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Resumen

La prevalencia de enfermedades epidemiológicas recolectadas en áreas geográficamente

limitadas, como distritos o provincias, son cruciales para la toma de decisiones en salud

pública. Usualmente esta variable respuesta presenta dependencia espacial, es decir, es sim-

ilar en áreas vecinas, debido a la naturaleza de la enfermedad, clima, nivel económico y

cultural, entre otras razones. En este sentido, se proponen modelos espaciales de datos áreas

para identificar tendencias y factores asociados a enfermedades epidemiológicas, tomando

en cuenta la dependencia espacial entre áreas geográficas. Por lo general, estos modelos

ajustan a la dependencia espacial a través de efectos aleatorios derivados a través de grafos.

En particular, el modelo autorregresivo de gráfico aćıclico dirigido (DAGAR) se basa en un

grafo aćıclico dirigido y algunos efectos aleatorios “del pasado”. Como consecuencia, la ma-

triz de precisión (inversa de la covarianza) del modelo es dispersa. Este modelo tiene una

interpretación intuitiva de los parámetros asociados con la dependencia espacial y se puede

representar como un modelo gaussiano latente. En este contexto, en esta tesis se propone

implementar el modelo DAGAR a través del método de inferencia bayesiano aproximado

INLA que es determinista, bastante preciso y eficiente. Dentro de este enfoque, la estimación

de datos grandes se puede realizar en segundos o minutos, y permite ajustar los datos con

distribución gaussiana o no gaussiana. Finalmente, para mostrar el aporte de esta propuesta,

el modelo DAGAR se ajusta a datos reales.

Palavras-clave: CAR, DAGAR, INLA, modelos gaussianos latentes.
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Abstract

The prevalence of epidemiological diseases collected in geographically limited areas, such

as districts or provinces, are crucial for making public health decisions. It is common that

this response variable presents spatial dependence, that is, it is similar in neighboring areas,

due to the nature of the disease, weather, economy and cultural level, among other reasons.

In this sense, spatial models for areal data are proposed to identify trends and factors as-

sociated with epidemiological diseases, taking into account the spatial dependence between

geographic areas. Usually, these models fit the spatial dependence through spatial random

effects built from graphs and conditional distributions. In particular, the directed acyclic

graph autoregressive (DAGAR) model is based on a directed acyclic graph and some “past”

random effects. As a consequence, the precision matrix (inverse of the covariance) of the

model is sparse. This model has an intuitive interpretation of the parameters associated

with spatial dependence and can be represented as a latent Gaussian model. In this context,

we propose in this project to implement the DAGAR model throughout the approximate

Bayesian inference method INLA which is deterministic, quite accurate and efficient. Within

this approach, estimation of large data can be carried out in seconds or minutes, and it allows

to fit data following a Gaussian distribution or non-Gaussian distributions. Finally, in order

to show the contribution of this proposal, the DAGAR model will be fitted to real data.

Keywords: CAR, DAGAR, INLA, latent Gaussian models.
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Chapter 1

Introduction

Over the last decade a lot of variables were collected on geographical areas due to the

advancement of technology. It is quite often that the value of a variable on nearest neighbor

areas is similar, this can be evidence of spatial dependence. For instance, in the jungle it is

known that the number of cases of dengue must be higher in nearest areas, essentialy due

to the precipitations and high temperatures. In practice many disciplines deal with spatial

dependence, for instance, public health, environmental sciences, social sciences, among others.

Statistical models for areal data are important to detect covariates that influence the response

variable of interest as well as to describe the spatial distribution of the response variable.

Usually the conditional autoregressive model (CAR) (Besag, 1974) and the simultaneous

autoregressive model (SAR) (Whittle, 1954; Cressie, 1993) are used to fit areal data. Both

models need graphs to define the neighbors of each area. The random spatial effects of the

CAR model are built assuming conditional dependence between neighbor areas and jointly

follow a multivariate Gaussian distribution. The random spatial effects of the SAR model

are linearly dependent of the neighbor spatial effects and independent errors and jointly also

follow a multivariate Gaussian distribution. Both models depend on a spatial parameter,

whose interpretation is quite difficult because a high value of these parameter implies a

modest spatial autocorrelation between the areas.

Considering the limitation of spatial models for areal data in terms of interpretation of

the spatial parameters and availability of valid priors Datta et al. (2019) developed a new

model for areal data called autoregressive model of acyclic directed graphs (DAGAR) model,

which joins the SAR model and a directed acyclic graph. They extend the idea of nearest

neighbor Gaussian processes (NNGP, Datta et al. (2016)) for geostatistical data to areal

data. As a result, the multivariate Gaussian distribution of the DAGAR model enjoys an

sparse precision matrix, thus DAGAR model is scalable for large spatial data. Moreover, the

interpretation of a parameter related to the spatial autocorrelation is better, that is, a high

value of these parameter implies a high spatial autocorrelation between the areas.

The model is an spatial generalized linear model and can be represented hierarchically,

thus Bayesian inference is suitable for this model. For instance, Datta et al. (2019) esti-

mate the parameters of the DAGAR model, through Markov Monte Carlo chains (MCMC)

methods. Nevertheless, this method is computationally expensive due to the large number

of iterations required to update the parameters. In this thesis, the estimation of parameters

of the DAGAR model will be achieved through the Integrated Nested Laplace Approach

1



CHAPTER 1. INTRODUCTION 2

(INLA) Rue et al. (2009). This method consists in applying the Laplace approximation to

integrate out high-dimensional latent components. It is more efficient than the MCMC and

quite accurate. In fact, the implementation will exploit the sparsity of the precision matrix

of the DAGAR model, therefore, it allows to fit large spatial datasets. Furthermore, the DA-

GAR model will be implemented for Gaussian and non-Gaussian data through the binomial,

Poisson and Gamma distributions, and zero-inflated distributions, among others. Extensions

to spatio-temporal DAGAR models are also quite feasible. In summary, this implementation

will accommodate a wide range of DAGAR models for areal data.

In addition, this model will be fitted to a real diseases and epidemiological dataset using

INLA. Thus this thesis is of great relevance in the public health aspect of the country, since it

will allow to identify which factors can influence the prevalence of diseases, as well as to study

the spatial distribution of the disease along the districts or counties of a country. These new

epidemiological models are expected to make a significant contribution to our understanding

of the behavior and immunology of the viruses and its control in the near future.

The main goal of this thesis is to implement approximate Bayesian inference method

through INLA for the DAGAR spatial model for large datasets. In particular, the DAGAR

model will be implemented using INLA, some simulation studies will be performed in order to

assess the performance of the DAGAR model, these results will be contrasted with competing

models like the CAR and SAR models. Finally, the DAGAR model will be applied to fit real

large areal data using INLA.

The outline of the thesis is detailed as follows: Chapter 2 focuses on a review of areal

data models such as the conditional autoregressive model and the directed acyclic graph au-

toregressive model. Furthermore, we describe Bayesian inference methods and the integrated

nested Laplace approximation method. Chapter 3 presents the properties of the DAGAR

model. The details of bayesian inference for this model using INLA are also presented in this

chapter. Chapter 4 shows the performance of bayesian inference for DAGAR models using

INLA through simulations. Chapter 5 shows applications of the proposed model. Finally,

some conclusions are remarked in 6.



Chapter 2

Preliminary concepts

This chapter presents some important concepts for areal data models. Areal data can be

generated when a fixed domain is divided into a finite number of areas regular (lattice) or

irregular (counties, provinces, among others). Formally, let Y = (Y1, Y2, . . . , Yn)T be random

variables for each area 1, 2, . . . , n . An important feature of areal units is the evidence of

spatial autocorrelation. It suggests that measurements for areal units which are near to each

other will tend to take more similar values. In order to incorporate the spatial autocorrelation

in the model, the neighborhood structure among areas is represented through a graph that

is used to built the adjacency matrix associated to this graph.

Let G = {V,E} denote an undirected graph with n nodes in V , corresponding to each area,

and edges E between neighbor areas. For instance, Figure 2.1 shows an undirected graph

with n = 5 nodes V = {v1, v2, v3, v4, v5} and edges E = {(v1, v2), (v2, v3), (v2, v5), (v4, v5)}
representing that the node one is neighbor of node two, node two is neighbor of nodes one,

three and five, node three is neighbor of nodes two and five, node four is neighbor of area

five, and node five is neighbor of nodes two, three and four. In practice, for areal data, the

nodes represent the areas.

v1 v2

v4 v5

v3

Figure 2.1: Undirected graph of five nodes.

Another key concept is the adjacency matrix W , that is a matrix of weights wij rep-

resenting the neighborhood structure. The weights wij are related to areas i and j. The

3



CHAPTER 2. PRELIMINARY CONCEPTS 4

relationship among these neighbors areas can be expressed in the adjacency matrix:

W =


w1,1 · · · w1,n

...
. . .

...

wn,1 · · · wn,n

 .

So wij 6= 0 if and only if i and j areas are neighbors and wij = 0 in any other case (Blangiardo

y Cameletti, 2015). Therefore, wij can be seen as weights where the weight will be greater as

there is greater proximity between the areas. For instance, Figure 2.2 shows the adjacency

matrix representation of the graph G, where wij = 1 if i and j share some common boundary,

and wij = 1 otherwise.

W =


0 1 0 0 0

1 0 1 0 1

0 1 0 0 1

0 0 0 0 1

0 1 1 1 0



Figure 2.2: Adjacency matrix of the graph in Figure 2.1.

In order to define spatial models for areal data, the spatial correlation can be incorporated

through a spatial random effects ui for each area i = 1, . . . , n. In the next section it is

presented a brief review of the most common models for areal data.

2.1 Models for areal data

2.1.1 Conditional autoregressive (CAR) model

CAR models were introduced by Besag (1974) and have been extensively used in spatial

statistics to fit areal data. Let assume that a geographic region is partitioned into areas

indexed by integers i = 1, ..., n. Then the vector of spatial random effects for n areas is defined

as u = (u1, u2, . . . , un)T . In the CAR model, the structured random spatial effect ui of an

area i, conditioned on the rest random spatial effects u−i = (u1, . . . , ui−1, ui+1, . . . , un)T ,

follows a Gaussian distribution, that is:

ui|u−i ∼ N(
n∑
j=1

bijuj ,
1

τi
),

where bij ≥ 0 are covariance parameters, with bii = 0 for all i and τ is a precision parameter.

This full conditional distributions determine a well defined joint distribution for u if bijτi =

bjiτj for all i, j = 1, . . . , n, and F (I − B) is positive definite, for B = (bij) and F =

diag(1/τ1, . . . , 1/τn). Therefore

u ∼ N(0, (I −B)−1F ).
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In particular, in this thesis it is assumed that B = ρW where ρ is an unknown spatial

parameter, also known as spatial autocorrelation parameter, W is an adjacency matrix, and

F = In/τ then

u ∼ N(0, (I − ρW )−1/τ).

It is important to remark that to guarantee that (I−ρW ) is positive definite, ρ is constrained

into the interval (λ−1(1), λ
−1
(n)) where λ(1) ≤ λ(2) ≤ · · · ≤ λ(n)) are the ordered eigenvalues of

W , with λ(1) < 0 < λ(n). In order to constrain ρ < 1, the adjacency matrix can be re-scaled

by dividing it by λ(n), that is, W̃ = W /λ(n) (Haining, 2003). Usually, ρ ∈ (0, 1), thus it

can be interpreted similarly as a correlation parameter. Finally, the CAR distribution of u

is given by:

u ∼ N(0, (I − ρW̃ )−1/τ),

where the precision matrix is QCAR = τ(I − ρW̃ ).

Banerjee et al. (2014) shows for a similar specification of the CAR model that within a

Bayesian framework, a prior on ρ that encourages a consequential amount of spatial associ-

ation would place most of its mass near one. This means that even the spatial association is

not too strong, the ρ parameter would tend to take high values.

The spatial random effect u can be incorporated into a spatial model. Specifically, if

E(Yi) = µi then,

g(µi) = z>i β + ui,

where g(·) is some suitable link function, zi is a vector of covariates and β is a vector of

regression coefficients. And from a Bayesian approach, a CAR prior can be assigned for u.

2.1.2 Simultaneous autoregressive (SAR) model

The Simultaneous autoregressive (SAR) model was introduced by Whittle (1954) and

proceeds by simultaneously modeling the spatial random effects ui. It is considered that the

random spatial effect of an area i, depends on its neighbor random effects, that is

ui = ρ
∑
j

bijuj + εi, for i = 1, 2, . . . , n,

where εi
ind∼ N (0, 1/τi) are non-structured errors and bij are known constants. And it is

assumed that the errors εi are independent of ui. Then from the next set of equations:

u1 = ρ
∑
j 6=1

b1juj + ε1,

u2 = ρ
∑
j 6=2

b2juj + ε2,

...

un = ρ
∑
j 6=n

bnjuj + εn,
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u = (u1, u2, . . . , un)T follows a normal distribution, that is,

u ∼ N
(
0, (I −B)−1F ((I −B)−1)T

)
,

where F = diag(1/τ1, . . . , 1/τn) = In/τ and the matrix B = ρW , where ρ is referred

as a spatial parameter, and (I −B) is positive definite if ρ is constrained into the interval

(λ−1(1), λ
−1
(n)) being λ(1) ≤ λ(2) ≤ · · · ≤ λ(n)) the ordered eigenvalues ofW , with λ(1) < 0 < λ(n).

In order to constrain ρ < 1, the adjacency matrix can be re-scaled by dividing it by λ(n), that

is, W̃ = W /λ(n) (Haining, 2003). Usually, ρ ∈ (0, 1), thus it can be interpreted similarly

as an autocorrelation spatial parameter. Nevertheless, with respect to interpretation of the

parameter ρ, it leads to similar problems as the CAR models. Finally, the SAR distribution

of u is given by:

u ∼ N
(

0,
1

τ
(I − ρW̃ )−1((I − ρW̃ )−1)T

)
,

where the precision matrix is QSAR = τ(I − ρW̃ )(I − ρW̃ )>.

The spatial random effect u can be incorporated into a spatial model. Specifically, if

E(Yi) = µi then,

g(µi) = z>i β + ui,

where g(·) is some suitable link function, zi is a vector of covariates and β is a vector of

regression coefficients. And from a Bayesian approach, a SAR prior can be assigned for u.

2.2 Bayesian Inference

2.2.1 Markov Chain Monte Carlo (MCMC) methods

Given the availability of more powerful computational resources, MCMC algorithms were

established as the core of Bayesian inference over the last decades. Let π(·) and π(·|·) repre-

sent a probability density function or a conditional probability density function (pdf). The

main goal of Bayesian inference relies on posterior estimation of θ = (θ1, . . . , θp), based on

the the observed data y = (y1, . . . , yn)> (likelihood function) and the prior information. Let

π(y|θ) represent the likelihood function and let π(θ) be the prior distribution of θ. Then

through the Bayes theorem, the posterior distribution of θ is given by

π(θ|y) ∝ π(y|θ)π(θ).

For simple models, the posterior distribution of θ is known, however for complex models like

the spatial models for areal data, θ has a high dimension and its posterior distribution does

not enjoy a known form. In this context, MCMC algorithms like Gibbs sampling and the

Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) can be used to sample from the

posterior distribution.

The Gibbs sampling breaks the problem of sampling from the posterior distribution in a

serie of samples of full conditional (FC) distributions of lower dimension. The Gibbs sampling

algorithm is summarized in the next steps:
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1. Define initial values θ(0) = (θ
(0)
1 , ..., θ

(0)
p )

2. For each iteration t,

FC1 Sample from θ
(t)
1 |θ

(t−1)
2 , ..., θ

(t−1)
p ,Y

FC2 Sample from θ
(t)
2 |θ

(t)
1 , θ

(t−1)
3 , ..., θ

(t−1)
p ,Y

...

FCp Sample from θ
(t)
p |θ(t)1 , ..., θ

(t)
p−1,Y

3. Repeat step 2, S times, to obtain the posterior samples

θ(1), ...,θ(S).

The Gibbs sampling algorithm ensures that for any initial values the Markov chain will

converge to the posterior distribution. This algorithm works if the full conditional distribu-

tions are known. When we are not able to sample from the full conditional distributions,

another nice MCMC algorithm is the Metropolis and Metropolis-Hasting.

Let assume that θ(j) = (θ1, . . . , θj−1, θj+1, . . . , θp). Without loss of generality the Metropo-

lis algorithm to update θj is summarized in the next steps:

1. Choose an initial value θ
(0)
j , such that p(θ

(0)
j |θ

(t−1)
(j) ,Y) > 0.

2. In iteration t, sample a candidate value θ∗j from the proposal distirbution

q(θ|θt−1j ).

3. Compute the acceptance probability:

R = min

{
1,

π(θ∗j |θ
t−1
(j) ,Y)

π(θt−1j |θ
t−1
(j) ,Y)

}

4. If R = 1 then accept θ∗j , and update θ
(t)
j = θ∗j . Otherwise, if R < 1, sample

from r ∼ Uniforme(0, 1), such that if:

• r < R then accept θ∗j , and update θ
(t)
j = θ∗j .

• Other case, θ∗j is rejected and θ
(t)
j = θ

(t−1)
j .

5. Repeat 2 to 4 until achieve the convergence of the Markov chain.

In the Metropolis-Hasting algorithm the proposal distribution can be asymmetric. The

Metropolis and Metropolis-Hasing sampling algorithms ensure that for any initial values

the Markov chain will converge to the posterior distribution. Further, note that the Gibbs

sampling is a particular case of the Metropolis algorithm.
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2.2.2 Integrated Nested Laplace approximation

The integrated nested Laplace approximation (INLA) (Rue et al., 2009) approach is a

method to perform Bayesian inference for latent Gaussian models (LGMs). INLA allows more

fast Bayesian inference than the MCMC method. In order to define the INLA algorithm, it

is important to define Gaussian Approximation and latent Gaussian models.

Let π(x|y) be a posterior density distribution of x given by

π(x|y) ∝ π(x)π(y|x) = exp(f(x)),

where fX(x) is the log-posterior of x that can be approximated using as quadratic Taylor

expansion around x = x0 by:

f(x) ≈ f(x0) + f
′
(x0)(x− x0) +

1

2
f
′′
(x0)(x− x0)2

= a+ bx− 1

2
cx2,

where b = f
′
(x0)−f

′′
(x0)x0 and c = −f ′′(x0). The value of a is not relevant in the following.

Therefore, the Gaussian approximation of π(x|y) is defined as follows:

π̃G(x|y) ∝ exp(−1

2
cx2 + bx),

which has the form of a normal distribution with mean b/c and precision c. As a result, the

Gaussian approximation for the density π(x|y) is better when x0 is closer to the mode of

π(x|y). For more details, see Rue y Held (2005).

Let Y = (Y1, Y2, . . . , Yn)T be a vector of response variables, and assume that the distri-

bution of Yi is characterized by a parameter µi, which is the mean or some quantile. Then,

the linear predictor can be defined as follows:

g(µi) = ηi = β0 +

M∑
m=1

βmzmi +

L∑
l=1

f (l)(uli),

where g(·) is a link function, β0 represents the intercept, β = (β1, . . . , βM )T represents the

vector of regression (or fixed) coefficients, zmi is the m-th covariate for the i-th observation,

and f = (f (1)(·), . . . , f (L)(·))T is a collection of functions defined in terms of covariates uli,

the l-th covariate for the i-th observation. The terms f l(·) can assume different forms such

as spatial or temporal random effects. The vector of parameters x = {β0, β1, . . . , βM ,f} is a

Gaussian Markov random field. Then a latent Gaussian model (LGM) is a hierarchical model

that is composed by the observed data y, latent Gaussian field x and hyperparameters θ as

follows:

• observed data y: Assuming conditional independence of Yi’s given the Gaussian Ran-

dom Markov Field and its hyperparameters, the conditional distribution of Y is defined
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as follows:

π(y|x,θ) =
n∏
i=1

π(yi|xi, θ).

• latent Gaussian field x: Assuming a multivariate Gaussian prior on x with mean 0 and

precision matrix Q(θ), then

x|θ ∼ N(0,Q−1(θ)).

• hyperparameters θ = (θ1, . . . , θK),

π(θ).

So, the joint posterior distribution of x and θ is given by

π(x,θ|y) ∝ π(θ)π(x|θ)π(y|x,θ).

INLA computes the marginal posterior distributions for each element of the latent Gaussian

field x, that is

π(xj |y) =

∫
π(xj ,θ|y)dθ =

∫
π(xj |θ,y)π(θ|y)dθ.

Also, the marginal posterior of the hyperparameter vector is defined as follows

π(θm|y) =

∫
π(θ|y)dθ−m,

where θ−m = (θ1, . . . , θm−1, θm+1, . . . , θk). Specifically, the INLA approach exploits the

assumptions of the model to produce a numerical approximation of the posteriors of interest

based on the Gaussian approximation (Tierney y Kadane, 1986) method, that is

π(θ|y) =
π(x,θ|y)

π(x|θ,y)
,

=
π(y|x,θ)π(x,θ)

π(y)

1

π(x|θ,y)
,

=
π(y|x,θ)π(x|θ)π(θ)

π(y)

1

π(x|θ,y)
,

∝ π(y|x,θ)π(x|,θ)π(θ)

π(x|θ,y)
,

which is approximated by:

π̃(θ|y) ≈ π(y|x,θ)π(x, θ)π(θ)

π̃G(x|θ,y)
|x=x∗(θ) = π̃(θ|y), (2.1)

where π̃G denotes a Gaussian approximation to the full conditional of x, and x∗(θ) is the mode

of the full conditional of x|θ,y. Note that the approximation presented in Equation (2.1) is

called Laplace approximation.
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In a similar way,

π(xj |θ,y) =
π((xj , x−j |θ,y))

π(xj |xj ,θ,y)
,

=
π(x,θ|y)

π(θ|y)

1

π(x−j |xj ,θ,y)
,

∝ π(x,θ|y)

π(x−j |xj ,θ,y)
,

where x = (xj , x−j), x−j indicates the vector x without the ith element. Thus π(xj |θ,y) can

be approximated using the Gaussian approximation by

π̃(xj |θ,y) ≈ π(x,θ|y)

π̃(x−j |xj ,θ,y)
|x−j=x∗(xj,θ)

= π̃(xj |θ,y), (2.2)

where x∗(xj ,θ) is the mode of the full conditional distribution of x−j that is obtained by

using some optimization method. Also note that π̃(xj |θ,y) is the Laplace approximation of

π(xj |θ,y).

Hence, the marginals of each parameter xj and θm can be obtained using approximations

in Equation (2.1) and (2.2) as follows,

π̃(xj |y) =

∫
π̃(xj |θ,y)π̃(θ|y)dθ. (2.3)

π̃(θm|y) =

∫
π̃(θ|y)dθ−m. (2.4)

2.3 Model assesment

In order to study the goodness of fit of the studied models, the logarithm of the pseudo

marginal likelihood (LPML), the Watanabe-Akaike (or “widely applicable”) information cri-

terion (WAIC), and the root of mean squared estimation error (RMSEE) are considered to

measure the performance of each model.

The WAIC was introduced by Watanabe (2010). From a Bayesian perspective,the WAIC

is based on the posterior predictive density, this is its main advantage over other measures. It

is stated that the WAIC is particularly helpful for hierarchical models. Gelman et al. (2013)

states that it can be computed as follows:

WAIC = −2
N∑
i=1

[
log

{
1

K

K∑
k=1

π
(
yi|x(k),θ(k)

)}
− V K

k=1 log
{
π
(
yi|x(k),θ(k)

)}]
,

where K is the number of posterior samples,
(
x(k),θ(k)

)
are samples from π (xi,θ|y) and

V K
k=1 (·) is the sample variance. The lower the value of WAIC, the better the model.

Another alternative Bayesian model criteria is the conditional predictive ordinate (Geisser
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y Eddy, 1979), defined as

CPOi = π (yi|y−i) =
1∫ π(xi|y)

π(y−i|xi)

dxi,

where y−i is given by y without the ith component. The Monte Carlo estimation for the CPOi

(Held et al., 2009) is defined as the harmonic mean of the conditional density π (yi|xm, θm),

ĈPOi =

 1

K

K∑
k=1

1

π
(
yi|x(k),θ(k)

)
−1 ,

evaluated at samples
(
x(k),θ(k)

)
from π (xi,θ|y). Moreover, since the CPOi is a goodness

of fit measure for each observation, it can be summarized for all data via a single value called

the logarithm of the pseudo marginal likelihood (LPML), so comparison between models can

be done using,

LPML =
n∑
i=1

log π (yi|y−i) ,

that is, the higher the value of LPML, the better the model.

Finally, to assess the closeness between the posterior mean estimation of y and the ob-

served y value, it is computed the root of mean squared estimation error (RMSE). The root

of mean squared estimation error (RMSE) is computed as follows:

RMSE =

√√√√ 1

n

n∑
i=1

d2i ; where di = yi − ̂E (Yi|x,θ).



Chapter 3

Approximate Bayesian inference for DAGAR models

3.1 Directed acyclic graph

The key of the DAGAR model is a directed acyclic graph (DAG). A directed graph is a

pair (N,R) ⊆ N ×N consisting of a set of N nodes and a binary relation R, that specifies

a directed edge from a node n to another node m whenever (n,m) ∈ R. An edge (i, j) ∈ R
is called directed if (i, j) ∈ R but (j, i) /∈ R. This graph does not contain any cycle. For

instance, Figure 3.1 provides an example of a DAG structure G and the adjacency matrix of

this graph.

v1 v2

v4 v5

v3

W =


0 1 0 1 0

0 0 0 0 1

0 1 0 0 1

0 0 0 0 0

0 0 0 1 0


Figure 3.1: Directed graph and its adjacency matrix.

Another important feature of a DAG that we can also observe in this example is the

sparsity of the adjacency matrix with respect to the graph, given that wij 6= 0 when there

is a directed edge from i to j and wij = 0 otherwise. In practice many graphs give rise to

sparse matrices when there are only a few edges between pairs of nodes.

3.2 Embedded spanning tree

A spanning tree T is a subgraph of an undirected graph G, that is a tree which includes all

of the nodes of G which are connected with the minimum possible number of edges. It cannot

be disconnected as it does not have cycles. For instance, Figure 3.2 shows the spanning trees

12
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of a graph G with three nodes V = {v1, v2, v3} and edges E = {(v1, v2), (v1, v3), (v2, v3)}. We

can observe that a graph may have several spanning trees.

v1 v2

v3

v1 v2

v3

v1 v2

v3

v1 v2

v3

Figure 3.2: Spanning trees of G.

A graph G is descomposed into a sequence of embedded spanning trees Ti when the joined

embedded spanning trees give rise to the original graph. For instance Figure 3.3 shows the

embedded spanning trees of a graph G with five nodes V = {v1, v2, v3, v4, v5} and edges

E = {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4), (v4, v5)}.

v1

v2

v3

v4

v5

v1 v1

v2

v2

v1

v3

v2 v4

v3

v5

v4

Figure 3.3: Decomposing a graph G into a sequence of embedded spanning trees Ti.

3.3 Directed acyclic autoregressive (DAGAR) model

Let u = (u1, u2, · · · , un)T be a n × 1 vector consisting of spatial random effects cor-

responding to each area 1, 2, . . . , n. From basic probability the joint density of u can be

determined by the next conditional distributions of ui’s:

π(u) = π(u1)π(u2|u1)π(u3|u1, u2) · · ·π(uk|u1, u2, · · · , uk−1).

Under this definition, it is assume that each spatial random effect ui depends on its “past”

nearest neighbor areas. This approach was already used in some way to define the SAR

model, where each random spatial effect ui’s can be defined by

u1 = ε1;u2 = b21u1 + ε2; . . . , un = bn1u1 + · · ·+ bn,n−1un−1 + εn, (3.1)
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where εi
ind∼ N(0, 1/τi) are errors independent of u.

A natural extension of the SAR approach, is to assume that each random spatial effect

ui’s depends on “some past” nearest neighbor areas. This extension was the assumption of

the DAGAR random effects. Hence the DAGAR random effect u is defined by:

ui =
∑
j<i
j∼i

bijuj + εi; for i = 1, 2, . . . , n,

where j ∼ i denotes neighbors areas of i, εi
ind∼ N (0, 1/τi) and bij are coefficients related to

the spatial parameter of the model.

In order to construct the DAGAR model, it is neccesary to define the neighbor set of

area i as N(i) = {j < i, j ∼ i}, where j ∼ i points out that the areas i and j are neighbors.

Then bij = 0 for all j /∈ N(i). And, the constraint j < i implies that B is a lower triangular

matrix, which ensures the positive definite property of the precision matrix of the DAGAR

random effects. Then, the DAGAR random effects can be rewritten by:

u1 = ε1, ui =
∑
j∈N(i)

ujbij + εi, for i = 1, 2, · · · , n, (3.2)

where εi
ind∼ N (0, 1/τi). To define bij 6= 0, that is which areas are neighbors, let G = (V ,E)

be an acyclic graph (DAG) with the areas as nodes V and edges E between neighbors (past

and nearest), and Gi be a subgraph of G comprising vertices i ∪ N(i) and the edges among

them. Datta et al. (2019) proposed to use a local spanning trees of small subgraphs of

G to construct the lower dimensional conditional densities specified in Equation (3.2) and

therefore to define bij 6= 0. Specifically, an emmbedded spanning tree Ti of Gi was proposed

to establish the final set N(i) and the conditional density ui|uN(i).

Then, the spatial autocorrelation (ρ) between the random effects can be taken into account

through the spanning tree Ti and covariance matrix of an a autoregressive process of order

one (AR(1)) that depends on a parameter ρ defined as follows:

cov(ui,uN(i)) =


1 ρ ρ · · · ρ

ρ 1 ρ2 · · · ρ2

...
...

...
. . .

...

ρ ρ2 ρ2 · · · 1

 =

(
1 vTi
vi

∑
i

)
, (3.3)

where 0 ≤ ρ ≤ 1, the matrix with elements ρdij is positive definite, for dij denoting the

length of the shortest path on G between nodes i and j; and vi is the vector of covariances

between ui and uN(i), and
∑

i is the covariance matrix of uN(i) assuming an AR(1) model

on the spanning tree of Gi. Then, E(ui|uN(i)) =
∑

j∈N(i) bijuj , τi = 1/V ar(ui|uN(i)), and

from Equations (3.3) and (3.2),

bij =
ρ

1 + (n<i)ρ2
; i = 2, · · · , n; j ∈ N(i);
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τi =
1 + (n<i − 1)ρ2

1− ρ2
, i = 1, · · · , n.

where n<i denotes the cardinality of N(i), that is, the number of neighbors of an area i.

Thus, from Equation (3.2) it follows that u = Bu+ε, where ε ∼ N(0,F ), F = diag (τ1, τ2, . . . , τn)

and B = {bij} is a strictly lower triangular matrix. Hence, u ∼ N
(
0, (I −B)>F (I −B)

)
.

It is important to remark that the DAGAR precision matrix Q(ρ) = [(I −B)TF (I −B)]−1

(inverse of covariance function) of the DAGAR model is sparse. Thereby the model is useful

for massive areal datasets. Furthermore, the interpretation of the parameter related to the

spatial autocorrelation is more clear when we adopt the autoregressive model of an acyclic

directed graph (DAGAR).

Finally, the DAGAR specification, further assumes that the resulting model

u ∼ N(0,Q−1(ρ)/τu),

whereQ(ρ) is the DAGAR precision matrix, is homoskedastic, and hence 1/τu is the marginal

variance. As a consequence, the DAGAR model ensures interpretability for both ρ and τu.

For more details on DAGAR models see Datta et al. (2019).

The spatial random effects u following a DAGAR specification can be incorporated into

an hierarchical model framework as priors and fitted through Bayesian inference.

3.4 Bayesian inference for DAGAR models

Let Y = (Y1, Y2, . . . , Yn)> be the vector of response random variables Yi for areas i =

1, 2, . . . , n and let assume that Yi’s are conditionally independent, given β,u, ρ, τu, τe. Then

the conditional mean E(Yi|.) can be linked to the linear predictor ηi through a suitable link

function h(·), i.e.,

h(E(Yi|.)) = ηi = zTi β + ui + εi, (3.4)

where zi represents a vector of covariates, β = (β1, . . . , βn)T are the regression coefficients, ui

is a random spatial effect corresponding to each area i and εi represents unstructured random

errors, which can be included or not in the linear predictor depending on the distribucion of

Yi. In case they are included, they follow independent normal distributions N(0, 1/τe). In

particular, to fully specify the DAGAR model, it is assumed that u = (u1, u2, . . . , uk)
T |ρ, τu ∼

N(0,Q−1(ρ)/τu), whereQ(ρ) = [(I−B)TF (I−B)]−1 is the DAGAR precision matrix, where

F = diag (τ1, τ2, . . . , τn) and B = {bij}, for

bij =
ρ

1 + (n<i)ρ2
; i = 2, · · · , n; j ∈ N(i);

τi =
1 + (n<i − 1)ρ2

1− ρ2
, i = 1, · · · , n;

where ρ is the spatial autocorrelation parameter, and n<i denotes the number of neighbors

of an area i. This DAGAR model fits into the class of hierarchical areal models, therefore,

Bayesian inference is suitable for this class of models.

Since hierarchical models can also be represented as latent Gaussian models (LGM), the

general DAGAR model can be represented as a LGM as follows:
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(i) In the third level, let define the set of hyperparameters θ = (θ1, τu, ρ, τe):

π(θ) = π(θ1, ρ, τu, τe),

where θ1 representes scale parameters of Yi; τu, ρ are spatial parameters; and τe is

the precision parameter of random errors. Furthermore, θ might have some of these

parameters depending on the second and first level of the LGM.

(ii) In the second level, let define the latent Gaussian field x = (u,β):

x | θ ∼ N(u|0,Q(ρ)−1/τu)N(β).

(iii) In the first level, let assume that Yi’s are conditionally independent, given x and θ.

Then

π(y|x,θ) =
n∏
i=1

π(yi|x,θ).

Some DAGAR models depending on the distribution of Yi are:

• Gaussian distribution: Yi|x,θ
ind∼ N(µi, θ1), for i = 1, · · · , n, where

µi = zTi β + ui + εi.

The latent field is x = (u, β) and the vector of hyperparameters is θ = (τu, ρ, τe).

• Poisson distribution: Yi|x, θ ∼ Poisson(λi), for i = 1, · · · , n, and from a spatial gener-

alized linear mixed model framework h(λi) = zTi β + ui, for instance,

log(λi) = zTi β + ui.

The latent field is x = (u,β) and the vector of hyperparameters is θ = (τu, ρ).

• Let Yi|x, θ ∼ Binomial(pi), for i = 1, · · · , n, where from a spatial generalized linear

model framework h(pi) = zTi β + ui, for instance,

logit(pi) = zTi β + ui.

The latent field is x = (u,β) and the vector of hyperparameters is θ = (τu, ρ).

• Let Yi|x,θ ∼ Gamma(µi, κ), for i = 1, · · · , n, where from a spatial generalized linear

model framework h(µi) = zTi β + ui, for instance, log(µi) = zTi β + ui. The latent field

is x = (u,β) and θ1 = κ then the vector of hyperparameters is θ = (τu, ρ, κ).

With regard to the prior distributions for θ, in the absence of information, the typical

choice are non-informative prior distributions. Thus for β is assumed a normal distribution

with mean zero and a big variance, that is βp ∼ N(0, 106), p = 1, . . . , P. The prior distribution

for τu, τe and θ1 is a gamma(1, 0.0005). And finally, a uniform distribution U(0, 1) for ρ.
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Then the joint posterior distribution for the general DAGAR model is:

π(x,θ|y) ∝ π(θ)π(x|θ)π(y|x,θ),

∝ π(θ1)π(τu)π(ρ)π(τe)π(θ1)π(u|0, Q(ρ)−1/τu)π(β)

n∏
i=1

π(yi|x, θ).

The posterior estimations are not easy to compute, and that is the main aim of INLA, provid-

ing approximations to the posterior marginals of the latent variables and hyperparameters.

In addition, since u is a GMRF and the precision matrix Q(ρ) is sparse, INLA can exploit

these features to achieve fast Bayesian inference.

As indicated in section 2.2.2 the INLA approach was adopted, to obtain the marginal

distributions of x,θ. The marginal distribution of θ given x is approximated as follows:

π(θ|y) ≈ π(y|x,θ)π(x,θ)π(θ)

π(x|θ,y)
|x=x∗(θ) = π̃(θ|y). (3.5)

where π̃ is the Laplace approximation, x∗(θ) is the mode of x|θ,y. Similarly, the Laplace

approximation is computed as follows:

π(xj |θ,y) ≈ π(x,θ|y)

π̃(x−j |xj ,θ,y)
|x−j=x∗(xj,θ)

= π̃(xj |θ,y). (3.6)

After computing π̃(θ|y) in Equation (3.5) and π̃(xj |θ,y) in Equation (3.6), we use the

equation (2.3), then

π̃(xj |y) =

∫
π̃(xj |θ,y)π̃(θ|y)dθ.

π̃(θm|y) =

∫
π̃(θ|y)dθ−m.

To conclude this computing, we have to add that the DAGAR model with Laplace ap-

proximation can be solved by via the R-INLA-package. We will see the simulation in the

next chapter.



Chapter 4

Simulation study

In this chapter, we implement Bayesian inference for DAGAR models using the INLA

approach through the R-INLA package, which is available in www.r-inla.org. Simulations of

areal data under different scenarios were performed, for small and big data, and for Gaussian

distributions and non- Gaussian distributions. Then DAGAR, CAR and SAR models were

fitted in order to show the main advantages of DAGAR models. The results in this chapter

were produced on a computer with some requirements as well as Intel(R) Core(TM) i7 and

12GB RAM.

4.1 Bayesian Parameter estimation with the Gaussian distribution

In order to assess the performance of the DAGAR model for large data, two scenarios

were compared throughout two samples sizes: n = 100 and n = 900. Since the DAGAR,

CAR and SAR models are going to be compared, and in particular the interpretation of the

parameter ρ is going to be assesed, instead of simulating the spatial random effect vector u

from these models, it is simulated from a Gaussian process

u ∼ N(0,M/τu),

where 1/τu is the spatial marginal variance and M(·) is a correlation function. Specifically,

it is used the exponential correlation function

M(dij) = exp(−φd(i, j)),

where d(i, j) represents the Euclidean distance between the centroids of areas i and j and φ

is a parameter related to the range. The values for simulating u were set by τu = 0.25 and

φ = − log(ρ) for ρ ∈ (0, 1). The covariates z1 and z2 are generated from standard normal

distributions. The value of the regression coefficients and precision parameter of the random

error were set to β0 = 4, β1 = 2, β2 = −1, and τe = 5. Finally the response variable Yi for

i = 1, . . . , n is simulated for each scenario from a normal distribution with mean

µi = β0 + β1z1i + β2z2i + ui

and variance 1/τe.

In order to fit the areal data models, INLA requires the form of the precision matrix,

the key to fit the DAGAR structure. In particular, Fig. 4.1 shows the sparse structure of

18
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the precision matrix of a DAGAR model, for a small n = 100 (left panel) and large dataset

n = 900 (right panel). All neighbor areas (i, j) have values different from zero (grey squares)

if j ∼ N(i).

Figure 4.1: Precision matrices for n = 100 (left panel) and n = 900 (right panel).

4.1.1 Comparison between INLA and MCMC

The main advantage of performing Bayesian inference for DAGAR models through INLA

is in terms of time requirements. In order to show this feature, small areal data (n=100) and

large areal data (n = 900) were simulated as explained in the previous section, with ρ = 0.5.

The DAGAR model was fitted through INLA and MCMC for small and large areal data.

The code to fit INLA for DAGAR model was written as part of the contribution of this thesis.

MCMC was fitted using the NIMBLE package in R. Posterior inference of MCMC was based

upon one chain of 10000 iterations (with a burn-in of 5001 iterations). The results of this

experiment are shown in Table 4.1. In fact, the execution time for MCMC is very expensive

compared to INLA. From these results, it is evident that fitting replications using MCMC

would take a long time, for this reason the next simulation studies were performed through

INLA.

Method n Time (sec)

MCMC 100 350.4
INLA 100 20.5

MCMC 900 9840.4
INLA 900 99.7

Table 4.1: Running times for DAGAR models using MCMC and INLA for small areal data (n=100)
and large areal data (n=900).

4.1.2 Bayesian inference using INLA

The values of ρ for simulating u were set as ρ = j/10, for j = 1, . . . , 9, that is considering

nine subscenarios. Assuming φ = − log(ρ) in this way implies that the average neighbor pair

correlation ρ varies between 0.1 and 0.9. It is conducted 100 replications for the eighteen
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scenarios (according to n = 100 and n = 900), thus covering a wide spectrum of scenarios

for areal data.

Then, the DAGAR, CAR and SAR models were fitted throughout INLA. Bayesian in-

ference for CAR and SAR models is essentially the same as the method described for the

DAGAR model (see Section 3.4) but for specific precision matrices. The precision matrices of

these models are summarized in Table 4.2, where bij are elements of B and F is the diagonal

matrix with elements τ1, . . . , τn, where bij and τi are defined in terms of ρ.

Table 4.2: Areal data Models
Models Precision matrix

DAGAR τu[(I −B)TF (I −B)]−1

CAR τu(I − ρW̃ )

SAR τu(I − ρW̃ )(I − ρW̃ )>

Figure 4.2 shows the mean of the 100 median posterior estimates and the 95% credible

bands intervals for ρ under the three models(CAR, SAR and DAGAR) and two scenarios,

for small areal data, n = 100 areas (left panel) and large areal data, n = 900 areas (right

panel). For both scenarios, estimates for ρ from the CAR model (red lines) are considerably

higher than the true value, specially worst for large areal data. For small areal data the bias

is higher when the true ρ is small, but at least the 95% confidence bands (red) cover the true

ρ values. For large areal data the bias is also higher when the true ρ is small, but in this case

the 95% confidence bands (red) do not cover the true ρ values.

Figure 4.2: Posterior estimate and confidence bands of ρ as a function of the true ρ (x-axis) for
100 replicated simulations of small (left column) and large (right column) datasets with Gaussian
distribution.

The SAR models generally perform better in this respect with less estimation bias (blue

line), particularly for higher ρ and large areal data. The 95% confidence bands for the SAR

models (blue bands) cover the true value of ρ for small areal data, while the bands clearly

miss all the true ρ values for large areal data. Finally, the DAGAR models generally perform

much better with much less estimation bias (green line), particularly for small ρ. The 95%

confidence bands of the DAGAR models (green bands) always cover the true value of ρ when
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the data is small. And for large areal data the 95% confidence bands of the DAGAR models

(green bands) always cover the true value of ρ.

Figure 4.3 shows the mean of median posterior estimates and credible bands for regression

coefficients β0, β1, β2 and the error variance 1/τε over the 100 replications of the three models

for small areal data. The 95% confidence bands for all models cover the true value of the

parameters. Since the spatial marginal precision τu has different interpretation for CAR,

SAR and DAGAR models, the estimations for this parameter should not be compared.

Figure 4.3: Credible bands of the parameters as a function of the true ρ (x-axis) for 100 replicated
simulations of small areal data with Gaussian distribution.

Similar plots for large areal data are shown in Figure 4.4. All the models shown that

the bias is lower for large areal data than for small areal data . It can also be seen that

the credible bands for the 95% confidence bands for all models cover the true value of the

parameters. And for the regression coefficients, the higher the ρ parameter, the smaller the

credible bands of all models.
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Figure 4.4: Credible bands of the parameters as a function of the true ρ (x-axis) for 100 replicated
simulations of large areal data with Gaussian distribution.

4.2 Bayesian parameter estimation with non-Gaussian likelihood

Similarly to the previous section, two scenarios were compared throughout two samples

sizes: n = 100 and n = 900.The spatial random effect vector u from these models, it is

simulated from a Gaussian process u ∼ N(0,M/τu), where 1/τu is the spatial marginal

variance and M(.) is a correlation function. Specifically, it is used the exponential correlation

function M(dij) = exp(−φd(i, j)), where d(i, j) represents the Euclidean distance between

the centroids of areas i and j and φ is a parameter related to the range. The values for

simulating u were set as follows, τu = 0.25 and φ = − log(ρ) for ρ = j/10, for j = 1, . . . , 9.

Specifically, assuming φ in this way implies that the average neighbor pair correlation ρ

varies between 0.1 and 0.9. The covariates z1 and z2 are generated from standard normal

distributions. The value of the regression coefficients are set as β0 = 4, β1 = 2, and β2 = 2.

Simulation of the response variable is detailed in the next subsections.
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4.2.1 DAGAR models with Poisson distribution

The response variable Yi for i = 1, . . . , n is simulated for each scenario from a Poisson

distribution with mean

λi = exp(β0 + β1z1 + β2z2 + ui).

It is conducted 100 replications for the eighteen scenarios (nine scenarios for different ρ values

and two scenarios for n = 100 and n = 900). Then, the DAGAR, CAR and SAR models

were fitted throughout INLA.

Figure 4.5 shows the mean of the 100 median posterior estimates and 95% credible bands

intervals of ρ under the three models(CAR, SAR and DAGAR) and two scenarios, for small

areal data, n = 100 areas (left panel) and large areal data, n = 900 areas (right panel). For

both scenarios, estimates for ρ from the CAR model (red lines) are higher than the true

value. For small and large areal data the 95% confidence bands of CAR models (red bands)

do not cover the true ρ values. The SAR models generally perform better in this respect with

less estimation bias (blue line), particularly for higher ρ. The 95% confidence bands for the

SAR models (blue bands) cover the true value of ρ for small and large areal data. Finally,

the DAGAR models generally perform much better than CAR and SAR models, with much

less estimation bias (green line) for all ρ values. The 95% confidence bands of the DAGAR

models (green bands) always cover the true value of ρ when the data is small or large.

Figure 4.5: Estimate and credible intervals of ρ as a function of the true ρ (x-axis) for the simulation
small and large datasets with Poisson distribution.

Figure 4.6 shows the mean of median posterior estimates and credible bands for regres-

sion coefficients β0, β1, β2 over the 100 replications of the three models for small areal data

(left column) and large areal data (right column). For small and large areal data, the 95%

confidence bands for all models cover the true value of the parameters. In general, the confi-

dence bands of all models are smaller as the value of ρ increases. And in some cases, the 95%

confidence bands are a little bit smaller for SAR and DAGAR models. The spatial marginal

precision τu has different interpretation for CAR, SAR and DAGAR models, therefore the

estimations for this parameter are not compared.
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Figure 4.6: Credible bands of the parameters as a function of the true ρ (x-axis) for 100 replicated
simulations for small areal data (left column) and large areal data (right column) with Poisson dis-
tribution.
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4.2.2 Parameter estimation with the Binomial distribution

The response variable Yi for i = 1, . . . , n is simulated for each scenario from a Binomial

distribution Bin(pi,mi), where pi is sampled from:

log

(
pi

1− pi

)
= β0 + β1z1 + β2z2 + ui,

and mi is sampled from {1, 2, 3, . . . , 100}. It is conducted 100 replications for the eighteen

scenarios (nine scenarios for different ρ values and two scenarios for n = 100 and n = 900).

Then, the DAGAR, CAR and SAR models were fitted throughout INLA.

Figure 4.7 shows the mean of the 100 median posterior estimates and 95% credible bands

intervals of ρ under the three models(CAR, SAR and DAGAR) and two scenarios, for small

areal data, n = 100 areas (left panel) and large areal data, n = 900 areas (right panel). For

both scenarios, estimates for ρ from the CAR model (red lines) are higher than the true

value. For small and large areal data the 95% confidence bands of CAR models (red bands)

slightly cover the true ρ values. The SAR models generally perform better in this respect

with less estimation bias (blue line), particularly for higher ρ. The 95% confidence bands for

the SAR models (blue bands) cover the true value of ρ for small and large areal data. Finally,

the DAGAR models generally perform much better than CAR and SAR models, with much

less estimation bias (green line) for all ρ values. The 95% confidence bands of the DAGAR

models (green bands) always cover the true value of ρ when the data is small or large.

Figure 4.7: Estimate and credible bands of ρ as a function of the true ρ (x-axis) for 100 replicated
simulations of small (left) and large (right) datasets with Binomial distribution.

Figure 4.10 shows the mean of median posterior estimates and credible bands for regres-

sion coefficients β0, β1, β2 over the 100 replications of the three models for small areal data

(left column) and large areal data (right column). For small and large areal data, the 95%

confidence bands for all models cover the true value of the parameters. In general, the confi-

dence bands of all models are smaller as the value of ρ increases. And in some cases, the 95%

confidence bands are a little bit smaller for SAR and DAGAR models. The spatial marginal

precision τu has different interpretation for CAR, SAR and DAGAR models, therefore the

estimations for this parameter are not compared.
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Figure 4.8: Credible bands of the parameters as a function of the true ρ (x-axis) for 100 replicated
simulations of small (left) and large (right) areal data with Binomial distribution.
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4.2.3 Parameter estimation with the Gamma distribution

The response variable Yi for i = 1, . . . , n is simulated for each scenario from a Gamma

distribution Gamma(µi, κi), where µi is sampled from:

µi = exp(β0 + β1z1 + β2z2 + ui).

It is conducted 100 replications for the eighteen scenarios (nine scenarios for different ρ values

and two scenarios for n = 100 and n = 900). Then, the DAGAR, CAR and SAR models

were fitted throughout INLA.

Figure 4.7 shows the mean of the 100 median posterior estimates and 95% credible bands

intervals of ρ under the three models(CAR, SAR and DAGAR) and two scenarios, for small

areal data, n = 100 areas (left panel) and large areal data, n = 900 areas (right panel). For

both scenarios, estimates for ρ from the CAR model (red lines) are higher than the true

value. For small and large areal data the 95% confidence bands of CAR models (red bands)

slightly cover the true ρ values. The SAR models generally perform better in this respect

with less estimation bias (blue line), particularly for higher ρ. The 95% confidence bands for

the SAR models (blue bands) cover the true value of ρ for small and large areal data. Finally,

the DAGAR models generally perform much better than CAR and SAR models, with much

less estimation bias (green line) for all ρ values. The 95% confidence bands of the DAGAR

models (green bands) always cover the true value of ρ when the data is small or large.

Figure 4.9: Estimate and credible intervals of ρ as a function of the true ρ (x-axis) for the simulation
small and large datasets.

Figure 4.10 shows the mean of median posterior estimates and credible bands for regres-

sion coefficients β0, β1, β2 over the 100 replications of the three models for small areal data

(left column) and large areal data (right column). For small and large areal data, the 95%

confidence bands for all models cover the true value of the parameters. In general, the confi-

dence bands of all models are smaller as the value of ρ increases. And in some cases, the 95%

confidence bands are a little bit smaller for SAR and DAGAR models. The spatial marginal

precision τu has different interpretation for CAR, SAR and DAGAR models, therefore the

estimations for this parameter are not compared.
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Figure 4.10: Credible intervals of the parameters as a function of the true ρ (x-axis) for the simulation
small areal data analysis with Gamma distribution.



Chapter 5

Applications

5.1 Application 1: Sudden infant death syndrome in North Carolina

About three thousand of babies in the United States unexpectedly die each year. Sudden

unexpected infant deaths include sudden infant death syndrome (SIDS), that is, deaths from

unknown causes. In this chapter, it is analyzed SIDS data in North Carolina (NC). The

data is available in the spData package in R. The data consist of counts of live births,

counts of deaths and counts of SIDS in n = 100 counties of NC from 1974 to 1978. In

particular, the statistical analysis presented in this section has as main goals: (i) to adapt

to the characteristics of the sampled data; (ii) to provide important insights on the spatial

distribution of SIDS; and (iii) to propose a model for estimation of SIDS in the NC.

Figure 5.1 shows the map of the proportion of non-white births, which is used as a

covariate. Figure 5.2 shows the map of the counts of SIDS.

Figure 5.1: Proportion of non-white births in North Carolina dataset.

Figure 5.2: Counts of SIDS in North Carolina dataset.

Through the counties of North Carolina and their location, it is feasible to construct

29
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a graph considering a neighbor county whether both counties share common border lines

(Figure 5.3). The adjacency matrix for this graph is shown in Figure 5.4. The black squares

represent that two counties are neighbors, while the green squares represent that two counties

are not neighbors. This adjacency matrix is used to fit the CAR model.

Figure 5.3: Graph representation of counties map in North Carolina

Figure 5.4: Adjacency Matrix of counties in North Carolina

Let Yi be a random variable that represents the counts of SIDS for an area i = 1, . . . , 100.

Given a latent field x and hyperparameters θ as, it is assumed that Yi are conditional

independent, that is, Yi|x,θ
ind∼ Poisson(λi), where the mean of SIDS is λi and

log(λi) = β0 + β1z1 + ui,

where λi is the expected counts of SIDS at area i, β0 and β1 denote the regression coefficients,

zi is the proportion of non-white births in the county i and ui represents the spatial random

effect of the county i = 1, 2, . . . , n. The specific definition of u = (u1, u2, . . . , un)T depends on
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the model fitted. In particular, the CAR-Poisson and DAGAR-Poisson models are proposed

to fit these data. Then the CAR-Poisson and DAGAR-Poisson models can be defined by the

latent Gaussian field x = {β,u} and hyperparameters θ = (τu, ρ).

Bayesian inference was carried out through INLA for Poisson-DAGAR and Poisson-CAR

models. In order to compare the time requirements of MCMC for DAGAR models, it was

also implemented for the Poisson-DAGAR model. Posterior inference of MCMC was based

upon one chain of 10000 iterations (with a burn-in of 5001 iterations). MCMC for Poisson-

DAGAR model takes 200.2894 seconds. Using INLA the Poisson-DAGAR model runs in a

lower time.

Table 5.1 presents the selection criteria of the fitted models. The WAIC and LPML values

indicate that the Poisson-DAGAR model have a better goodness of fit than the Poisson-

CAR model. Further, RMSEE is also in favor of Poisson-DAGAR model. Based on these

considerations, we conclude that the Poisson-DAGAR model presents the best goodness of

fit to these SIDS data.

Poisson-DAGAR INLA Poisson-CAR INLA

WAIC 472.6759 475.5959
LPML -4.0715 -4.0355

RMSEE 0.9072 0.9568
Time (sec) 16.2 22.6

Table 5.1: The selection criteria for the models proposed, total run time in seconds and RMSEE.

The posterior parameters estimates of Poisson-CAR and Poisson-DAGAR models are re-

ported in Table 5.2. First it should be pointed out the different estimates and confidence

intervals of ρ from both models, although the Poisson-CAR model suggest strong spatial

correlation, the Poisson-DAGAR model suggest moderate spatial correlation. It have seen

consistently from the simulation study that when the underlying spatial correlation is mod-

erate, the DAGAR model performs better than the CAR models. This result is confirmed

through the criteria assessment that choose the Poisson-DAGAR model as the preferred one

for fitting. All the regression coefficient credible intervals do not cover zero. Specifically, for

the Poisson-DAGAR model the posterior mean of the proportion of non-white births (0.3)

indicates that a greater count of births implies higher counts of SIDS.

Poisson-DAGAR INLA Poisson-CAR INLA

β0 0.7637 (0.1213, 1.4102) 0.3990 (-0.3128, 1.0234)
β1 1.5047 (0.0116, 2.9469) 1.7619 (0.4371, 3.1117)
ρ 0.4046 (0.1866, 0.7132) 0.9370 (0.5617, 0.9937)
τu 0.8601 (0.4566, 1.4973) 1.3986 (0.9297, 2.0840)

Table 5.2: Summary statistics: posterior median and 95% credible interval for the hyperparameters
for each model.

Figure 5.5 shows the posterior mean estimates of counts of SIDS in North Carolina from

Poisson-DAGAR model (upper panel) and Poisson-CAR model (lower panel). After com-

paring Figure 5.2 and Figure 5.5, it is confirmed that the Poisson-DAGAR model estimates
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quite good the counts of SIDS in North Carolina.

Figure 5.5: Posterior mean estimates of counts of SIDS from Poisson-DAGAR model (upper panel)
and Poisson-CAR model (lower panel).
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5.2 Application 2: Covid-19 in Peru

The pandemic of coronavirus disease 2019 (Covid-19) has spread to more than 150 coun-

tries around the world. Peru exceeded 1.4 millions reported Covid-19 cases before to 2021-

02-09. The main goal of this application is to study the spatial distribution of counts of

covid-19 in districts of Peru.

The data analyzed in this study are available at: https://www.datosabiertos.gob.pe/

dataset/casos-positivos-por-covid-19-ministerio-de-salud-minsa and contains the

cases of positive Covid-19 test result, either polymerase chain reaction (PCR) or antigen (PC),

from 2020-03-06 to 2021-02-09. Peruvian socio-economic indicators are collected by the Insti-

tuto Nacional de Estadıstica e Informática (INEI), and are available in https://www.inei.gob.pe.

All the variables in the data are summarized in Table 5.3.

Table 5.3: Summary of variables in the coronavirus dataset in Peru

Variable Description

UUID Person id number
Departament Departament of the infected person.
Province Province of the infected person.
District District of the infected person.
Test Type of test. It can be PCR or PC.
Date Date reported.
TotPovRate Rate of total poverty by district.
HouNoSan Rate of Households without access to sanitation by district.
Severity Index of severity by district.

Figure 5.6 shows the daily counts of covid-19 in Peru. It can be observed that the first

wave begin in april 2020 and finish in october 2020, and the country experienced another

wave of Covid-19 in january 2021. This reflects the limitations of the state to contain the

spread of the virus.

In addition, Figure 5.7 shows a map of confirmed cases of Covid-19 in n = 1845 districts

of Peru. It is observed that the districts in the coast has more confirmed cases of covid-19,

followed by the the districts in the jungle. Further, this map shows some evidence of spatial

autocorrelation between the counts of covid-19 in the districts. It means that the higher

(lower) the confirmed cases of covid-19 in some district, the higher (lower) the confirmed

cases of covid-19 in near districts. In fact the Moran I test (0.5257) and Geary C test (0.7813)

proved this statement, since the null hypothesis of no evidence of spatial autocorrelation were

rejected with p− value < 2.2e− 16 and p− value = 0.003777, respectively.

In order to fit areal data models, the adjacency matrix W for these data was built as-

suming that two districts are neighbors if they share somo geographical limit. The adjacency

matrix for these data is shown in Figure 5.8, each black square represents that two districts

are neighbors.

https://www.datosabiertos.gob.pe/dataset/casos-positivos-por-covid-19-ministerio-de-salud-minsa
https://www.datosabiertos.gob.pe/dataset/casos-positivos-por-covid-19-ministerio-de-salud-minsa
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Figure 5.6: Number of daily confirmed cases of Covid-19 in Peru.

The Poisson-CAR, Poisson-DAGAR and zero-inflated Poisson DAGAR (ZIP-DAGAR)

models are proposed to fit these data. These models are defined as follows:

• Poisson-CAR model: Let Yi be a random variable that represents the counts of covid-19

in a district i = 1, . . . , 1845. It is assumed that Yi|x,θ
ind∼ Poisson(λi), where the mean

of covid-19 is λi and

log(λi) = β0 + β1z1i + β2z2i + β3z3i + ui,

where λi is the expected counts of covid-19 at district i, β0, β1, β2 and β3 denote

regression coefficients, z1i, z2i and z3i are the covariates rate of total poverty, rate of

householdswithout access to sanitation and the index of sevirity for the i-th district

and ui represents the spatial random effect of the i-th district. The spatial structured

random effect u = (u1, u2, . . . , un)> follows a CAR structure. From these definitions,

the latent Gaussian field is x = {β,u} and the vector of hyperparameters is θ = (τu, ρ).

• Poisson-DAGAR model: Let Yi be a random variable that represents the counts of

SIDS in a district i = 1, . . . , 1845. It is assumed that Yi|x,θ
ind∼ Poisson(λi), where the

mean of SIDS is λi and

log(λi) = β0 + β1z1i + β2z2i + β3z3i + ui,

where λi,β0, β1, β2, β3, z1i, z2i and z3i are defined in the same way as for the

Poisson-CAR-model. Moreover, ui represents the spatial random effect of the dis-

trict i = 1, 2, . . . , n and u = (u1, u2, . . . , un)T follows a DAGAR structure. From these

definitions, the latent Gaussian field x = {β0, u, } and hyperparameters θ = (τu, ρ).

• ZIP-DAGAR model: This model is proposed because in 15% of districts there were no

confirmed cases of covid-19. Let Yi be a random variable that represents the counts
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Figure 5.7: Number of confirmed cases of Covid-19 in each district of Peru.

of SIDS for an area i = 1, . . . , n. It is assumed that Yi|x, θ
ind∼ ZIP(pi, λi), where pi is

the probability of zero counts of covid-19 is a district i and λi is the mean of SIDS of

district i. The pdf mixture of Yi is defined as:

π(yi|pi, λi) = piδ0 + (1− pi)h(yi|λi)I[yi > 0]

where h(.) is the pdf of a Poisson distribution. Further,

logit(pi) = β
(1)
0 + β

(1)
1 z1i + β

(1)
2 z2i + β

(1)
3 z3i + u

(1)
i ,

log(λi) = β
(2)
0 + β

(2)
1 z1i + β

(2)
2 z2i + β

(2)
3 z3i + u

(2)
i ,
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Figure 5.8: Adjacency Matrix of districts in Peru

where β
(k)
0 , β

(k)
1 , β

(k)
2 and β

(k)
3 for k = 1, 2, denote the regression coefficient for each

linear predictor, z
(k)
1i , z

(k)
2i and z

(k)
3i represent the rate of total poverty, rate of house-

holdswithout access to sanitation and the index of sevirity in the district i for each linear

predictor, and u
(k)
i represents the spatial random effect of the district i = 1, 2, . . . , n for

each linear predictor. Then u(k) = (u
(k)
1 , u

(k)
2 , . . . , u

(k)
n )T follows a DAGAR structure.

From these definitions, the latent Gaussian field is

x = {β(1)0 , β
(1)
1 , β

(1)
2 , β

(1)
3 , u(1), β

(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 u(2)}

and the vector of hyperparameters is

θ = (τ (1)u , ρ(1), τ (2)u , ρ(2)).

Bayesian inference was carried out through INLA for Poisson-DAGAR, Poisson-CAR

and ZIP-DAGAR models. In order to compare the time requirements of MCMC for DAGAR

models, the MCMC algorithm was also implemented for the Poisson-DAGAR model. Poste-

rior inference of MCMC was based upon one chain of 1000 iterations (with a burn-in of 5000

iterations). MCMC for the Poisson-DAGAR model takes 10800 seconds Using INLA all the

fitted models run in a lower time (Table 5.4). This emphasizes the computational advantage

of using the INLA method in comparison with traditional MCMC methods for large spatial

data.

Table 5.4 also presents the selection criteria of the fitted models with INLA. The com-

putational cost for the Poisson-DAGAR model was the lower one. The WAIC and LPML

values indicate that the Poisson-DAGAR model has a better goodness of fit followed by

the Poisson-CAR model. Further, RMSEE (0.6) is similar for Poisson-DAGAR model and

Poisson-DAGAR model. Our previous simulation studies showed that when the spatial cor-
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relation is small the DAGAR model performs better than the CAR model, since the CAR

model usually overestimate the ρ value. In fact, the posterior mean estimate of ρ for the

DAGAR model suggests a weak spatial correlation (0.1912), while the CAR model suggests

a moderate spatial correlation (0.5886), see Table 5.5. Further, it is known that only the

Poisson-DAGAR model interprets correctly ρ. Based on these considerations, it is concluded

that the Poisson-DAGAR model enjoys a better goodness of fit.

Poisson-DAGAR INLA ZIP-DAGAR INLA Poisson-CAR INLA

WAIC 12646.72 13197.08 12659.47
LPML -6.1421 -5.0448 -6.6084

Time (sec) 501 1143 550

Table 5.4: The selection criteria for the models proposed and total run time in seconds.

The posterior mean parameter estimates of the Poisson-DAGAR and Poisson-CAR mod-

els are reported in Table 5.5. The posterior summaries for regression coefficients are quite

similar. The regression coefficient credible intervals for β0, β1, β2 and β3 do not contain the

zero value, thus, the variables rate of poverty, rate of households without access to sanitation,

and severity index are significant to explain the confirmed covid-19 cases by districts. In ad-

dition, for each percentage unit that the rate of poverty and the rate of households without

access to sanitation are inscreased, the mean of covid-19 counts is reduced in 1.76% and

3.96%, respectively. While for each percentage unit that the index of severity is inscreased,

the mean of covid-19 counts is increased in 5.35%.

As it was pointed out, the Poisson-DAGAR model suggest a weak spatial correlation

(ρ = 0.1912). It have seen from the simulation study that when the spatial correlation is

weak, the DAGAR model performs better than the CAR model. This result is confirmed

through the criteria assessment. And the precision parameter τw is small (0.1641), which

means that the spatial marginal variance of the spatial process is large, and it fully explain

the spatial variability in the data. For interpreting the coeficients, there is a 5% increase in

the mean of counts of covid-19 when increase one percent point of Severity. The marginal

densities for all the parameters are presented in the appendix.

Figure 5.9 shows the posterior mean estimates of counts of covid-19 in Peru from the

Poisson-DAGAR (upper panel) and Poisson-CAR (lower panel) models.

Finally, it was also tested the predictive efficiency of the DAGAR model using INLA.

Poisson-DAGAR INLA Poisson-CAR INLA

β0 6.4436 (5.9813, 6.9035) 6.6301 (6.1977, 7.0612)
β1 -0.0178 (-0.0310, -0.0047) -0.0193 (-0.0325, -0.0062)
β2 -0.0404 (-0.0461, -0.0346) -0.0408 (-0.0463, -0.0352)
β3 0.0521 (0.0066, 0.0977) 0.0590 (0.0122, 0.1057)
ρ 0.1912 (0.1624, 0.2248) 0.5886 (0.4529, 0.7088)
τw 0.1641 (0.1497, 0.1797) 0.1680 (0.1548, 0.1815)

Table 5.5: Summary statistics: posterior median and 95% credible interval for the hyperparameters
of each model.
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Figure 5.9: Predicted number of infected peopple in Peru
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In order to predict the counts of Covid-19 in the Kelluyo district. Therefore, the Kelluyo

observation in the dataset was removed and then predict it with the Poisson-DAGAR model.

From table 5.6, the Kelluyo district has a population of more than 22 thousand people

and 28 of them are infected with the virus. Moreover, according to the dataset, Kelluyo has

been identified with ID 47.

ID District Province Departament Population Number of cases

47 Kelluyo Chucuito Puno 22766 28

Table 5.6: Kelluyo information for Covid-19.

The posterior predictive distribution is given by:

π̃(y47|y−47) =

∫
π̃(y47|λ47)π̃(λ47|y−47)dλ47,

Fig. 5.10 shows the posterior predictive density of Kelluyo, π̃47|y−47. The red vertical

line indicates the observation y47 that was removed.

Figure 5.10: Posterior predictive density of Kelluyo π̃47|y−47.
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Conclusions and future works

The main goal of this thesis was to implement aproximate Bayesian inference for DA-

GAR models through INLA. DAGAR models with Gaussian distribution and non gaussian

distributions were implemented for simulation studies with small and large areal data and a

wide band of scenarios under weak and strong spatial autocorrelation. This analysis showed

the efficiency of the INLA algorithm for DAGAR models. Using INLA each simulation for

n = 900 took less than two minutes, while the MCMC approach took more than two hours.

The results also showed the main advantages of DAGAR models, in terms of interpretability

of the spatial autocorrelation parameter. Specially, when the spatial autocorrelation param-

eter estimate is moderate, because it is evident that in this case the DAGAR models are

much better.

The performance of the DAGAR model using INLA was also assessed through two appli-

cations. The first application studied sudden infant death syndrome data (SIDS) in counties

of North Caroline. The proposed models for these data were the DAGAR and CAR models

for Poisson distributions. Although the data is small, these data is studied because the CAR

model estimates a high spatial autocorrelation parameter, and previous studies has shown

that this model usually estimates high values for this parameter. In fact, it was found out

that the DAGAR model fits better these data. This result agrees with the statement that DA-

GAR models performs better than CAR models, specially when the spatial autocorrelation

is moderate.

On the other hand, the second application studies a large dataset of covid-19 confirmed

cases in districts of Peru. First, the efficiency of running the DAGAR model using INLA was

huge in terms of time requirements. The DAGAR model for a Poisson distribution was better

in terms of goodness of fit, in addition, the DAGAR model enjoys a better interpretability, in

terms of the spatial autocorrelation parameter and precision parameter. The results showed

that the confirmed cases of covid-19 are similar between districts, this pattern is natural

due to the behaviour of the virus, that is extremely contagious. Morevover, the results also

showed that the higher the poverty of a district, the lower the cases of covid-19. In fact,

poor districts of Peru are isolated and probably people do not travel outside their district

frequently. Finally, the higher the severity index, an indicator of inequality between the poor

people in a district, the higher the confirmed cases of covid-19. From an health and social

point of view, the modeling is relevant because it allows authorities to analyze and focus

their attention on districts with high incidence of covid-19, since they could be places in

40
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emergency situation.

Finally, as future works, the DAGAR model can be extended to implement a spatio-

temporal model using INLA. This extension would make feasible to fit large data, in terms

of spatial locations as well as times, in a reasonable time. Due to the flexibility of INLA,

can also be fitted gaussian or non-gaussian distributions, zero-inflated models, generalized

additive models, among others. Moreover, the covid-19 data could also be fitted with this

model in order to study the temporal evolution of the spatial pattern of the virus. Although

fitting covid-19 data is extremely difficult, this kind of modeling can be used to find out

which covariates and factors can specifically explain of the virus in , as well as to understand

better the spatio-temporal distribution of the virus in our country.



Appendix A

A.1 Application 2: covid-19 data in Peru

Figure A.1: Posterior marginal distribution of β0 of the Poisson DAGAR model fitted.

42
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Figure A.2: Posterior marginal distribution of β1 of the Poisson DAGAR model fitted.

Figure A.3: Posterior marginal distribution of β2 of the Poisson DAGAR model fitted.
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Figure A.4: Posterior marginal distribution of β3 of the Poisson DAGAR model fitted.

Figure A.5: Posterior marginal distribution of ρ of the Poisson DAGAR model fitted.
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Figure A.6: Posterior marginal distribution of τ of the Poisson DAGAR model fitted.



Appendix B

B.1 Implementation of SAR latent model in R-INLA:

’inla.rgeneric.SAR.model’ <- function(

cmd = c("graph", "Q", "mu", "initial", "log.norm.const",

"log.prior", "quit"),

theta = NULL) {

interpret.theta <- function() {

return(list(prec = exp(theta[1L]),

rho = 1 / (1 + exp(-theta[2L]))))

}

graph <- function(){

return(Q())

}

Q <- function() {

require(Matrix)

param <- interpret.theta()

return(param$prec * (Diagonal(nrow(Minc), x = 1) -

param$rho)%*% t(Diagonal(nrow(Minc), x = 1) - param$rho ))

}

mu <- function() {

return(numeric(0))

}

log.norm.const <- function() {

return(numeric(0))

}
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log.prior <- function() {

## this one I have not checked.

param = interpret.theta()

res <- dgamma(param$prec, 1, 5e-05, log = TRUE) + log(param$prec) +

log(1) + log(param$rho) + log(1 - param$rho)

return(res)

}

initial <- function() {

return(c(0, 0))

}

quit <- function() {

return(invisible())

}

if (is.null(theta))

theta <- initial()

res <- do.call(match.arg(cmd), args = list())

return(res)

}

B.2 Implementation of CAR latent model in R-INLA:

’inla.rgeneric.CAR.model’ <- function(

cmd = c("graph", "Q", "mu", "initial", "log.norm.const",

"log.prior", "quit"),

theta = NULL) {

#Internal function

interpret.theta <- function() {

return(

list(prec = exp(theta[1L]),

rho = 1 / (1 + exp(-theta[2L])))

)

}

graph <- function(){

require(Matrix)
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return(Diagonal(nrow(W), x = 1) + W)

}

Q <- function() {

require(Matrix)

param <- interpret.theta()

return(param$prec * (Diagonal(nrow(Minc), x = 1) - param$rho) )

}

mu <- function()

{

return(numeric(0))

}

log.norm.const <- function() {

return(numeric(0))

}

log.prior <- function() {

param = interpret.theta()

res <- dgamma(param$prec, 1, 5e-05, log = TRUE) + log(param$prec) +

log(1) + log(param$rho) + log(1 - param$rho)

return(res)

}

initial <- function() {

return(c(0, 0))

}

quit <- function() {

return(invisible())

}

res <- do.call(match.arg(cmd), args = list())

return(res)

}
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B.3 Implementation of DAGAR latent model in R-INLA:

##### DAGAR precision #####

dagarprec <- function(rho,Minc,ni,maxn, neimat, nijvec, intersectmat) {

n=length(ni)

u=rho^2

sumfuncvec=rep(0, maxn)

for(i in 1:maxn) sumfuncvec[i]=i/(1-u+i*u)

cumsumfuncvec=rep(0, maxn)

cumsumfuncvec[1]=sumfuncvec[1]

for(i in 2:maxn) cumsumfuncvec[i]=cumsumfuncvec[i-1]+sumfuncvec[i]

Qd=matrix(0,n,n)

for(i in 1:n){

s=0

if(ni[i]>0) for(ck in 1:ni[i]){

k=neimat[i,ck]

s=s+ u*cumsumfuncvec[ni[k]]/(ni[k]*(ni[k]+1))

Qd[i,k]=Qd[i,k]-rho

}

Qd[i,i]=(1-u)+u*ni[i]/2+s

if(i < n){

for(j in (i+1):n){

t=0

jc=0

counter=(i-1)*n+j

nij=nijvec[counter]

if(nij>0){

jointn=intersectmat[counter,1:nij]

for(ck in 1:length(jointn))

{

k=jointn[ck]

t=t+1/(2*(ni[k]+1))+(ni[k]-

cumsumfuncvec[ni[k]])/(ni[k]*(ni[k]+1)*(ni[k]-1))

}

}

Qd[i,j]=Qd[i,j]+t

Qd[j,i]=Qd[j,i]+t

}

}

}

Qd=Qd/(1-rho^2)
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return(Qd)

}

Q <- function() {

require(Matrix)

param <- interpret.theta()

return(param$prec * dagarprec(param$rho,Minc,ni,maxn, neimat,

nijvec, intersectmat))

}

mu <- function()

{

return(numeric(0))

}

log.norm.const <- function() {

return(numeric(0))

}

log.prior <- function() {

param = interpret.theta()

res <- dgamma(param$prec, 1, 5e-05, log = TRUE) + log(param$prec) +

log(1) + log(param$rho) + log(1 - param$rho)

return(res)

}

initial <- function() {

return(c(0, 0))

}

quit <- function() {

return(invisible())

}

res <- do.call(match.arg(cmd), args = list())

return(res)

}
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