entre otros. Esto haría que incluso se oponga a la instalación e implementación del proyecto piloto durante el desarrollo del mismo, experiencias que Hidrandina ya ha tenido a inicios del del año 2000, donde tuvo oposición por el cambio de medidores electromecánicos a electrónicos.

Para el éxito del plan de comunicaciones tendrá que comprometerse a los diferentes agentes, incluso representantes del Colegio Ingenieros, Defensoría del Pueblo, Osinergmin, MEM, autoridades del Gobierno Local y Regional y otros

grupos de interés en conjunto con las empresas de distribución eléctrica, que permitan interactuar con la sociedad (clientes, representantes, etc) de tal manera que permita absolver alguna inquietud, atención a pedidos, reclamos. Importante que el éxito de este piloto y los resultados que se obtengan serán clave como muestra para los demás clientes de cara al despliegue masivo que se pretende ejecutar.

El piloto deberá tener en cuenta principalmente el consumo de energía en kWh la ubicación de los predios según sistema eléctrico dado que deberán estar agrupados por subestaciones de distribución de tal manera que permita realizar balances de energía, siendo ello parte importante dentro de los beneficios considerado en la evaluación, independiente que en esas zonas los usuarios cuenten con bajos consumos, menores a 50 KWh.

4.2. Implementación intensificada del AMI

El proyecto piloto es clave, dado que su resultado nos permitirá realizar el despliegue masivo. En base a ello es que se realizaran propuestas regulatorias y normativas, operativas y comunicacionales; e ir más seguro para mayores porcentajes de despliegue. Estamos partiendo también de criterios importantes que se darán tanto en el piloto como en el despliegue masivo y que es muy importante tenerlos presente porque en ese ámbito nos moveremos, tales como: el tiempo de vida de los medidores inteligentes serán de 15 años dado la reposición que se hace a este tipo de equipos, el plazo de despliegue a 8 años a partir del año 2023 prácticamente como se ha mostrado, incluso la opción que el costo del medidor disminuya en los próximos años, plazo prudencial para llegar a la cobertura del 70%, no ir al 100% de despliegue dado el consumo de energía mensual en sistemas eléctricos que son menores a 20 KWh/mes. El hacerlo en un tiempo menor, si bien es cierto traería una recuperación de la inversión más pronta, hay que considerar los temas operativos para instalar. La cultura de nuestros clientes respecto a un cambio masivo de medidores, otros: es que se ha considerado realizarlo en 8 años. Estamos hablando de instalar más de 500 mil medidores (70% del total de parque de medidores).

La digitalización debe considerar la mejora de los procesos, aplicación de esta nueva tecnología AMI y la mejora de cultura organizacional, dado que son las personas (trabajadores) que aplicaran esta herramienta. La mejora de procesos está en adecuar la facturación (de forma digital la toma de lectura, procesamiento de datos y emisión de los recibos, reparto de recibos), cobranzas de lo facturado, balances de energía en tiempo real, atención de reclamos o quejas, aplicativo móvil WEB para que el cliente realice seguimiento en línea de sus lecturas y consumo, parámetros eléctricos (voltaje, potencia, frecuencia, corriente, etc.), que permita también al cliente gestionar su demanda, estar atento a la fecha de corte de servicio eléctrico en caso de no pago, conocer montos facturados y otros asuntos comerciales.

Es importante también que exista un nuevo marco normativo sobre la protección de los datos personales y seguridad de la información, dado que, al contar con información constante del predio, el cliente requiere tranquilidad al respecto porque la empresa distribuidora contara con la misma y se podría utilizar de forma inadecuada.

Si bien es cierto que la empresa podrá realizar el corte de servicio por deuda de forma automática e inmediata, es necesario de realizar alertas a los clientes del incumplimiento y fecha de corte, de tal manera que el cliente conozca de ello y evite el mismo con el pago.

Importante contar con norma técnica que esté relacionada con sistemas AMI de tal manera que sea regulada las actividades y las partes que interactúan tengan claro este tema evitando quejas, reclamos u otros requerimientos principalmente por los clientes.

El criterio de eficiencia y competitividad para la mejora de la calidad del servicio prestado a los clientes debe seguir primando para financiar y hacer sostenible el proyecto en donde se incluyan los ahorros y beneficios de la empresa distribuidora y la inversión en que se incurre por el uso del AMI. Inclusive, si el cliente es quien debe asumir vía pago en la tarifa mensual con que se factura el

servicio de electricidad, el beneficio de este será compensado con los ahorros que obtendrá al ahorrar energía y disminución del monto facturado al desplazar consumo de energía de hora punta a fuera de punta, donde el precio de la tarifa es menor.

Finalmente, el esquema de multitarifas denominadas tarifas dinámicas, oportunidades para nuevos negocios como generación distribuida, microredes, entre otros; nos permite realizar una comercialización adecuada. Las experiencias que existen en otros países son positivas y es importante aplicarlas, adecuando a la realidad en la empresa distribuidora, en beneficios de los clientes, logrando una mejora sustancial en la satisfacción y calidad del servicio.

CONCLUSIONES

- 1.- Mejora sustancial en la satisfacción del usuario al mejorar la calidad del servicio prestado, dado que este tipo de tecnología permite reconexión en línea de forma inmediata, reducción de reclamos, quejas, entrega de recibos, toma de lectura, etc; y que sería posible dada la viabilidad del proyecto y según el porcentaje de despliegue e instalación.
- 2.- Existen riesgos (regulatorios, financiero, sociales, seguridad, etc.) que es necesario mitigarlos y que un plan de comunicaciones es clave. Relación ganar ganar entre empresa y cliente. Es necesario e importante coordinar con los distintos grupos de interés.
- 3.- La implementación al 100% no es recomendable, por los consumos bajos en algunos sistemas eléctricos e inelasticidad de su demanda; por lo que se plantea realizar el despliegue por etapas; y que incluso se considere la participación de fondos estatales.
- 4.- Es importante coordinar con los distintos grupos de interés y que en este plan de comunicación participen MINEM, Osinergmin, Colegio de Ingenieros, representantes de la comunidad, empresa distribuidora, otros.

5.- Necesario utilizar los alimentadores media tensión de forma completa para el despliegue, independientemente que los consumos de los clientes sean consumos bajos en KWh/mes, debido a que permitirá realizar el balance energía para acciones de control y reducción de pérdidas. Del análisis y evaluación se obtuvo que para los alimentadores con un consumo promedio mensual por cliente, mayores de 50 KWh-mes, se logra el 70.11% de despliegue. Asimismo para ese escenario se obtuvo que la viabilidad económica aumenta en la medida que el rango de consumo aumenta entre 70KWh-mes y 100KWh-mes.

El 70.11% de despliegue es importante tomar en cuenta dado que brindaría mejor aporte a la gestión y serían mayor la cantidad de usuarios beneficiados. Prácticamente quedaría por realizar despliegue de un 30%, que son principalmente clientes de bajos consumos, de las zonas rurales.

6.- Los porcentajes de participación de los montos de beneficios para la empresa distribuidora tenemos a los más representativos: las pérdidas de energía (39,4%), Tomas de Lecturas (17.4%) y Reparto de Recibos (14.9%) y el resto otros beneficios operativos.

Los porcentajes de participación de los montos de beneficios de los usuarios tenemos al Ahorro por menor consumo (90%) y Migración de HP a HFP (10%).

La importancia de los beneficios para la distribuidora y para los usuarios de forma económica está alrededor del 53 y 47% respectivamente y que se necesitan de ambos beneficios para lograr la viabilidad técnica y económica del mismo.

7.- Los beneficios calculados para la distribuidora no son suficiente para ser viable el proyecto, por lo que se requieren los ahorros y beneficios del cliente para lograr esa viabilidad económica. Es importante mantener acercamiento con los entes encargados de la regulación y normas, a fin garantizar el reconocimiento de la inversión y sostenibilidad del plan.

RECOMENDACIONES

- 1. Además de los beneficios que se dan al usuario en cuanto al ahorro por un menor consumo de energía y el de un menor precio por trasladar el uso de energía de hora punta a fuera punta; y con la finalidad de no afectar su economía con que asuma mayores costos, se sugiere que se consideren mecanismos de aplicación tarifaria que entren en vigencia a través de proyectos Ley u otro tipo de normativa, que implique beneficios para los usuarios tales como son: fondos y subsidio gubernamentales, subsidio cruzado, otros.
- 2. Dado que la viabilidad del proyecto se da por el ahorro y beneficio del cliente, para el éxito de ello se debe poner énfasis en los proyectos pilotos, cambio de comportamiento de consumos, y en lograr una comunicación eficiente con la población a través de un plan integral.
- Generar un cargo en la tarifa para fines de extender a más beneficiarios, considerando a los menores consumidores hasta un punto de equilibrio; logrando con ello ampliar el número de beneficiarios (ejemplo de 70% a 80%).
- 4. Empleo de cocinas de inducción eléctrica dado que representan un beneficio económico de hasta 50% respecto a hacerlo con gas GLP dado el incremento que tiene este actualmente en el mercado, permitiría masificación en los hogares de los usuarios. Esta consideración viene de la mano con las opciones de tarifas diferenciadas entre consumo realizado en hora punta y fuera de punta, dado que especialmente el uso de cocina se da en horas fuera de punta y representaría un menor costo.

Respecto a financiamiento de cocinas de inducción, una opción sería a través del programa FISE o a través del Ministerio MEM y con participación de la empresa concesionaria, de tal manera que se permita

llegar a los distintos niveles socioeconómicos, especialmente los niveles D y E.

- 5. Dada las bondades del medidor inteligente que cuenta con medición bidireccional, abre la oportunidad para nuevos negocios especialmente en generación distribuida, carga y descarga de vehículos eléctricos, entre otros; que convierten a los clientes como prosumidores (proveedor de energía a través de la misma red) en el sistema de electricidad, dando nuevas señales en el mercado. En el presente trabajo, para el cálculo beneficio costo no se ha incluido este beneficio, el cual se podría dar más adelante y hacer rentable el proyecto.
- 6. En el presente trabajo, para el cálculo beneficio costo no se ha incluido que el costo de esta tecnología ira disminuyendo en la medida que se va aplicando y por economía de escala, lo cual hay que tener en cuenta, especialmente en hacer más rentable el proyecto.

REFERENCIA BIBLIOGRÁFICA

- Boiteux, Michael (1960). "Peak-Load Pricing". Journal of Business.
- Borenstein, Severin. (2005). "The Long-Run Efficiency of Real-Time Electricity Pricing," Energy Journal.
- Carvallo, E. & Powell, A. (2020) De estructuras a Servicios: El camino a una mejor infraestructura en América Latina y el Caribe. Banco Interamericano de Desarrollo.
- Dammert, A., García R. y Molinelli F. (2013). Regulación y supervisión del sector eléctrico. Fondo editorial de la Universidad Católica del Perú. Lima.

- El Decreto Legislativo N° 1207. (septiembre 2015), modificó artículos de la Ley General de Electrificación Rural (LGER). Lima.
- Decreto Legislativo N° 1221. (septiembre 2015), modifica diversos artículos de la Ley de Concesiones Eléctricas del Perú (LCE). Lima.
- Decreto Supremo N° 018-2016-EM. (julio de 2016). Plan gradual de medición inteligente en fijación VAD. Lima.
- Decreto Supremo N° 028-2021-EM (noviembre 2021), que aprueba disposiciones modificatorias relacionadas a la implementación de los Sistemas de Medición Inteligente (SMI) entre otras Disposiciones. Lima.
- Indra (2012). Integración de Redes Eléctricas Inteligentes en el sistema energético peruano. Impacto en el sistema y planes de desarrollo. Consultoría realizada para el OSINERGMIN. Lima.
- Muñoz, C., Perez, F., Murrieta, F. y Vela, S. (2019). Análisis de costos y beneficios para el despliegue de un sistema de medición inteligente en Lima Metropolitana. Lima.
- Osinergmin (2016). La Industria de la Electricidad en el Perú. Lima.
- Osinergmin (noviembre 2017). Términos de Referencia para la Elaboración del Estudio de Costos del Valor Agregado de Distribución (VAD). Periodos de Fijación de Tarifas 2018-2022 y 2019-2023.
- Pérez Arriaga, I. & Christopher Knittel. (2016). Utility of the future: An MIT Energy Initiative response to an industry in transition.
- Ruff, Larry. (2002) "Economic Principles of demand response in electricity", EPRI.

- Vásquez, A. (2017). Aspectos económicos de la implementación de redes inteligentes (smart grids) en el sector eléctrico peruano. Lima.
- Viscusi, Kip W., Harrington J. & Vernon J. (1996) Economics of Regulation and Antitrust. MIT Press.

ANEXOS

ANEXO 1: Base de datos comerciales de alimentadores de la empresa Hidrandina

ANEXO 2: Análisis de sensibilidad por rango de consumos evaluados

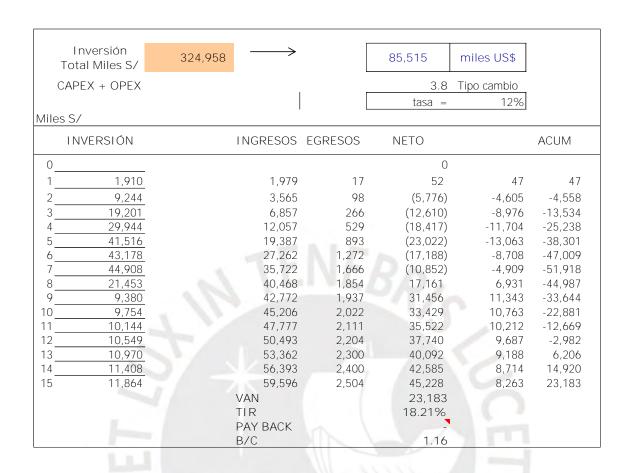
ANEXO 1
Base de datos comerciales de alimentadores de la empresa Hidrandina

Etiquetas de fila	Alimentador	UUNN	Cantidad de Clientes	Consumos en KWh - 2021	percapita KWh- mes/Cliente
A3452	YAN001 Yanacocha - Chanta Alta	Cajamarca	1,040	94,487	8
A3448	CEL004 Sorochuco - La Shita	Cajamarca	4,290	491,911	10
A3138	HUM005 Sanagorán 22.9 kV	La Libertad Sierra	3,804	468,774	10
A3447	CEL003 Chumuch - Cortegana	Cajamarca	4,753	625,748	11
A3455	SMA004 San Marcos 4	Cajamarca	1,146	150,977	11
A3449	CEL005 La Laguna - Quinuilla	Cajamarca	1,436	203,547	12 12
A3135 A3553	CJB004 Cajabamba 4 (22.9 kva) CHL004 Chilete-San Miguel	Cajamarca Cajamarca	6,545 1,110	928,353 165,488	12
A3174	OTZ201 LUCMA	La Libertad Sierra	3,347	503,356	13
A3040	CHA001 Coina - Usquil - Cuyuchugo	La Libertad Sierra	7,025	1,106,429	13
A3358	JAM001 CHACAS SAN LUIS	Conchucos	703	117,336	14
A3355	PMB002 POMABAMBA -PAROBAMBA	Conchucos	2,929	523,209	15
A3361	HRI202 MIRGAS	Conchucos	6,398	1,148,340	15
A3451	SMA003 San Marcos - Cascasen - Particular	Cajamarca	939	178,221	16
A3350	SIH602 SIHUAS CAJAS	Conchucos	4,209	898,038	18
A3345	PCR394 Huanchay/Pachapaqui	Huaraz	2,700	578,526	18
A3354	PMB003 POMABAMBA - YANAMA	Conchucos	10,668	2,336,278	18
A3181	MOT201 - OTUZCO IV ETAPA	La Libertad Sierra	2,932	680,675	19
A3038	OTZ002 SIMBAL - POROTO	La Libertad Sierra	6,044	1,454,516	20
A3089	HLL303 Huaylas	Huaraz	1,462	358,370	20
A3137	HUM004 Sarin 22.9 kV	La Libertad Sierra	8,301	2,049,129	21
A3153	TYB001	La Libertad Sierra	2,242	561,913	21
A3160	TYB004 - Huacrachuco	La Libertad Sierra	6,652	1,734,294	22
A3107	PAL002 Santiago de Chuco	La Libertad Sierra	12,436	3,355,460	22
A3036	FLO001 Julcán	La Libertad Sierra	5,779	1,568,973	23
A3347	TIC295 Cotaparaco	Huaraz	6,340	1,732,965	23
A3363	HRI204 Rahuapampa - Llamellin	Conchucos	9,749	2,712,745	23
A3140	CAT001 Catilluc-Tongod	Cajamarca	1,600	447,831	23
A3346	HRZ286 Huaraz - Pira	Huaraz	4,182	1,202,280	24
A3446	CEL002 Piobamba - Cantange - Bolivar CHA002 Huaranchal - Sayapullo	Cajamarca	7,594	2,232,883	25 26
A3041 A3106	PAL094 Llapo	La Libertad Sierra Chimbote	4,368 2,898	1,359,551 902,989	26
A3037	FLO002 Salpo - Carabamba	La Libertad Sierra	1,107	346,172	26
A3357	TIC296 Aija - Ticapampa	Huaraz	1,462	457,445	26
A3159	TYB003 - Huancaspata	La Libertad Sierra	1,440	458,722	27
A3056	CHL001 Chilete-San Miguel-San Pablo	Cajamarca	15,606	4,993,905	27
A3120	TIC294 Aija	Huaraz	150	48,032	27
A3094	CRH273 Toma - Tingua	Huaraz	4,462	1,429,877	27
A3105	PAL092 Conchucos - Pampas	Chimbote	2,891	938,954	27
A3088	HLL302 Mato Molinopampa	Huaraz	1,372	449,355	27
A3441	SMA002 San Marcos 2	Cajamarca	2,910	976,417	28
A3109	TAY002 Buldibuyo	La Libertad Sierra	4,625	1,595,315	29
A3959	MOY102	Cajamarca	8,114	2,923,576	30
A3102	PAM412 La Pampa - Corongo	Huaraz	2,486	916,779	31
A3131	CAJ005 Cajamarca 5	Cajamarca	10,160	3,760,518	31
A3055	CHL002 Cascas Contumazá	Cajamarca	9,612	3,728,009	32
	HLL301 Huallanca	Huaraz	896	349,680	33
A3362	HRI203 CHAVIN - SAN MARCOS	Huaraz	9,305	3,658,044	33
A3113	PCR391 Chiquián NAM001 La Huaraclla	Huaraz	2,301 460	951,052 190,365	34
A3132 A3349	SIH601 SIHUAS JOCOS	Cajamarca Conchucos	4,762	1,986,608	34 35
A3442	CJB005 Cajabamba 5	Cajamarca	3,525	1,514,357	36
A3039	OTZ001 OTUZCO PUEBLO	La Libertad Sierra	7,600	3,318,201	36
A3963	CRZ263 PUEBLO LIBRE	Huaraz	433	201,703	39
A3079	SJC052 Moro-Jimbe	Chimbote	5,881	2,772,367	39
A3077	CAS063 Quillo	Chimbote	15,088	7,183,936	40
A3083	HUA082 PSE Huarmey	Chimbote	1,676	803,737	40
A3559	PAC201 San Pedro de Lloc Poémape	La Libertad Norte	382	188,918	41
A3548	GUU002 Limoncarro - Callejon Chepen	La Libertad Norte	4,602	2,304,371	42
A3158	TYB002 - Tayabamba	La Libertad Sierra	2,994	1,503,175	42
A3118	TIC292 Ticapampa	Huaraz	537	295,479	46
A3104	PAL091 Pallasca	Chimbote	507	282,561	46
A3142	QUI001 Quiruvilca	La Libertad Sierra	2,106	1,174,032	46
A3093	CRH272 Marcará	Huaraz	5,988	3,342,978	47
A3099	TIC291 Recuay	Huaraz	1,519	859,607	47
A3119	TIC293 Catac	Huaraz	1,215	704,604	48

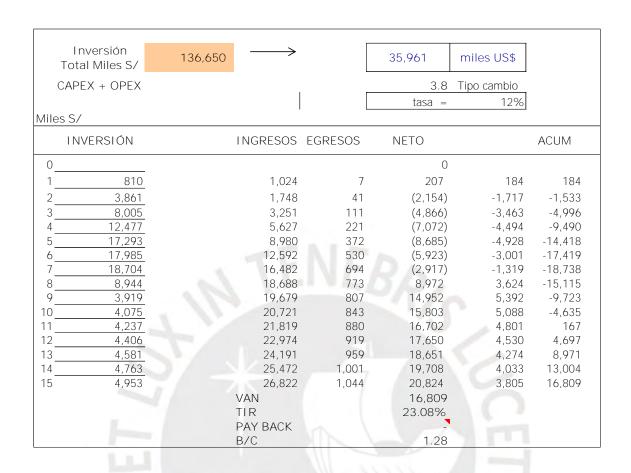
Etiquetas de fila	Alimentador	UUNN	Cantidad de Clientes	Consumos en KWh - 2021	percapita KWh- mes/Cliente
A3560	GUU003 San Martín	La Libertad Norte	1,507	892,754	49
A3117	CEL001 Celendin Ciudad	Cajamarca	7,416	4,395,256	49
A3052	CHE101 Pacanguilla	La Libertad Norte	6,171	3,686,820	50
A3556	CHE201 Pacanguilla Norte	La Libertad Norte	230	138,124	50
A3053	SMA001 San Marcos 1	Cajamarca	3,968	2,393,701	50
A3170	VIR006 Calunga - V.R. Haya de la Torre	La Libertad	1,220	747,215	51
A3054 A3558	TEM001 Tembladera 1 CHE104 Pacanga	Cajamarca La Libertad Norte	2,843 5,656	1,742,116 3,607,618	51 53
A3082	HUA084 Puerto Culebras	Chimbote	1,812	1,157,356	53
A3049	CAJ003 Cajamarca 3 (antes D)	Cajamarca	11,938	7,782,407	54
A3042	GUU001 San José - Ciudad de Dios	La Libertad Norte	7,927	5,300,511	56
A3057	CHU071 Cambio Puente	Chimbote	982	657,930	56
A3116	POM371 Pomabamba - Piscobamba	Conchucos	2,555	1,729,106	56
A3359	HRI101 HUARI	Conchucos	3,007	2,048,248	57
A3091 A3155	CRZ262 Yungay LLA004 Llacuabamba	Huaraz La Libertad Sierra	7,206 11,833	4,920,238	57 59
A3544	PAJ002 Paiján - Macabi	La Libertad Sierra	4,509	8,340,337 3,192,106	59
A3951	SJC053 Agroindustrias San Jacinto	Chimbote	909	645,995	59
A3073	NEP041 Samanco	Chimbote	1,712	1,220,148	59
A3187	TPO201 - SANTA CATALINA	La Libertad	5,114	3,680,442	60
A3035	MAL003 Parque Industrial	La Libertad Norte	482	347,086	60
A3031	CGD001 Roma - Ascope	La Libertad Norte	6,169	4,508,260	61
A3543	MAL002 Parque Industrial	La Libertad Norte	190	140,903	62
A3545	PAJ003 Paiján - La Arenita	La Libertad Norte	3,124	2,328,406	62
A3551 A3074	CHE102 Guadalupe NEP042 Nepeña	La Libertad Norte Chimbote	9,112 1,860	6,835,873 1,396,034	63 63
A3074 A3249	VIR002 Damper - Los Pinos	La Libertad	1,725	1,333,582	64
A3033	PAJ001 Paiján	La Libertad Norte	3,804	2,963,345	65
A3085	VIR003 El Carmelo	La Libertad	2,270	1,788,656	66
A3150	VIR005 Pur Pur-Los Pinos	La Libertad	2,172	1,729,356	66
A3027	CAO002 Santiago de Cao Pueblo	La Libertad Norte	790	629,203	66
A3240	TNO008 La Esperanza Alta - Alto Trujillo Barrio1	La Libertad	18,400	14,752,119	67
A3136	HUM003 Huamachuco 22.9 kV	La Libertad Sierra	12,153	9,801,678	67
A3051 A3001	CJB001 Cajabamba 1 TNO001 Trutex (P)	Cajamarca La Libertad	5,922 901	4,855,253 744,755	68 69
A3076	CAS062 Puerto Casma	Chimbote	528	439,174	69
A3046	PAC002 San Pedro de Lloc	La Libertad Norte	6,012	5,102,206	71
A3029	CGU001 Chicama - Chiclín	La Libertad Norte	3,606	3,095,615	72
A3067	STA122 Santa	Chimbote	11,594	10,103,286	73
A3078	SJC051 San Jacinto	Chimbote	2,159	1,901,522	73
A3020	TPO001 Porvenir - Victor Raúl - Rio Seco	La Libertad	15,137	13,370,751	74
A3554	HDS102 - Alto Moche MOY101 Sta. Barbara - Huambocancha	La Libertad	6,483	5,743,733	74 74
A3958 A3028	CAO003 CARTAVIO PUEBLO	Cajamarca La Libertad Norte	13,419 6,103	11,900,780 5,527,940	75
A3026	STA121 Coishco	Chimbote	4,269	3,915,313	76
A3254	CAS064 TORTUGAS	Chimbote	719	672,490	78
A3063	CHN026 Pardo N	La Libertad Norte	14,469	13,562,713	78
A3092	CRH271 Carhuaz	Huaraz	2,969	2,806,972	79
A3443	CNH001 Cajamarca Norte - Porcón	Cajamarca	78	74,694	80
A3241	STA123 Coishco 2 Industrial	Chimbote	77	74,699	81
A3185	TPO008 - Alimentador	La Libertad Norte	12,805	12,471,330	81
A3030 A3081	CGU002 CHOCOPE HUA083 PUERTO HUARMEY	La Libertad Norte Chimbote	2,325 561	2,300,600 556,295	82 83
A3045	PAC001 Pacasmayo	La Libertad Norte	10,425	10,651,894	85
A3097	HRZ283 Huaraz Monterrey	Huaraz	7,266	7,470,128	86
A3090	CRZ261 Caraz	Huaraz	6,904	7,098,614	86
A3006	TNO006 El Milagro	La Libertad	10,047	10,431,341	87
A3034	MAL001 PUERTO MALABRIGO	La Libertad Norte	1,552	1,617,472	87
A3098	HRZ284 Huaraz Este - Marian	Huaraz	10,049	10,522,863	87
A3251	TRA007 Banchero	Chimbote	162	170,112	88
A3048 A3445	CAJ002 Cajamarca 2 (antes B) CAJ007 Cajamarca 7	Cajamarca Cajamarca	4,947 11,403	5,282,966 12,278,218	89 90
A3058	CHN021 Industrial	Chimbote	10,282	11,079,853	90
A3032	CGD002 CASAGRANDE	La Libertad Norte	5,867	6,479,938	92
A3022	TPO003 Laredo	La Libertad	7,450	8,345,002	93
A3061	CHN024 8va Norte	Chimbote	6,733	7,615,571	94
A3456	CAJ009 Cajamarca 9	Cajamarca	7,605	8,713,869	95
A3557	GUU003 San Martín	Chimbote	435	498,439	95

Etiquetas de fila	Alimentador	UUNN	Cantidad de Clientes	Consumos en KWh - 2021	percapita KWh- mes/Cliente
	I	T			
A3086	VIR004 Virú Pueblo	La Libertad	3,244	3,737,364	
A3050	CAJ004 Cajamarca 4 (antes E)	Cajamarca	1,068	1,248,264	
A3007	TNO007 Esperanza - Manuel Arévalo	La Libertad	9,991	11,822,244	
A3069	CHS031 8va SUR	Chimbote	15,150	18,148,113	
A3070 A3084	CHS032 7ma SUR VIR001 San Luis	Chimbote La Libertad	17,433 1,860	21,149,903 2,257,979	101
A3004 A3005	TNO005 Esperanza Centro - Fcia de Mora	La Libertad	7,958	9,996,986	101
A3080	HUA081 HUARMEY	Chimbote	6,094	7,742,973	106
A3062	CHN025 9na Norte	Chimbote	5,221	6,654,385	106
A3004	TNO004 Huanchaco	La Libertad	8,897	11,524,028	108
A3177	TNO009 Parque Industrial - CREDITEX	La Libertad	1,754	2,285,828	109
A3095	HRZ281 Huaraz Oeste	Huaraz	11,177	14,568,902	109
A3246	TRA005 San Juan	Chimbote	5,460	7,372,672	113
A3552	HDS101 - Moche 1	La Libertad	6,023	8,386,119	116
A3047	CAJ001 Cajamarca 1 (antes AC-C)	Cajamarca	4,484	6,288,631	117
A3243	TRA002 Lacramarca	Chimbote	3,819	5,365,214	117
A3191	TOE105 San Isidro - Praderas del Norte - Sta. Ines	La Libertad	7,081	10,023,408	118
A3075	CAS061 Casma	Chimbote	7,452	10,778,115	121
A3026	SAL001 PUEBLO SALAVERRY	La Libertad	3,046	4,451,522	122
A3960	MOY103 Hoyos Rubio-Marcopampa	Cajamarca	9,735	14,254,935	122
A3003	TNO003 Esperanza Baja	La Libertad	8,526	12,486,468	122
A3253	CHS033 9na SUR	Chimbote	12,270	18,302,916	124
A3244	TRA003 Libertad	Chimbote	5,254	7,873,491	125
A3096	HRZ282 Huaraz Centro	Huaraz	10,582	15,957,035	126
A3021	TPO002 Porvenir Centro	La Libertad	7,496	11,426,905	127
A3129	HRZ285 El Pinar (Minera Antamina)	Huaraz	770	1,182,109	128
A3059	CHN022 Florida	Chimbote	3,331	5,179,752	130
A3172	TOE103 Alto Mochica - Huerta Grande	La Libertad	9,030	14,242,786	131
A3008	TSU001 Chicago - Centro Cívico	La Libertad	3,577	5,804,937	135
A3458	CAJ012 - OPEN PLAZA	Cajamarca	347	565,987	136
A3125	CHN013 Humbolt	Chimbote	5,255	8,730,954	138
A3149 A3176	TSU013 El Golf - Vista Alegre TOE102 SAN ISIDRO	La Libertad La Libertad	9,764 10,108	16,342,068 17,334,492	139 143
A3016	TSU009 El Bosque - Los Sapitos	La Libertad	8,914	15,350,888	143
A3164	TPO007 - Open Plaza / Los Jardines	La Libertad	7,062	12,216,848	144
A3010	TSU003 La Noria - Intendencia	La Libertad	10,811	18,820,615	145
A3171	TOE101 Alto Mochica - Santa Beatriz	La Libertad	13,857	24,125,391	145
A3444	CAJ006 Cajamarca 6	Cajamarca	6,181	10,763,379	145
A3457	CAJ010 Cajamarca 10 - Gran Qhapac Ñan (P)	Cajamarca	1,089	1,902,055	146
A3186	TOE202 - Huanchaco	La Libertad	201	352,174	146
A3173	TOE104 San Isidro - Praderas del Norte - Sta. Ines	La Libertad	7,819	13,985,410	149
A3012	TSU005 Buenos Aires	La Libertad	8,211	15,065,897	153
A3154	TSU014 Ciudad Universitaria - Covicorti	La Libertad	7,405	14,045,029	158
A3015	TSU008 Palermo - Centro Cívico	La Libertad	6,967	13,414,415	160
A3242	TRA001 Pescadores	Chimbote	103	202,325	
A3019	TSU012 Industrial Sur - Moche	La Libertad	2,728	5,434,093	166
A3250	TRA006 Meiggs	Chimbote	1,363	2,785,858	170
A3146	TPO005 Rinconada - Granados	La Libertad	6,725	14,038,724	174
A3256	CHN012 Olaya	Chimbote	5,036	10,550,777	175
A3011	TSU004 Los Jardines - Las Quintanas	La Libertad	4,994	10,478,029	175
A3009	TSU002 Santa María - Centro Cívico	La Libertad	5,856	12,309,943	175
A3014	TSU007 San Andrés - Ciudad Universitaria	La Libertad	4,390	9,430,852	179
A3124	CHN011 Pardo	Chimbote	3,559	7,691,645	180
A3013	TSU006 Centro Cívico - Santa Inés - San Isidro	La Libertad	3,178	6,900,089	181
A3017	TSU010 Monserrate - La Merced	La Libertad	8,907	19,441,868	182
A3162	TSU015 REAL PLAZA	La Libertad	5,829	14,327,437	205
A3166	TSU016 Industrial Sur	La Libertad	101	362,926	299
A3002	TNO002 Parque Ind. Norte - El Milagro	La Libertad	288	1,068,885	309
A3183	CHO203 - Santa Rita Larami - Salida en 22.9 kV	La Libertad	33	260,264	
	TOTAL		1,000,699	972,664,015	81

ANEXO 2 Análisis de sensibilidad por rango de consumos evaluados


Con despliegue al 70,1%

	Inversión						
	Total Miles S/	665,877			175,231	miles US\$	
(CAPEX + OPEX				3.8	Tipo cambio	
					tasa =	12%	
Mile	s S/						
	INVERSIÓN		INGRESOS	EGRESOS	NETO		ACUM
0					0		
1	3,901		3,214	34	(721)	-644	-644
2	18,988		6,092	201	(13,097)	-10,441	-11,085
3	39,471		12,060	547	(27,958)	-19,900	-30,985
4	61,567		21,471	1,087	(41,184)	-26,173	-57,158
5_	85,369		34,709	1,836	(52,496)	-29,788	-86,945
6_	88,790		48,877	2,615	(42,528)	-21,546	-108,492
7_	92,347		64,038	3,425	(31,735)	-14,355	-122,847
8_	44,100		72,398	3,812	24,486	9,889	-112,958
9_	19,266		76,927	3,981	53,680	19,357	-93,600
10_	20,036		81,731	4,157	57,537	18,525	-75,075
11_	20,837		86,825	4,340	61,648	17,722	-57,352
12_	21,670		92,229	4,530	66,029	16,948	-40,404
13_	22,537		97,961	4,728	70,697	16,202	-24,203
14_	23,438		104,042	4,933	75,670	15,484	-8,719
15	24,376		110,492	5,147	80,970	14,793	6,074
			VAN		6,074		
			TIR		12.78%		
			PAY BACK		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			B/C		1.02		


Con despliegue al 55.84%

Inversión	531,661		139,911	miles US\$	
Total Miles S/	331,001		137,711	Tilles 05\$	
CAPEX + OPEX		_	3.8	Tipo cambio	
			tasa =	12%	
Miles S/					
INVERSIÓN	INGRESOS	EGRESOS	NETO		ACUM
0			0		
1 3,117	2,791	27	(354)	-316	-316
2 15,152	5,194	160	(10,118)	-8,066	-8,382
3 31,491	10,179	437	(21,748)	-15,480	-23,861
4 49,118	18,045	867	(31,940)	-20,298	-44,160
5 68,105	29,119	1,465	(40,450)	-22,953	-67,113
6	40,988	2,086	(31,931)	-16,177	-83,290
773,671	53,708	2,733	(22,695)	-10,266	-93,556
835,184	60,769	3,041	22,543	9,105	-84,451
915,374	64,449	3,176	45,898	16,551	-67,900
1015,989	68,346	3,317	49,041	15,790	-52,110
1116,627	72,474	3,462	52,384	15,059	-37,051
1217,292	76,847	3,614	55,940	14,358	-22,693
13 17,983	81,478	3,772	59,723	13,687	-9,006
1418,702	86,385	3,936	63,747	13,044	4,038
15 19,450	91,584	4,107	68,027	12,428	16,467
	VAN		16,467		
No.	TIR		14.67%		
	PAY BACK		_		
	B/C	A 1	1.07		

Con despliegue al 34.03%

Con despliegue al 14.16%

