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Abstract

In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction

algorithm, which is able to exploit computer cluster resources in order to efficiently process

large volumes of hyperspectral remote sensing data. The implementation of the distributed al-

gorithm was done by extending the InterCloud Data Mining Package capabilities, originally

adopted for land cover classification, through the HyperCloud-RS framework, here adapted for

performing endmember extraction processes, which can be likewise executed on cloud comput-

ing environments, allowing users to elastically access and exploit processing power and storage

space within cloud computing architectures, for adequately processing large volumes of hy-

perspectral data. The framework supports distributed execution, network communication, and

fault tolerance, transparently and efficiently to the user. The experimental analysis addresses

the performance issues, assessing both accuracy and execution time, over the processing of dif-

ferent synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and

15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data.

As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS

framework by integrating new endmember extraction algorithms within the proposed archi-

tecture, thus enabling researchers to implement their own distributed endmember extraction

approaches specifically designed for processing large volumes of hyperspectral data.

Keywords: Hyperspectral image processing; Cloud computing, Endmember extraction;

Hyperspectral Unmixing; Remote sensing; Large-scale hyperspectral data processing.
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Chapter I

Introduction

Since humanity began understanding its environment and the things to which they relate, it

initiated the motivation to process the information in order to discover more and new knowledge

at every step.

The volume of information that we are currently generating is increasing in exponential

ways, according to a report by IBM [1], 2.5 quintillions of bytes of data are now generated

every day; remarking that 90% of the data in the world today has been created in the last two

years alone; and with new improvements in the devices, sensors, technologies emerging, and

heterogeneous data sources, this projection, on the data growth rate, will likely accelerate even

more [2, 3, 4, 5].

That is the case when it comes to the remote sensing field, in which, as we entered an era

of high-resolution earth observation [6, 7], current estimations show that the remote sensing

data gathered by a single satellite data center is increasing in order of Terabytes per day [8,

9, 10], furthermore, over the world, remotely sensed data are now being collected following

a Petabyte level growth per day [11]. A large number of earth observation spaceborne and

airborne sensors are currently providing massive amounts of remotely sensed data every day,

which covers large areas of Earth’s surface with unprecedented spectral, spatial and temporal
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resolutions [12, 4, 13]. Additionally, the deployment of the latest-generation sensor instruments

is providing a nearly continuous stream of high-dimensional and high-resolution remote sensing

data [14, 15, 16].

In this sense, during the past few years, improvements on remote sensing systems related

to their spatial and spectral resolution and to their revisit frequency, have allowed an increasing

remote sensing data availability, providing new information at an extremely fast pace, mainly

as a result of recent advances in technologies and sensors for Earth Observation, and to the fact

that hundreds of remote sensing satellites are nowadays in orbit acquiring very large amounts

of Earth’s surface data at every day [16, 17, 18, 19].

For instance, Sentinel-1, from the European Space Agency, generates about 1.5 TB per day

[20, 21], the complete Copernicus missions [22], the largest space data provider in the world,

currently delivers more than 18.47 TB of daily observations [23], and the NASA’s Earth Ob-

servation System Data and Information System (EOSDIS) database is experiencing an average

archive growth up to 32.8 TB of data per day [24, 25].

In this context, currently handling such large volumes of remote sensing data, in terms of

its storage, management, deployment, processing, analysis, and interpretation, impose new and

important challenges to be aware of [26, 14, 27, 28, 29, 30], especially regarding computational

resources and efficient processing techniques [3, 31, 32, 33]. Furthermore, the manipulation of

such large earth observation data can be considered as a big data problem [14, 34, 3], due to

the massive amounts of data volumes (TB/day); the resolution (radiometric, spatial, spectral,

and temporal), the variety (optical, radar, LIDAR images); the veracity (quality and accuracy

of the acquired data), the value (remote sensing application dependent), and the increasing

production velocity of information provided by hundreds of multi-resolution remote sensing

sensors [14, 35, 36, 37, 4, 38, 39]; problem that is worsened when considering the hyperspectral

data scenario [34, 40].

2



Hyperspectral remote sensing is concerned with the extraction of information from objects

or scenes lying on the Earth’s surface provided with a high-level spectral resolution, based on

the radiance acquired by airborne or spaceborne sensors [41, 42]. Regarding hyperspectral

imaging, also defined as imaging spectroscopy [43], the sensor acquires a spectral vector with

hundreds of elements for every pixel in the scene, providing the so-called hyperspectral images

(HSIs) [13].

Recent advances in hyperspectral imagery, concerning their spatial and spectral resolutions,

are continuously enhancing the quality of the information conveyed by them [34]. For instance,

in terms of spatial resolution, the Italian PRISMA, the German EnMAP, and the Japanese HySIS

orbital systems provide hyperspectral images with up to 250+ spectral bands, at 30 m spatial

resolution [44]. Concerning the spectral resolution, advances in hyperspectral sensors currently

allow a broad acquisition of spectral bands from the visible up to the short wave infrared, reach-

ing nanoscale spectral resolutions, with narrower bandwidths, as for the Airborne Visible In-

frared Imaging Spectrometer (AVIRIS), which acquires information from 400 ηm up to 2400 ηm

with its 224 spectral bands [45].

Hyperspectral images are mainly characterized by their high dimensionality and data size,

furthermore, hyperspectral remote sensing data represent important sources of information

for different applications and scientific research initiatives [46, 47, 48]. Regarding its anal-

ysis, in general, hyperspectral image processing is a costly and complex computational pro-

cess, whose analysis demands efficient computing solutions for scalable and thorough ex-

ploitation of the encoded data within this large hyperspectral remote sensing datasets, im-

posing significant requirements in terms of storage, data processing, and near real-time re-

sponses [49, 50, 17, 51, 47, 52, 53].

The most frequently used approach for analyzing hyperspectral remote sensing data is Hy-

perspectral Unmixing (HU), a process that can be considered a data-intensive computing prob-
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lem [47, 54], which provides robust techniques to improve data compression, interpretation,

processing, and retrieval, within the context of remote sensing hyperspectral image analysis

[55]. More specifically, and according to [53, 56, 13], HU aims at describing the pixels within

the hyperspectral image by characterizing their spectral vectors in terms of:

• the spectral properties of the pure components present in the hyperspectral data (also

referred to as endmembers); and

• the associated distribution of such endmembers at every pixel in the image (also known

as abundance fractions).

Supplementary, HU comprises three main processes [56]: (i) Dimensionality Reduction,

usually conducted through Principal Component Analysis (PCA) processing, which is com-

monly applied given the high spectral correlation in the hyperspectral image; (ii) Endmember

Extraction (EE), frequently estimated from the data using geometrical or statistical spectral

unmixing approaches; and (iii) Abundance Inversion, which consist in the estimation of the

proportions of each endmember at every image pixel. Generally, among those processes, EE is

considered the most data-intensive and computing-intensive problem.

Thus, there is an increasing demand for an entire class of techniques, methods, and proper

infrastructures for efficient and reliable acquisition, storage, compression, management, access,

retrieval, segmentation, interpretation, mining, integration, classification, and visualization of

hyperspectral remote sensing data applications, posing new and constant challenges to hyper-

spectral image analysis [34, 44, 32, 57, 58, 59, 55, 60, 61, 4, 62].

To overcome the aforementioned processing issues, several specialized high-performance

computing (HPC) systems have been proposed [63], from multicore-based approaches (exploit-

ing resources from typical desktop computers or workstations) [64, 65], to systems based on

graphics processing units (GPUs) [66, 53], field-programmable gate arrays (FPGAs) [67, 68,

69], and computer clusters [47, 70].
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However, despite the powerful computing capacities provided by the aforesaid HPC sys-

tems, there are still important concerns to be adequately addressed, especially when dealing

with large volumes of hyperspectral data and when related to their processing and storage re-

quirements, for which typical HPC systems currently experience some difficulties, even with

their enhanced computing capabilities [44].

For instance, although GPUs and FPGAs represent suitable solutions to deal with the near-

real-time processing issues, mainly given by their power consumption and onboard processing

requirements [67, 71, 72]; when considering large-scale hyperspectral remote sensing datasets,

these processing tasks must be performed on distributed computing facilities, such as com-

modities of clusters [3, 53, 69]. In this sense, homogeneous clusters currently offer access to

increased computational power at a low cost in a wide variety of hyperspectral imaging applica-

tions [73]; but, as the remote sensing data is continuously increasing, supporting and maintain-

ing such large and single-service-oriented clusters becomes a more demanding and expensive

requirement.

Nevertheless, an interesting alternative to the homogeneous clusters is to use highly het-

erogeneous computing resources [74, 75, 76], where networks of heterogeneous workstations

can realize a very high level of aggregate performance computing, furthermore, the pervasive

availability of these resources resulted in the current notions of grid and, later, cloud computing

infrastructures, which, according to [13], are yet to be fully exploited in processing large-scale

hyperspectral imaging problems.

Notwithstanding, as previously described, these GPUs and FPGAs multicores systems strug-

gle with large-scale problems due to their limited memory availability, which is restricted by

the amount of data that this type of dedicated hardware may support and process [77]. Ad-

ditionally, systems based on proprietary physical clusters describe some deficiencies as well,

mainly related to traditional data storage mechanisms, high costs of acquisition, installation,
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and maintenance, and their low scalability capacity [44].

More recently, as dealing with massive volumes of remote sensing information is becoming

a common requirement [44, 32], some researchers started following big data processing trends

to overcome the aforementioned issues and began exploiting cloud computing architectures

for performing the analysis of large-scale hyperspectral remote sensing data, as presented in

[57, 78, 58, 59, 32, 79, 38].

In this regard, cloud computing-based systems offer virtually unlimited capacity for data

storage and processing, which can be used to overcome the limitations of other HPC approaches

(as the ones mentioned in the previous paragraphs), especially for those related to computing

memory availability. On this wise, and within the context of big data processing, cloud com-

puting is a major tendency [27, 80] since it allows the accessing and handling of powerful

infrastructures for performing large-scale computing, currently highly demanded because of its

dynamic, and on-demand, processing capabilities at reasonable costs [9, 51], thus providing

flexible and scalable hardware resources, and lessening user requirements related to purchasing

and maintaining complex computing infrastructures [81].

Furthermore, cloud computing not only delivers applications and software as services (SaaS),

but also extends its functionalities to the infrastructure and platform as a service; it has led

the pay-as-you-go computing and provides the opportunity of accessing infinite computing re-

sources, where users solely pay for the services and resources they use, and probably the most

important feature: users do not need to acquire, build, install, and maintain the infrastructure on

their own [81].

Considering the remote sensing general scenario, cloud computing can be used as a robust

platform for the deployment of big remote sensing data solutions [34, 16, 12, 35, 82, 83, 84],

by providing highly scalable storage and high-performance computing capabilities [85, 86, 87],

thus becoming a standard for distributed computing due to its advanced capabilities for internet-
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scale computing, service-oriented computing, and high-performance computing, offering the

potential to tackle massive data processing workloads by means of its distributed parallel archi-

tecture [34, 84].

However, according to [48, 57, 51], to the best of our knowledge, and considering the hyper-

spectral scenario, despite the increasing demand for efficient data processing in the hyperspec-

tral field, there is a limited number of efforts to date, and still not enough operational solutions

for exploiting cloud computing infrastructures for large-scale hyperspectral image processing.

There are, therefore, still many challenges regarding the integration of cloud computing solu-

tions into hyperspectral remote sensing research, considering that currently cloud computing

systems have been shown to perform a high level of aggregate processing in remote sensing

applications [48, 44, 47, 4].

In this context, this thesis proposes to design, implement and validate a framework entirely

based on cloud computing architectures able to analyze large volumes of hyperspectral data via

the endmember extraction process, which is considered the most data-intensive and computing-

intensive problem to be solved within the hyperspectral unmixing chain. Furthermore, this

framework introduces a novel distributed version of the N-FINDR endmember extraction al-

gorithm, able to perform its analysis on cloud computing resources, in a reliable, scalable,

and efficient manner. Additionally, it is expected that the information retrieved with this ap-

proach could assist as a valuable resource to cope with real-world application problems, such

as data compression, classification processes, anomaly detection, content-based image retrieval

(CBIR), among many others, by obtaining relevant insight from such large volumes of hyper-

spectral data within real remote sensing applications.

It is worth mentioning that programming for cloud environments could represent a complete

challenge, and programming models such as MapReduce [88], through its Apache Hadoop

open-source implementation [89], and the Pig framework [90], help us to transform this difficult
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task into simpler and easier processes to implement, furthermore considering that currently,

MapReduce represents one of the main programming models used to process large volumes

of data [91], allowing users to focus on data processing rather than abstracting in the details of

parallelization, fault-tolerance, data distribution, and load-balancing. In this work, regarding the

Pig framework [90], it was adopted for describing the processing structure, as this framework

provides the Pig Latin language for expressing data flows, and a compiler for translating Pig

Latin scripts into MapReduce jobs [92, 93].

For the validation of the framework and the proposed method, we carried out a series of

experiments in which we assessed the accuracy and computation performance of the distributed

version of the N-FINDR algorithm for endmember extraction compared to its sequential ver-

sion; both implementations were executed on different large-scale dataset sizes, that were cre-

ated as synthetic versions of the well-known AVIRIS Cuprite hyperspectral dataset.

In detail, regarding the accuracy, the endmembers’ information, obtained with the sequen-

tial and distributed executions of the N-FINDR algorithm, was compared by using the metric

proposed in Equation (4.1) [94]. The results demonstrated that regardless of the number of

computing nodes used, the same endmember extraction accuracy was obtained: (ϕE) = 0.0984

(being zero the best possible value). This accuracy was also validated in terms of the quality of

the image reconstruction process when using the found endmembers, obtaining a mean RMSE

value of 2.65×10−5 (observing that a low RMSE score corresponds to a high similarity between

the original image and the reconstructed one).

Concerning the computation performance, our cloud-based distributed approach achieved

high efficiency when processing different dataset sizes, starting with a 2.43× speedup with

the smallest dataset (3.1 Gb) when executing the endmember extraction process on a 4 node

cluster configuration, and reaching up to 15.81× speedup for the highest dataset (15.1 Gb),

when operating with a 32 node cluster configuration.
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1.1 Objectives

The main objective of this thesis is to propose and implement a novel distributed approach for

the end member extraction process for processing big hyperspectral remote sensing datasets,

through a reliable data partitioning scheme and efficient and scalable distributed processing,

adequately adapting and exploiting cloud computing architectures for performing hyperspectral

image analysis.

In pursuit of the general objective, the specific objectives of this research concentrate on:

• Design and implement a distributed framework based on cloud computing architectures

able to process large volumes of hyperspectral data.

• Propose a model for adequately handling the hyperspectral data distribution on this type

of architecture, capable to cope with the requirements of spatial-domain partitioning,

safeguarding the reliability of the data distribution and the quality of the processes ap-

plied on each data partition.

• Modify, integrate and validate the N-FINDR sequential algorithm, which is one of the

geometrical-based approaches for endmember extraction process assuming the presence

of at least one pure element pixel per endmember, to be able to work on the proposed

distributed framework.

• Assess the accuracy and computation performance of the distributed version of the N-

FINDR algorithm for endmember extraction on large-scale synthetic versions of the AVIRIS

Cuprite hyperspectral dataset.
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1.2 Thesis Contributions

This thesis presents a new distributed method for hyperspectral image analysis on big remote

sensing datasets based on the hyperspectral unmixing process. Thus, the main contributions of

this work are listed below:

• Design and implementation of a novel distributed version of the N-FINDR endmember

extraction algorithm [95] built on top of a framework working on a cloud computing

environment, which is able to exploit computer cluster resources in order to efficiently

distribute and process large volumes of hyperspectral data.

• The implementation of the proposed framework, and its distributed N-FINDR approach,

was done by extending the InterCloud Data Mining Package [38] framework, originally

adopted for land cover classification. The extended framework, hereinafter referred to as

HyperCloud-RS, was adapted here for performing endmember extraction on large vol-

umes of hyperspectral data.

• The proposed HyperCloud-RS framework, which can be executed in different cloud com-

puting environments, allows users to elastically allocate processing power and storage

space for effectively handling large amounts of data.

• The HyperCloud-RS framework supports distributed execution, network communication,

and fault tolerance, transparently and efficiently to the user, enabling efficient use of

available computational resources by scaling them up according to the processing task

requirements.

• As a further contribution of this work, it is described in detail how to integrate new

endmember extraction algorithms into the HyperCloud-RS framework, mainly targeting

those algorithms that belong to the class of pure pixel geometrical-based approaches for
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performing linear spectral unmixing, thus enabling researchers to easily implement new

distributed approaches for endmember extraction, specifically designed for working on

distributed facilities.

• Finally, we implemented an open-source framework able to perform endmember extrac-

tion processes on big hyperspectral remote sensing datasets for working on cloud com-

puting infrastructures.

• Lastly, it is worth mentioning that as part of the academic contributions reached during

the development of this work, we produced several scientific reports, currently published

in Q1 indexed journals and in peer-review conference proceedings as well, as presented

in [96, 97, 98, 99]; not mentioning the future research and publications that could be

arisen based on this approach, as described in Section 6.1.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter II – This chapter presents a comprehensive literature review of the state-of-the-art

methods for performing endmember extraction processes on high-performance comput-

ing systems, related likewise to the objectives of this thesis.

• Chapter III – Describes the architecture of the proposed HyperCloud-RS framework, fur-

thermore, describes its implementation and presents the distributed approach for the N-

FINDR algorithm, as well as describes its fundamentals, and finally presents the guide-

lines to extend the capabilities of this framework through the inclusion of new endmember

extraction algorithms.
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• Chapter IV – Describes the dataset used in the experiments, as well as the cloud environ-

ment and the particular settings for executing the experimental design. We also describe

the metrics used for assessing the accuracy and computational performance for validating

the endmember extraction process.

• Chapter V – Presents a detailed discussion of the results achieved with the experiments

executed with this framework working on a cloud computing environment.

• Chapter VI – Presents the conclusions of this work along with some directions for future

researches.
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Chapter II

Related Works

As described in Chapter I, Hyperspectral Unmixing (HU) is the most frequently used approach

for analyzing hyperspectral remote sensing data, and the N-FINDR algorithm is among the most

frequently used algorithms for the identification of endmembers within the HU processing chain

[47]. Thus, this section presents an overview of some related works for endmember extraction

for pure pixel geometrical-based approaches, with special attention to N-FINDR parallelized or

distributed implementations on high-performance computing infrastructures, when processing

medium/large scale hyperspectral datasets.

Since it was first introduced by Winter [95], many different implementations have been

proposed for the N-FINDR algorithm [100]. Basically, the algorithm assumes the presence of

pure pixels in the original hyperspectral scene, then, through an iterative process that evaluates

each pixel in the scene, it tries to maximize the simplex volume that can be formed with the

pixel vectors in the data cube. The final vertexes of the largest simplex correspond to the

endmembers in the dataset being processed[94]. Such a process represents a very demanding

computing task, considering not only the pixel evaluations, but also the amount of information

that must be analyzed [47, 77].
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2.1 High-Performance Computing Approaches

To overcome the aforementioned endmember extraction processing issues, many alternatives

have been proposed, starting from those that try to parallelize the process using multicore ar-

chitectures, to those that exploit distributed strategies using cluster infrastructures. Currently,

there are more sophisticated high-performance computing architectures, allowing the simulta-

neous use of multiple computing resources and supporting the processing of hyperspectral data

on cloud computing platforms, however, to the best of our knowledge, literature still provides

few examples of such efforts [32, 47, 73].

Specifically concerning the N-FINDR algorithm, the authors of [64, 65, 101] presented dif-

ferent approaches for performing multi-core processing of the hyperspectral unmixing chain for

endmember extraction, providing interesting solutions for parallel approaches of the algorithm.

As an evolution of multi-core processing, hardware accelerators became feasible alternatives,

for instance, authors in [53, 66, 102, 103, 104, 105] presented perspectives for parallel imple-

mentations of the N-FINDR algorithm (and similar endmember extraction approaches) based

on Graphics Processing Units (GPU); with a similar objective, authors in [68, 71, 69] introduced

some unmixing approaches that use Field-Programmable Gate Array (FPGA).

Previous hardware accelerator approaches achieved approximately near real-time responses

in the processing of the hyperspectral data of relative small-medium dataset sizes, being the

main limitation/concern of those approaches the amount of data the hardware may efficiently

support [34, 77].

According to [47], the most widely used high-performance computing architecture for ac-

celerating hyperspectral-related computations, is cluster computing, where a collection of com-

modity computers work together, interconnected through a network infrastructure. For instance,

the authors of [70, 106, 107, 108, 109] described some cluster-based approaches, where parti-

tioning strategies are required for parallel executing the endmember extraction approaches, thus
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the problem is divided into smaller sub-tasks, which are distributed among the cluster nodes.

Two types of data partition strategies are used in those approaches, spectral-domain and spatial-

domain data partitioning, with the latter being the most frequently investigated so far. However,

some major concerns about those solutions are related to the considerable costs involved in the

acquisition, implementation, and maintenance of the required computing infrastructure.

2.2 Cloud Computing Approaches

More recently, cloud computing infrastructures have emerged as suitable platforms to over-

come the shortcomings of previous high-performance computing methods, mainly considering

that cloud computing offers advanced capabilities for service-oriented and high-performance

computing [34, 110]. To date, the literature contains few implementations of the N-FINDR al-

gorithm based on cloud computing infrastructures. For instance, in [111], the authors presented

a parallelized version of the N-FINDR algorithm implemented on top of the Spark framework,

specifically, they actually exploit an advanced feature called broadcast variable abstraction on

the Spark engine to implement an efficient data distribution scheme.

Similarly, authors in [44] presented a complete parallel unmixing-based content retrieval

system working on cloud computing platforms, and in this work, the endmembers signatures

were extracted using the Pixel Purity Index algorithm in parallel, and they achieve interesting

speedups when working on large volumes of hyperspectral data.

However, previously, the authors in [112, 113] presented distributed parallel approaches for

the identification of endmembers, implementing the Iterative Error Analysis algorithm and the

Pixel Purity Index algorithm, respectively, over the Spark framework, using advanced cloud

computing technologies to efficiently process massive hyperspectral data; nevertheless, both

implementations were tested using relatively small dataset sizes, thus most of the capabilities

of such cloud computing implementations could not be fully exploited.
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2.3 Related Applications based on HU

Regarding some of the applications, in order to support different applications on hyperspectral

imagery, efficient methods for endmember extraction are needed. One of such applications is

hyperspectral image classification. For instance, the work [78] describes multi-objective task

scheduling for energy-efficient cloud implementation for hyperspectral image classification. In

that work, a distributed version of the N-FINDR algorithm is proposed, and the experimental

results showed that the multi-objective scheduling approach can substantially reduce the ex-

ecution time for performing large-scale hyperspectral image classification tasks on the Spark

framework.

Another application that requires an efficient implementation of endmember extraction on

large hyperspectral image repositories is content-based image retrieval (CBIR). Regarding CBIR

applications, and as described in the previous section, the authors of [44, 114] proposed a par-

allel unmixing-based content retrieval system based on cloud computing infrastructure for as-

sessing a distributed hyperspectral image repository under the guide of unmixed spectral in-

formation, extracted using the pixel purity index algorithm, which is a close alternative to the

N-FINDR algorithm.

2.4 Chapter Insights

In Table 2.1, we present a summary of the main capabilities and outcomes of the aforementioned

parallel/distributed versions of unmixing algorithms, considering the architectures described in

this section. The table is not intended to represent a direct comparison of the performances

of the different methods and architectures, as the datasets and processing infrastructures vary

substantially among implementations; it rather describes some of the characteristics and results

delivered by each method, so as to make it possible for the readers to have a general overview
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of the capacities and limitations of each solution, either characterized by memory constraints,

or non-scalable architectures with high associated costs.

Table 2.1: Summary of the capabilities and outcomes found in the literature for parallel/dis-
tributed hyperspectral unmixing methods.

Architecture Capabilities
Type Number Dataset Processing Operation

Nodes/Cores Size Time Costs

Multicore From 4 50 Mb Less than Installation: Low
[64, 65] up to 8 1 s Maintenance: Low

cores Operation: Free

GPU From 512 50 Mb From 4 s Installation: Medium
[66] up to 1792 to 14 s Maintenance: Low

cores Operation: Free

FPGA - 50 Mb Less than Installation: Medium
[68] 1 s Maintenance: Low

Operation: Free

Cluster Up to 32 140 Mb 50 s Installation: High
[106] CPUs Maintenance: High

Operation: Free

Cloud 120 cores Up to 4680 s Installation: Free
[44] 22.4 Gb Maintenance: Free

Operation: Low

For instance, the literature related to endmember extraction tasks reports that multicore ap-

proaches reached up to the use of eight cores working on 50 Mb small dataset sizes; conversely,

GPU implementations largely increased the number of available cores, but both approaches are

undermined by the same constraint: memory issues. Moreover, although physical clusters rep-

resent an improvement for that matter, they are still constrained by limited memory and low

scalability capacity.
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Consequently, cloud computing architectures arise as appropriate alternatives to overcome

inherent weaknesses of other HPC approaches, as they provide the possibility of using large

numbers of computational resources to meet the storage and processing requirements imposed

by the big hyperspectral remote sensing data scenario.

It is important to highlight that, and according to [48, 44], there are few works to date

describing the use of cloud computing infrastructure for the implementation of remote sensing

data processing techniques, in this sense, the search for efficient and scalable solutions for

endmember extraction is crucial for creating operational applications, especially those that deal

with large hyperspectral datasets.

In this work, as the major contribution to this search, it is introduced a novel distributed

version of the N-FINDR algorithm, describing its implementation, which is built on top of a

general cloud computing-based framework (HyperCloud-RS framework) for endmember ex-

traction. Moreover, it is further described how new and different endmember extraction algo-

rithms can be implemented within that framework. Finally, it is worth noticing that the proposed

distributed implementation was designed to tackle the problem of processing very large volumes

of hyperspectral data rather than pursuing major possible speedups through exploiting specific

hardware characteristics.
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Chapter III

HyperCloud-RS Framework

As described in Chapter I, this thesis proposes the design, implementation, and validation of

a framework entirely based on cloud computing architectures able to analyze large volumes of

hyperspectral remote sensing data through the analysis of the endmember extraction process.

This framework introduces a novel distributed version of the N-FINDR endmember extraction

algorithm, able to perform its analysis on cloud computing resources, in a reliable, scalable, and

efficient form.

In this sense, this chapter covers the proposed methodology for this implementation and

furthermore provides the guidelines for including new endmember extraction algorithms within

its architecture, thus extending the framework capabilities.

The first section (3.1) presents the architecture of the HyperCloud-RS framework in detail,

which provides a distributed platform for performing endmember extraction processes on cloud

environments based on Hadoop and Pig. Section 3.2, describes a particular implementation

of the HyperCloud-RS components. Section 3.3 explains the fundamentals of the N-FINDR

algorithm, it also presents an interesting analysis regarding the computational complexity of the

algorithm and the hardware limitation when processing large volumes of data, then describes

the thesis proposal for the distributed version of the N-FINDR algorithm. Finally, Section 3.4
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presents the main guidelines to extend the framework capabilities through the inclusion of new

endmember extraction algorithms for processing large amounts of hyperspectral remote sensing

datasets.

3.1 HyperCloud-RS Architecture

HyperCloud-RS Framework can be regarded as a distributed platform for the interpretation

and analysis of large hyperspectral remote sensing datasets. Its architecture was designed for

supporting interactions between the algorithms for endmember extraction, operating on large

datasets through the MapReduce paradigm, distributing both the data and processing tasks

among the machines in a computing cluster connected through a network.

Similar to [38], the architecture of the HyperCloud-RS framework consists of three abstrac-

tion layers: project definition; processing; and distribution layer, as depicted in Figure 3.1,

which are following described. However, is important to remark that, as compared with the

work presented in [38], where the first layer was originally dedicated to pixel-wise classifica-

tion, here in this approach was modified to enable performing hyperspectral image unmixing.

Hyperspectral image unmixing project 

components definition

High level data flow instructions

Distributed programming code

Project Definition Layer

Processing Layer

Distribution Layer

Translation

Compilation

Figure 3.1: HyperCloud-RS architecture.
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The project definition layer supports the interaction of end users, that is, specialists that

might have no programming skills, but with knowledge about the application (i.e., hyperspec-

tral image analysis). The information provided by end users for this layer comprises the def-

inition of the components of the hyperspectral image unmixing pipeline, which contains all

the information required for the execution of the hyperspectral image analysis, namely: the

settings for the endmember extraction algorithm definition, the number of processing nodes to

be allocated in the cloud computing environment, the repositories for accessing the hyperspec-

tral image dataset and for loading and writing the temporary endmembers’ set, and any other

cloud-specific computing settings.

The processing and distribution layers remain almost the same as in [38]. The processing

layer is meant to be developed by users with regular programming skills to define the project

settings and which allows embedding new endmember extraction algorithms into the frame-

work, so that users interacting with the project definition layer would be able to later select

among those new algorithm implementations. As an important remark, the translation pro-

cesses among layers remain unchanged with respect to the implementation in [38], that is, the

interaction between the project definition layer and this layer is defined via a translation pro-

cess, which is responsible for parsing the project definitions settings into processing and data

flow instructions, to be coded in a particular high-level programming language, thus masking

the complexity of dealing with the distributed programming model.

The distribution layer is responsible for the distributed execution of the hyperspectral image

analysis applications, which must be maintained by users habituated with distributed program-

ming models. The interface between the processing layer and this layer is performed via another

translation process, which is responsible for decoding the (high-level) instructions, defined in

the processing layer, into the required distributed programming instructions to execute the pro-

cessing applications in a distributed way.
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Is important to be aware that these layers contain representations at different levels of ab-

straction of the processing application. Therefore, to define and execute a particular application,

it is required to primary set the lower layers of the framework, referring to the distribution and

processing layers, respectively. Then, users could define and execute the respective processing

chain through the configuration of the project definition layer.

The main difference between the HyperCloud-RS framework in relation to previous work

described in [38] is placed in the distributed processing chain, here adapted for performing

distributed endmember extraction processes. In detail, the chain is commenced afterward the

parameters of the project definition layer are established, as indicated in Figure 3.2. In sequence,

the project settings are translated into data flow instructions, according to the processing layer

definitions. Then, the hyperspectral dataset is randomly divided into smaller disjoint subsets,

and the endmember extraction algorithm is executed in a distributed way on the processing

nodes, as part of the distribution layer processing chain.

Each node in the cluster

Define project 

parameters

Translate into 

dataflow 

instructions

Load hyperspectral 

dataset

Store outcome
Execute EE 

algorithm

Split & Distribute 

dataset

Gather candidate 

endmembers

Find promising 

endmembers

Processing at 

Master node

Update candidate endmembers

Figure 3.2: General outline of the HyperCloud-RS distributed processing chain.

Following a hierarchical scheme, each hyperspectral subset is handled independently at each
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processing node to obtain what is denoted as candidate endmembers (see Section 3.3). Then, the

master node gathers such candidate endmembers and processes them using the same endmem-

ber extraction algorithm, identifying what we defined as promising endmembers. To ensure

the validity of the promising endmembers, they are re-distributed to the cluster, and each pro-

cessing unit validates that those promising endmembers represent the largest simplex on their

local subsets of candidate endmembers. This process is repeated until the maximum volume

of the simplex is found, then its vertexes represent the final endmember set for the complete

hyperspectral data currently being processed; finally, these outcomes are later stored in a cloud

repository.

3.2 HyperCloud-RS Implementation

Following [38], the HyperCloud-RS architecture is implemented through the instantiation of its

three abstraction layers and the corresponding translation processes through specific program-

ming frameworks. This section describes a particular implementation of the HyperCloud-RS

components.

Apache Hadoop [115], an open-source implementation of the MapReduce [89] distributed

programming model, was chosen for instantiating the distribution layer. Currently, Hadoop

is one of the most popular frameworks and is widely used for processing very large datasets

[91, 115] across nodes in a cluster, which supports processing and data distribution transparently

and efficiently to the user [88]. As described in [38], Hadoop has two main components: the

distributed file system (HDFS) [116], and the MapReduce programming model [117]. HDFS

is designed and optimized for high processing performance and works best with large files

(in order of many gigabytes or larger) [116]. Hadoop’s MapReduce programming model is

based on a simple data processing paradigm composed of three main phases: map, shuffle, and

reduce [117].
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The Pig framework [90] was adopted for the implementation of the processing layer. Pig

was used as an intermediary framework for interfacing the project definition layer with the

distribution layer, as it allows the instantiation of custom (or user-defined) functions in a simple

way (simpler than using MapReduce directly). This framework provides the Pig Latin language

for expressing data flows, and a compiler for translating Pig Latin scripts into MapReduce

jobs. Furthermore, Pig Latin language makes programmers’ interaction with MapReduce easy,

as it is a high-level and extensible programming language through the implementation of its

User Defined Functions (UDFs) [93]. As verified in [38], Pig’s UDFs provide an extension

capacity, allowing the integration of external libraries and scripts (Java, JavaScript, and Python-

based) created by third-party developers, providing an easy and efficient way to incorporate new

functionalities into the Pig framework.

Finally, the project definition layer was implemented in Java. Through its implementa-

tion, the user is able to define all the required settings for the execution of the hyperspectral

processing application. Furthermore, Each particular processing algorithm (e.g., endmember

extraction) can be structured as a Pig UDF so it can be executed through Pig Latin scripts.

Therefore, the proposed architecture supports the addition of new processing algorithms within

its structure, so that its capabilities can be easily extended, as described in Section 3.4.

3.3 Endmember Extraction Algorithm

In this research we used the N-FINDR algorithm to validate the performance of the Hyper-

Cloud -RS processing chain for the identification of the endmembers in a large hyperspectral

remote sensing dataset. In the following subsections we describe the main steps of the N-FINDR

algorithm, then we briefly describe its computational complexity constraints, we further intro-

duce the distributed version of N-FINDR, and finally we give the main guidelines for integrating

new endmember extraction algorithms with the HyperCloud-RS framework.
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3.3.1 N-FINDR Algorithm

The N-FINDR algorithm belongs to the class of pure pixel geometrical-based approaches for

performing linear spectral unmixing, assuming the presence of at least one pure pixel per end-

member in the input data.

As described in [56], geometrical-based approaches exploit the fact that linearly mixed vec-

tors belong to a simplex set. Furthermore, pure pixel-based algorithms assume that there is at

least one pure spectral vector on each vertex of the data simplex. However, this assumption

may not hold in many datasets, in which case, those algorithms try to find the set of the possible

purest pixels in the data.

The N-FINDR algorithm [95] finds the set of pure pixels defining the largest possible sim-

plex volume by inflating a simplex inside the data in order to identify the endmembers. The

endmembers are supposed to be placed in the vertexes of the largest simplex, on the assump-

tion that, among the spectral dimensions, the volume defined by the simplex formed by the

purest pixels is larger than any other volume defined by some other combination of (non-pure)

pixels [56].

As described in [118], given an initial number of p-endmembers, with the spectral dimen-

sionality of the hyperspectral dataset being transformed to p − 1 dimensions , the N-FINDR

algorithm starts with a random set of p initial endmembers
{
eee
(0)
1 , eee

(0)
2 , . . . , eee

(0)
p

}
, where eeei is a

column vector representing the ith endmember spectral values. Then, an iterative procedure is

employed to find the final endmembers. As shown in Equation (3.1), at each iteration k ≥ 0,

the volume of the simplex V
(
eee
(k)
1 , eee

(k)
2 , . . . , eee

(k)
p

)
, is computed as:

V
(
eee
(k)
1 , eee

(k)
2 , . . . , eee(k)p

)
=

∣∣∣∣∣∣∣det
 1 1 . . . 1

eee
(k)
1 eee

(k)
2 . . . eee

(k)
p


∣∣∣∣∣∣∣

(p− 1)!
(3.1)
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Next, given a sample pixel vector rrr from the dataset, it is required to calculate the volumes

of p simplexes: V
(
rrr, eee

(k)
2 , . . . , eee

(k)
p

)
, V

(
eee
(k)
1 , rrr, . . . , eee

(k)
p

)
, V

(
eee
(k)
1 , eee

(k)
2 , . . . , rrr

)
. If none of

these p recalculated volumes is greater than V
(
eee
(k)
1 , eee

(k)
2 , . . . , eee

(k)
p

)
, then the endmember in

eee
(k)
1 , eee

(k)
2 , . . . , eee

(k)
p remain unchanged; otherwise, the endmember which is absent in the largest

volume from the p simplexes is substituted by the sample vector rrr, producing a new set of

endmembers. This process is repeated up to all pixel vectors from the hyperspectral dataset

are evaluated. The outcome of this process is the mixing matrix M containing the spectral

signatures of the [eee1, eee2, . . . , eeep] endmembers present in the hyperspectral dataset.

From a geometrical point of view, Figure 3.3 [56] presents a representation of a 2-simplex

set C for a hypothetical mixing matrix M containing p = 3 endmembers (considering C as the

convex hull of the columns of M). It is worth noticing that the green points represent spectral

vectors of the dimensionality reduced hyperspectral dataset, and the red points represent the

endmember set in the data. Such a geometrical-based approach is the basis of many other

unmixing algorithms.

Spectral 

vectors

𝒆1

𝒆2
𝒆3

𝐶 = 𝑐𝑜𝑛𝑣{𝐌}
= 2-simplex

Figure 3.3: Geometrical illustration for the simplex set C for p = 3 endmembers. Red circles
(vertexes of the simplex) correspond to the endmembers. Green circles represent the spectral
vectors.
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3.3.2 N-FINDR Computational Complexity

As previously stated, the N-FINDR algorithm is a geometrical-based approach for performing

linear spectral unmixing. Let us now consider a larger dataset than that presented in Figure 3.3,

where the number of spectral vectors is exponentially increased; applying the original (sequen-

tial) N-FINDR algorithm for finding the endmembers in this new and larger dataset will be an

extremely time-consuming task, and sometimes could even represent an impossible process to

perform, depending on the dataset size and the limitations of the hardware capabilities.

To introduce an important overview regarding the computational complexity of the N-

FINDR algorithm, Equation (3.2) provides such complexity value (C), whose growth rate is

mainly driven by the number of endmembers to compute (p), and the number of pixels to assess

(N ). In this regard, Figure 3.4, presents the floating point operations required by the algorithm

to provide 1, 2, 3, and up to 10 endmembers when assessing different numbers of pixels.

C = N ∗ p ∗
(
2

3
p3 − 1

2
p2 +

5

6
p− 1

)
(3.2)

Figure 3.4: N-FINDR algorithm computational complexity
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In Figure 3.4, it can be seen that the complexity of the N-FINDR algorithm exponentially

increases as the number of endmembers and pixels to be assessed increases as well, which (as

described before), depending on the specific computing hardware capabilities, could represent

a computational complex, or even impossible, process to perform.

Additionally, regarding the dataset size concern, Figure 3.5 shows an interesting assessment

of the processing times required to perform the N-FINDR endmember extraction process when

working on different datasets sizes (described in terms of Mb in the figure) for a given number

of endmembers (p = 9). Besides, it is important to remark that these outcomes were provided

by a standalone machine equipped with an Intel(R) Core(TM) i7-3612QM (2.10GHz) processor

with 4 CPUs, and with 16 Gb of RAM, executing a sequential implementation of the N-FINDR

algorithm.

Figure 3.5: Computational limits for processing the N-FINDR algorithm

As can be observed in Figure 3.5, the processing time of the N-FINDR algorithm is quite

low, up to certain dataset size, of around 3000 Mb; however, as the dataset size increases,

the processing time experience almost exponential growth, once again, up to a certain limit of

around the 4000 Mb, after which the computing machine completely collapse.
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Therefore, to tackle these obstacles, we propose a novel distributed version of the N-FINDR

algorithm, further described in the following section.

3.3.3 Distributed N-FINDR Algorithm

The proposed method is based on a master-slave computing approach, tailored to be exe-

cuted in a computer cluster. The design of the method takes into consideration the nature of

the geometrical-based endmember extraction techniques. The main idea is to perform a pre-

processing step at the master computing node consisting of performing a random disjoint data

partitioning, which will enable the processing of each data subset independently in the slave

nodes, each executing our distributed version of the N-FINDR algorithm. Then, after the end-

members associated with each subset are found, only those data points, defined as candidate

endmembers, are submitted back to the master node, which will execute the N-FINDR algo-

rithm again, but solely over those candidate endmembers.

To better illustrate the proposed method, let us assume that we have a large hyperspectral

dataset, and for exemplification purposes consider the data is transformed into a lower spectral

dimensionality of two dimensions, with p = 3 endmembers, as presented in Figure 3.6a. As

described before, the first step is to perform a random partition of the complete dataset, as

illustrated in Figure 3.6b, where each color describes different data partitions. It is important to

notice that the number of partitions/subsets created should be equal to or larger than the number

of processing nodes in the cluster to ensure: i) substantial performance improvements, and ii)

no idle processing nodes. Afterward, the subsets are distributed among the slave nodes and

each one executes the N-FINDR algorithm, finding the vertexes of the simplexes within its own

data subset, which are defined as the candidate endmembers, providing one set of candidate

endmembers per partition, as presented in Figure 3.6c, where the analysis of each partition in

the figure provides 3 vertexes defined as their candidate endmembers.
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Later, the candidate endmembers are gathered at the master node, to subsequently be re-

processed with the N-FINDR algorithm to obtain what we defined as the promising endmem-

bers, represented in red circles in Figure 3.6d, which will be submitted back to the slave nodes

for performing a validation process. In this validation process, each slave node verifies that its

candidate endmembers subset is contained within the simplex defined by the promising end-

members, finally providing the complete set of endmembers of the full hyperspectral dataset.

(a) (b)

(c) (d)

Figure 3.6: Distributed N-FINDR Algorithm processing scheme: (a) Geometrical illustration
of the dataset for p = 3 endmembers, (b) Random partitioning of the dataset, (c) Simplexes
found at each processing node, (d) Promising endmembers processed at the master node.
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In case the validation step fails, the complete process should be repeated until the promis-

ing endmembers met the validation process, or a maximum number of predefined iterations is

completed, thus providing the set of final endmember. An important remark is that at each new

iteration the promising endmembers are taken as the set of initial endmembers for each new

execution of the N-FINDR algorithm within each slave node.

Finally, as observed in the steps described in this section, we would like to highlight that

this proposed distributed approach could be potentially extended to any other geometrical-based

endmember extraction technique for performing linear spectral unmixing under the assumption

of the presence of at least one pure pixel per endmember in the hyperspectral input data. The

next section will introduce the main guidelines to extend the capabilities of the HyperCloud-RS

framework by describing the mechanism for including new endmember extraction algorithms

into the framework.

3.4 Guidelines for Integrating New EE Algorithms

This section presents the specifications to integrate new geometrical-based endmember extrac-

tion (EE) algorithms into the HyperCloud-RS framework and its proposed processing chain. In

order to perform this integration, and considering that we used the Hadoop and Pig frameworks

for instantiating the distributed architecture, it is required to:

• Embed the EE algorithm into a Pig User Defined Function (UDF); and

• Create its respective Pig Latin script.

In this sense, Algorithm 1 presents the general design to enclose a new endmember extrac-

tion algorithm into a Pig UDF, hereinafter referred to as EE-UDF. This structure will allow

the instantiation of the particular EE technique in order to be adequately integrated within the

HyperCloud-RS framework execution. In general, the EE-UDF takes for inputs:
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• The URL for accessing the set of initial endmembers (allotted on a storage location in the

cloud);

• The settings of the EE algorithm; and

• The hyperspectral subset, which is a data bag that contains the tuples to be analyzed with

the EE algorithm.

Algorithm 1 Structure for designing the Endmember Extraction User Defined Function (EE-
UDF)

1: Get the absolute path (URL) to the set of initial endmembers.
2: Provide the URL connection for stream reading.
3: Buffer the initial input data in local memory.
4: Get the options for the processing new EE algorithm.
5: Process the data from the hyperspectral subset with the new EE algorithm.
6: Return the candidate endmembers.

According to Algorithm 1, the set of initial endmembers is initially allocated in an auxiliary

cloud repository, whose URL must be defined within the EE-UDF for performing the connec-

tion establishment and streaming the data to local memory within each processing node. This

auxiliary repository is likewise used to store the promising endmembers, so they can be later

accessed by each slave computing node in the cluster for performing the validation process of

the promising endmembers.

Then, EE algorithm configurations are read and set, and the vertexes of the simplexes within

each hyperspectral subset are computed, thus providing the set candidate endmembers, one by

each slave node. Note that each subset is disjoint and is accordingly generated by the distributed

framework.

Finally, the candidate endmembers are gathered by the master node, which, after processing

them again with the EE algorithm, defines the set of promising endmembers. Those endmem-

bers are then redistributed to the slave nodes for validating their consistency against each set of
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candidate endmember within each slave node. In case the validation process fails, the EE pro-

cess is repeated, but this time with the promising endmembers as the set of initial endmembers

for the EE algorithm at each slave node; repeating this process up to the set of final endmembers

is found, or a maximum number of iterations is completed.

The whole endmember extraction process must be encoded into a Pig Latin script, as pre-

sented in Algorithm 2. The script contains instructions for registering the EE-UDFs and all

the libraries required. The EE algorithm and its particular parameters should be defined in the

script, as well as the absolute path to the hyperspectral dataset and to the set of initial endmem-

bers.

Algorithm 2 Pig Latin script for the Endmember Extraction Process definition
1: REGISTER the path to EE-UDF files.
2: REGISTER the path to Libraries files.
3: DEFINE the EE algorithm to be executed
4: Define the path to the set of initial endmembers.
5: Define the EE algorithm parameters.
6: LOAD the complete hyperspectral dataset.
7: FOREACH subset in the hyperspectral dataset GENERATE their candidate endmembers

by executing the EE-UDF.
8: REDUCE the processing outcomes.
9: GATHER the candidate endmembers at the master node.

10: Perform the EE algorithm on the candidate endmembers to find the promising endmembers.
11: Distribute the promising endmembers and validate the outcome.
12: In case the promising endmembers are not stable, repeat from step 7.

Then as previously described, upon execution, the EE-UDF process each tuple in its own

subset, providing the candidate endmembers, which represent the results of the distributed pro-

cesses, and that are later merged at the master node in the reduction step. Finally, the candidate

endmembers are used for creating the promising endmembers, and the validation process is

executed.
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Chapter IV

Experimental Design and Results

To assess the proposed distributed approach and its implementation, we conducted a set of

experiments using the well-known Cuprite hyperspectral dataset. This section reports such

experiments and the analysis carried out in this work.

4.1 Dataset

The AVIRIS (Airborne Visible Infra-Red Imaging Spectrometer, operated by NASA’s Jet Propul-

sion Laboratory) Cuprite dataset was used in our experiments to evaluate the performance of

our approach in extracting endmembers. The Cuprite scene [45] was collected over the Cuprite

mining district in Nevada in the summer of 1997, and it contains 350 × 350 pixels with 20 m

spatial resolution, 224 spectral bands in the range 0.4–2.5µm and a nominal spectral resolution

of 10 ηm, which are available in reflectance units after atmospheric correction, with a total data

size of around 50 Mb.

Within the original dataset, spectral bands 1–6, 105–115, 150–170, 222–224 were removed

prior to the analysis due to water absorption and low SNR, retaining 183 spectral bands. The

Cuprite subset used in the experiments corresponds to the upper rightmost corner of the sector
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labeled as f970619t01p02r02 and can be found online at http://aviris.jpl.nasa.go

v/data/free_data.html. Figure 4.1 presents a false color composition of the Cuprite

image used in the experiments, providing reference to its scale and orientation as well.

Figure 4.1: Cuprite hyperspectral image (False color composition, with the 33rd, 15th, and 11th
spectral bands for the red, green and blue layers, respectively).

The Cuprite scene is well understood mineralogically and contains many reference ground

signatures of the main minerals of interest. The scene encloses a total of 16 endmembers, five of

which represent pure materials: Alunite, Buddingtonite, Calcite, Kaolinite, and Muscovite. The

spectral signature of these minerals is available at the United States Geological Survey (USGS)

library (available at http://speclab.cr.usgs.gov/spectral-lib.html). This

library and its signatures were used in this work to assess the accuracy of the outcomes provided
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by the endmember extraction technique, for both the sequential and the distributed version of

the N-FINDR algorithm.

For estimating the number of endmembers in the Cuprite dataset we used the hyperspectral

signal identification by minimum error (Hysime) algorithm [119] (we use its implementation

available in [56]), providing a total of 16 endmembers in the scene. Then, we used the Principal

Component Analysis algorithm to reduce the spectral dimensions of the image, retaining the

first 15 principal components (in order to enable the construction of the 16-vertexes simplex),

delivering an initial data size file of 30 Mb.

Based on this reduced dataset, three synthetic datasets were generated by replicating it

×100, ×200, and ×500 times, producing approximately 3.1 Gb, 6.2 Gb and 15.1 Gb data size

files, respectively. It is important to notice that these replications were made in the spatial

dimension of the hyperspectral dataset, therefore the subsequent synthetic datasets represent

image mosaics maintaining the same number of principal components as the reduced hyper-

spectral image, but with different image sizes.

The creation of these synthetic datasets is a required step for assessing the performance of

our approach, as currently there is a general lack of large-scale public, controlled, and validated

hyperspectral datasets. Actually, in the evaluation of related cloud-based methods as the ones

in [44, 57, 78, 114, 111], similar synthetic data enlargement was performed as the one here

described.

4.2 Cloud Environment

It is worth mentioning that although the cloud service chosen for conducting the experiments

was Amazon Web Services (AWS) [120], the framework could be easily extended to integrate

with any other cloud service (e.g. Google Cloud Platform [121], Microsoft Azure [122], IBM

Bluemix [123]).
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Thus, Amazon Simple Storage Service (S3) was used to store the UDFs, the Java libraries,

the hyperspectral dataset, its synthetic versions, all the auxiliary data, and the libraries required

for executing the distributed process. Amazon Elastic MapReduce (EMR) was used to manage

the Hadoop framework, for distributing and processing the data across the nodes in the cluster,

which was dynamically built using Amazon Elastic Compute Cloud (EC2) instances. Addi-

tionally, with Amazon EMR service is possible to select machines that have Hadoop and Pig

already installed, thus the configurations of the machines could be effortlessly customized.

For the experiments, clusters with an increasing number of nodes were configured and used,

starting with 2 nodes (baseline), and then scaling them with 4, 8, 16, and 32 nodes at each new

configuration. The computer nodes available in AWS range from basic to high-performance

machines; for the experiments, the m5.xlarge machine types were used, containing an Intel

Xeon Platinum 8175M series processors operating at 2.5 GHz with 4 vCPUs, and 16 GB of

RAM [124], and the Hadoop 2.10.1 and Pig 0.17.0 versions were configured as well.

Another important remark is that, although the machines were equipped with four virtual

cores, the processing tasks were executed over a single core, recalling that the proposed dis-

tributed implementation was specifically designed to tackle the problem of processing very

large volumes of hyperspectral remote sensing data, abstracting from particular hardware con-

figurations.

Although the distributed endmember extraction process could be more efficient with the use

of all the available cores in the computing nodes, this research was mostly concerned with the

relative performance gains brought by scaling up homogeneous computer grids, more specifi-

cally, in terms of increasing the number of machines that compose those grids. We are aware of

the potential computational efficiency advantages that could be achieved by jointly exploiting

other programming models, such as the multicore-based ones, but that would not contribute

to the analysis of our primary focus, that is, managing large volumes of hyperspectral remote

37



sensing data.

Another important characteristic of this architecture is that one of the nodes always acts as

the master node, which is responsible for scheduling and managing the processing tasks through

the Hadoop JobTracker, and which is not available for executing the target processing tasks. In

this sense, in order to make a fair comparison among the sequential and distributed versions

of our proposed N-FINDR implementation, we used the two-node cluster configuration to pro-

vide a feasible approximation of the sequential processing times for assessing each synthetic

dataset. Furthermore, as the same distributed processing framework and file system (provided

by Hadoop) are installed in this baseline configuration, we can ensure that the speedups even-

tually achieved by using larger clusters would be solely due to their scaling up, i.e., including

additional machines.

All the experiments were performed using the implementation of the HyperCloud-RS Frame-

work described in the previous chapter. The experimental results, presented in the following

sections, represent the average of 10 executions of the combination of each synthetic dataset

and the number of nodes in the cluster, and they are used for assessing the distributed N-FINDR

algorithm in terms of both accuracy and computation performance when compared against its

sequential baseline implementation.

4.3 Accuracy Assessment

Regarding the accuracy, we conducted a series of experiments to demonstrate the validity of

our framework for extracting endmembers when working on large hyperspectral datasets. We

compared the estimated endmembers, computed with our framework, against the ground-truth

spectral signatures from the USGS library, available at: https://crustal.usgs.gov/s

peclab/QueryAll07a.php. For such comparison, we used the metric described in [94],

which is defined as:
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ϕE =

∥∥∥E − Ê
∥∥∥
F

∥E∥
(4.1)

In Equation (4.1), ∥·∥F stands for the Frobenius norm, ∥·∥ is the Euclidean norm, Ê rep-

resents the estimated endmember signatures, and E denote the ground-truth endmember sig-

natures [94]. It is worth mentioning that endmember extraction algorithms return the most

accurate results when ϕE tends to zero, which is the best possible value for that metric.

Following the common procedure used in the evaluation of endmember extraction methods,

and before computing the similarity metric given by Equation (4.1), we performed a spectral

feature matching between the endmembers delivered by our method and the spectral signatures

references provided by the USGS library. The objective of that procedure is to identify the most

similar ground-truth endmembers that correspond to the ones computed with our method.

Such signature matching is based on the spectral angle distance (SAD) metric, described in

Equation (4.2), which compares the distance between two spectral vectors eeei and eeej . The pair

of endmembers associated with the lowest SAD values are then considered as corresponding

endmembers. The SAD metric is defined as:

dSAD (eeei, eeej) = arccos
eeei · eeej

∥eeei∥ · ∥eeej∥
(4.2)

where {eeei}Ni=1 represents the set of the spectral signatures in the USGS library, and {eeej}Rj=1

represents the estimated endmember signatures set, with N as the total number of spectral

signatures in USGS library, and R as the total number of estimated endmembers.

Thus, for assessing the accuracy of our method in terms of the similarity metric given by

Equation (4.1), we first used the original hyperspectral image of 350 × 350 pixels for find-

ing the estimated endmember sets, for both, the sequential version of the N-FINDR algorithm

(executed on a standalone machine) and its proposed distributed implementation, executed on
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cluster environments with 2, 4, 8, 16, and 32 computing nodes. Then, following the procedure

described in the last paragraph, and according to the Equation (4.2), we performed the spectral

signature matching using the SAD distance for each cluster configuration set, hence defining

the corresponding ground-truth endmember sets, which contain the closest sixteen spectral sig-

natures from the USGS library. Table 4.1 presents the values of the ϕE metric for the sequential

and distributed versions of the N-FINDR algorithm.

Table 4.1: Accuracy (ϕE) obtained with sequential processing of the N-FINDR algorithm, and
with the proposed distributed version, over different cluster configurations on the Cuprite image.

Sequential Distributed N-FINDR Algorithm
N-FINDR 02 Nodes 04 Nodes 08 Nodes 16 Nodes 32 Nodes

0.0984 0.0984 0.0984 0.0984 0.0984 0.0984

From Table 4.1 it can be observed that the proposed distributed approach delivers the exact

same accuracy results as the sequential implementation. Furthermore, all the ϕE metric values

are close to zero (which represents the best possible value), assuring that the distributed im-

plementation of the algorithm provides not only the same set of estimated endmembers, as its

sequential counterpart and regardless of the particular cluster configuration used, but also does

it with high precision.

4.3.1 Endmember Validation

The endmember extraction accuracy can be validated in terms of the quality of the reconstruc-

tion of the original Cuprite hyperspectral dataset. The reconstruction process of the original

hyperspectral image is performed using the set of estimated endmembers (which with our ap-

proach are the same for the sequential and distributed executions of the N-FINDR algorithm, as

previously stated), and their estimated fractional abundance maps, which can be computed by

means of the Fully Constrained Linear Spectral Unmixing [125]. Then, we can obtain the recon-
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structed image by combining the estimated endmember set and their correspondent estimated

fractional abundance maps.

The reconstructed image may then be compared to the original Cuprite scene using the

root-mean-square error (RMSE), defined in Equation (4.3) [44] as:

RMSE =

√
1

n× L
∥XXX − α̂Mα̂Mα̂M∥2F (4.3)

where L and n stand for the number of bands and pixels in the image XXX of size n × L, re-

spectively. α̂̂α̂α represents the estimated fractional abundances coefficient matrix of size n × p,

recalling that p is the number of endmembers in the image, and MMM is the estimated endmember

matrix of size p× L.

Lower RMSE scores correspond to a higher similarity between the compared images, and a

set of high-quality endmembers and their associated estimated abundances can provide higher

precision in the reconstruction of the original scene [65].

In Figure 4.2 we show per-pixel RMSE scores computed comparing the reconstructed image

and the original one. As it can be observed, the RMSE errors are very low (considering a mean

overall RMSE value equal to 2.65 × 10−5), with and homogeneous spatial distribution, thus

indicating an adequate overall reconstruction of the original image, and, therefore, an accurate

estimation of endmembers provided by our method.
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Figure 4.2: Per−pixel RMSE computed with the reconstruction of the Cuprite hyperspectral
dataset.

4.4 Computational Performance Assessment

Regarding the assessment of computation performance, in Table 4.2 we present the average

processing times for (from top to bottom):

• reading the data;

• processing the data (including the process of storing the outcomes on the cloud reposi-

tory); and, finally,

• the entire length of time for completing the endmember extraction process.
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Table 4.2: Average processing times for each step of the endmember extraction process on the
cloud environment (in seconds).

Synthetic 02 04 08 16 32 Processing
Dataset Nodes Nodes Nodes Nodes Nodes Times

Cuprite 17.3 17.4 16.5 16.1 16.3 data transfer time
3.1 Gb 6531.6 2681.1 1973.3 1605.4 1352.0 data processing time

6548.9 2698.5 1989.8 1621.5 1368.3 total time

Cuprite 29.4 29.1 28.9 28.3 28.5 data transfer time
6.2 Gb 12,433.9 4349.4 3517.4 1757.4 1409.3 data processing time

12,463.3 4378.5 3546.3 1785.7 1437.8 total time

Cuprite 83.7 84.1 83.6 83.9 81.2 data transfer time
15.1 Gb 31,194.5 10,464.2 7812.7 3890.7 1897.0 data processing time

31,278.2 10,548.3 7896.3 3974.6 1978.2 total time

As expected, observing the values in Table 4.2, the data processing time was the largest

relative to the entire processing time, furthermore, from this table, it can likewise be seen that

the times involved in reading the data do not vary substantially, whereas the time consumed by

the endmember extraction process quickly decreases as more nodes are used in the cluster.

For further assessing the computation performance gains achieved by increasing the number

of cluster nodes, we computed the speedups, based on the complete processing times, achieved

with our distributed approach running on clusters with 2, 4, 8, 16, and 32 nodes, as presented

in Table 4.3. Complementary, Figure 4.3 shows the speedups achieved with the 4, 8, 16, and 32

node configurations, on the enlarged versions of the Cuprite dataset, in relation to the processing

time related to the 2 node configuration, which actually represents the execution of the approach

by using only one processing node, as explained in Section 4.2.
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Table 4.3: Speedups for the distributed approach of the N-FINDR algorithm on the Cuprite
synthetic datasets.

Synthetic 02 04 08 16 32
Dataset Nodes Nodes Nodes Nodes Nodes

Cuprite 1.0 2.43 3.29 4.04 4.79
3.1 Gb

Cuprite 1.0 2.85 3.51 6.98 8.67
6.2 Gb

Cuprite 1.0 2.97 3.96 7.87 15.81
15.1 Gb
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Figure 4.3: Speedups for the distributed approach of the N-FINDR algorithm on the Cuprite
synthetic datasets.

Regarding the values shown in Table 4.3, considering the first synthetic dataset (3.1 Gb), the

speedups were 2.43, 3.29, 4.04, and 4.79, for 4, 8, 16, and 32 nodes, respectively. The attained
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speedups indicate that as the number of nodes increases, each cluster configuration delivers

higher speedups, as expected. Furthermore, it can be noticed that this behavior is retained

among the other synthetic datasets, but at different growth rates, which are mainly guided by

the dataset size to be processed.

However, and according to Figure 4.3, it can be observed that smaller data volumes imply a

lower scalability potential, whereas bigger data volumes allow for achieving higher speedups,

which is directly related to proper exploitation of the distributed environment, where the larger

the size of the data to be distributed and processed, the better the performance that could be

achieved.

Also referring to Figure 4.3, the speedups showed an almost linear growth when 4 and

8 nodes were used, regardless of the dataset size. Notwithstanding, as we increased the num-

ber of nodes in the cluster, the speedups were likewise improved, but such improvement was

remarkably better for the largest dataset size, e.g., 15.1 Gb.

Thus, for example, with 32 nodes the speedup ranged from 4.79 to 15.81 as the size of the

synthetic dataset increased from 3.1 Gb to 15.1 Gb. Those results confirm our assumption that

smaller dataset sizes result in lower speedup values and, as the dataset size is increased, the

speedup also increases.
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Chapter V

Discussion

The improvements in hyperspectral remote sensing systems, considering their spatial and spec-

tral resolutions and the increasing rates of information produced by hyperspectral sensors, im-

pose significant challenges related to adequately storing and efficiently processing large vol-

umes of image data [26, 14, 16, 27, 25, 32, 29, 9].

In this regard, high-performance computing systems have emerged as potential solutions to

face those challenges. Such solutions include approaches based on multicore processing [64],

GPUs [75, 40, 66], FPGAs [67, 68], and computer clusters [3, 70]. Although many methods

based on the approaches just mentioned have proven high efficiency in terms of processing

speed, they still struggle to adequately manage large-scale data problems, mainly due to their

limited memory capacity [77].

More recently, cloud computing-based systems have emerged as feasible alternatives to han-

dle data-intensive applications, as described in [57, 48, 58, 78, 59, 38]. However, there are still

a number of issues to be considered and investigated in the design of cloud-based solutions

for remote sensing problems [34, 47, 48, 4], particularly with respect to the implementation

of distributed unmixing algorithms, which are highly complex and computationally demanding

processes [44].
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A remarkable example in that context is the work presented in [44], in which the authors

implemented a parallel unmixing-based content retrieval built on top of a cloud computing plat-

form. That work introduced a distributed version of the Pixel Purity Index (PPI) algorithm for

the endmember extraction process, which, as the N-FINDR algorithm, belongs to the same class

of pure pixel geometrical-based approaches for performing linear spectral unmixing. Regard-

ing their experiments, a 22.40 Gb dataset (re-scaled from the original Cuprite image, also used

in this work) required a total processing time of 5400 seconds, when using a 32-node cluster

configuration, for finding the endmembers in the scaled version of the Cuprite dataset.

Analogously, we observe that in our approach, we required only 1978.2 seconds to process a

similar dataset, properly dealing with the limitations the authors of [44] describe as: "the parallel

strategy for unmixing algorithms should be well designed"’, and confirming that "unmixing

algorithms are selectable for higher computing speed". Then, and based on our experiments

and results, such issues could be largely covered with the implementation of our framework,

further considering that this work is open to the inclusion of potentially any geometrical-based

algorithm for endmember extraction.

Regarding the computation performance, the results presented in Figure 4.3 indicate that

the speedups achieved with our implementation described a linear trend for the lower nodes

configuration, regardless of the dataset size being processed, which is also in line with the

endmember extraction performance described in [44], where authors also experienced linear

growths as the number of nodes is less than a certain quantity, as we pointed out previously.

Furthermore, as depicted in that figure, the smaller the dataset size, the lower the acceleration

gains, thus implying a diminished scalability potential; on the other hand, the results also show

that as larger volumes of data are processed, higher speedups can be achieved, but again, up

to a certain point, thus defining somehow an implicit trade-off between the dataset sizes to be

processed and the number of nodes to be configured in the cluster.
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To better describe the implications of such a trade-off, in Table 5.1 we present the propor-

tional speedup increments, computed considering the ratio between speedup achieved with our

distributed approach and the number of nodes in the cluster. The table shows that those ratios

are significantly higher for the largest dataset; for instance, considering the cluster configura-

tions with 4, 8, 16, and 32 nodes, such ratios are 0.74, 0.50, 0.49, and 0,49, for the 15.1 Gb

dataset; and 0.61, 0.41, 0.25, and 0.15 for the 3.1 Gb dataset. Those results are actually very

interesting as they demonstrate the scalability limits of our approach.

Table 5.1: Proportional speedup increments for each node configuration on the cloud environ-
ment.

Synthetic Dataset 04 Nodes 08 Nodes 16 Nodes 32 Nodes
Cuprite 3.1 Gb 0.61 0.41 0.25 0.15
Cuprite 6.2 Gb 0.71 0.44 0.44 0.27
Cuprite 15.1 Gb 0.74 0.50 0.49 0.49

Extending this analysis, taking into account the smaller dataset (3.1 Gb) for example, in-

creasing the number of cluster nodes decreases the efficiency of the method (regarding “effi-

ciency” as the proportion of the theoretical maximum speedup obtainable for a given number

of nodes). On the other side, considering the largest dataset (15.1 Gb), however, efficiency is

maintained when increasing the number of cluster nodes.

In this sense, it is likewise interesting to observe in Table 5.1 and in Figure 4.3 the different

performance of the speedup curves concerning the 6.2 Gb and 15.1 Gb datasets for the 16

and 32 node cluster configurations, in which the proportional increase in the speedup times

is larger for the 32 node configuration. We then note that the distributed framework allocates

fixed/limited memory space for each processing task, and distributes those tasks throughout the

cluster nodes.

Then, if there are many tasks for the same node, the total processing time for that node will

be higher than if the node had fewer tasks to process. Conversely, with fewer tasks per node,
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processing time lowers, favoring speedups. However, that behavior is not expected to occur

indefinitely with the increase in the number of computing nodes. At some point, adding nodes

would not lead to any speedup increment, in fact, we expect that the opposite happens, i.e.,

speedups start to decrease because of the increased communication overhead, behavior which

is also similar to what authors found and describe in [44], where they realized that speedups

will not increase linearly as the number of cores increases.

Moreover, after some point, for a fixed dataset size, the speedup growth becomes slower, or

even negative, when using a higher number of nodes. Indeed, and examining again the values

in Table 5.1, the proportional decrease in the ratio between dataset size and computing nodes

observed for the 6.2 Gb dataset from 16 to 32 nodes seems to be evidence of that issue, where

we are probably using many more nodes in the cluster than the required to process a not so large

volume of information.

Additionally, we must remark that in this work we have focused on describing the proposed

distributed implementation of the N-FINDR algorithm on the HyperCloud-RS framework, and

furthermore on providing guidelines on how to integrate new endmember extraction algorithms

into the framework. Thus, and in contrast to related approaches described in [57, 78, 44, 114,

111], our framework provides the means to seamlessly implement other distributed endmember

extraction algorithms on cloud computing infrastructures. We further and thoroughly believe

that such capabilities overture a wide range of applications based on hyperspectral unmixing

analysis.

We are aware that we did not report on the monetary costs involved and we did not discuss

the trade-off between the efficiency and the cost of running our solution on the commercial

AWS cloud-computing infrastructure services, as we believe that theme goes beyond the scope

of this work, and they are discussed in publications specifically focused on that subject, such as

the one presented in [126].
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Nevertheless, a related topic that would be of great value for operational decisions con-

cerning dealing with commercial cloud infrastructure services, is the development of tools that

suggest alternative cluster configurations, considering not only dataset sizes but also time and

monetary constraints for running distributed solutions such as the one described in this research.

Once again, we believe that the development of such tools goes beyond the scope of this work,

however, such analysis would be another interesting line for future research.

Finally, considering our particular implementation of the N-FINDR algorithm, the accuracy

and computing performance observed in the experimental analysis demonstrate that our ap-

proach is capable of adequately managing large amounts of hyperspectral remote sensing data,

thus representing a reliable and efficient solution for the endmember extraction process.

Specifically, regarding the computation performance, our distributed N-FINDR implemen-

tation outperformed a state-of-the-art, cloud-based distributed method for endmember extrac-

tion [44], and can, therefore, be used as a baseline for future research in the field.

Moreover, we demonstrated that the proposed HyperCloud-RS framework can be easily

extended with the inclusion of other pure pixel geometrical-based approaches for linear spectral

unmixing, thus enabling other researchers to easily implement and execute their own distributed

approaches over cloud computing infrastructures.
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Chapter VI

Conclusions

Current improvements in hyperspectral remote sensing systems establish compelling challenges

for storing, management, deployment, processing, analysis, and interpretation of the large vol-

umes of hyperspectral remote sensing data that such systems are currently providing, consider-

ing that hyperspectral image processing is a costly and complex computational process, whose

analysis demands for efficient and scalable computing solutions, imposing significant require-

ments in terms of storage, processing, and near real-time responses.

To overcome the aforementioned processing issues, several specialized high-performance

computing (HPC) systems have been proposed, from multicore-based approaches, up to sys-

tems based on graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and

computer clusters.

Nevertheless, despite the compelling capabilities provided by HPC systems, there are still

important issues to be consigned for adequately dealing with large volumes of hyperspectral

remote sensing data, which more recently are being interestingly addressed by solutions based

on cloud computing systems, as these platforms provide flexible and scalable hardware re-

sources, delivering applications and software as services (SaaS), as well as infrastructure and

platform as a service, thus providing the opportunity of accessing infinite computing resources,
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but currently there is still a limited number of efforts to date, and not enough viable solutions

for adequately exploiting cloud computing infrastructures for large-scale hyperspectral image

processing.

In this context, in this thesis, we implemented and validated what we defined as the Hy-

perCloud -RS framework, which is a platform that enables, and adequately exploits, the use

of cloud computing environments for elastically allocate processing power and storage space

for effectively performing endmember extraction processes on large-scale hyperspectral remote

sensing data. Furthermore, we introduced, and validated, a novel distributed version of the se-

quential N-FINDR endmember extraction algorithm, built on top of the proposed framework,

able to adequately handle the hyperspectral data distribution and perform its execution in cloud

computing environments, in a reliable, scalable, and efficient way; additionally supporting dis-

tributed execution, network communication, and fault tolerance, transparently and efficiently to

the user, thus enabling efficient use of available computational resources.

As a further contribution of this work, we provided the main guidelines on how to extend

the HyperCloud-RS framework capabilities with the addition of new endmember extraction

algorithms, as long as these algorithms belong to the class of pure pixel geometrical-based

approaches for performing linear spectral unmixing, in which case, their integration with this

framework becomes a straightforward process, as described in Section 3.4.

The experimental analysis, which assessed the accuracy and computation performance of

the proposed solution, demonstrated the scalability provided by the framework and its potential

to handle large-scale hyperspectral datasets. Remarkably, higher speedups were achieved when

the amount of data being processed was largely increased, that is, as the dataset size increased,

clusters containing more nodes delivered higher speedups, thus better exploiting the distributed

resources.

The results additionally showed that arbitrarily increasing the number of cluster nodes while
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fixing the dataset size does not necessarily deliver a proportional reduction of the execution

times of the distributed N-FINDR algorithm. Therefore, to optimize computational perfor-

mance, there must be an adequate balance between the amount of data to be processed and the

number of nodes to be used. That seems to indicate that the optimum cluster settings depend

not only on the endmember extraction algorithm but also on the amount of hyperspectral data

to be processed.

Regarding our particular approach for distributing the N-FINDR geometrical-based method

for linear spectral unmixing, it has been observed that if the initial seeds, distributed among

the cluster nodes, are the same at each execution, and the endmember extraction algorithm

parameter values remain unchanged, the outcome of its distributed implementation is identical

to that of the sequential version, regardless of the number of cluster nodes configured. Actually,

we have forecasted such behavior from the beginning of the research, i.e., producing the same

outcome as the sequential execution of the algorithm was a design requirement, which allows us

to mainly focus on the implementation, assessment, and validation of the proposed distribution

strategy of the N-FINDR algorithm.

6.1 Future Works

We believe that this work overtures the possibility of raising multiple further research, out-

set from the integration of a dimensionality reduction process into the framework, up to the

possibility of testing and comparing the performance of many other endmember extraction al-

gorithms.

Furthermore, interesting research to explore is to assess the extension of our endmember

extraction approach, with the increasing of a multicore parallelized approach implementation

of the algorithm, capable to perform its execution within the computing nodes in the cloud

environment to be deployed.
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Additionally, further experiments could be performed to investigate the effects of varying

the endmember extraction algorithm settings with respect to the accuracy obtained with its

distributed implementation.

Finally, considering the evolution and availability of cloud-computing infrastructure-as-a-

service technologies, further research should be directed to investigate in detail the trade-off

between the efficiency and the associated cost of using such services, as compared to the acqui-

sition of the necessary infrastructure for implementing distributed algorithmic solutions such as

the one proposed in this work.
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