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Resumen

La crisis financiera del 2008 en los Estados Unidos de América impulsó a
que los economistas se enfocaran en sus determinantes y poĺıticas (Crotty,
2009) para salir de ella. A partir de este esfuerzo, las ideas y el trabajo de
(Minsky, 1982) surgieron nuevamente. Steven Keen en (Keen, 1995) presenta
un modelo que cristaliza estas ideas en un sistema de ecuaciones diferenciales
donde la participación de la deuda es una de las variables e indicadores de
una posible crisis. Este modelo es una extensión del modelo en (Goodwin,
1967) donde se añade el sector financiero. El Perú no está exento de una
crisis financiera y uno de los motivos es que es un páıs dependiente del precio
del cobre que a su vez depende de grandes economı́as como China y los
Estados Unidos de América que se encuentran en competencia comercial
constante. El apalancamiento desmedido de la deuda privada durante un
periodo de prosperidad económica debido a la apreciación del sector minero
seguido de una cáıda significante del precio del cobre puede ser un esbozo de
la configuración de una crisis financiera en Perú. La contribución del presente
documento es la calibración de los modelos de Goodwin y Keen para Perú
durante el periodo de 1991 al 2014 y la obtención de poĺıticas económicas de
control para la estabilización de la economı́a peruana en caso haya un crisis
prevista. Nos apoyamos en el análisis de estabilidad de (Costa Lima, 2013)
y en las técnicas de control no lineal presentadas y desarrolladas en (Gray,
1995) e (Isidori, 2002). Uno de los resultados obtenidos para el caso particular
en el que la participación laboral y el ratio de empleo son altos es que la fuerza
laboral total debe aumentar, mientras que la productividad laboral y la tasa
de interés real deben dismunir. La dismunición de la productividad laboral
puede parecer contra intuitivo, pero se traduce en mayor tasa de empleo
mientras que el producto es no creciente. Los resultados no son generales y
dependen del punto inicial de la economı́a, pero ayudan guiar las poĺıticas
de desarrollo económico.
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Chapter 1

Introduction

If economy fluctuates for whatever reason, then it is almost always
possible to neutralize these cyclic motions by means of anti-cyclic
demand policies. (Gabish and Lorentz, 1987)

In 2008, the global economy fell into crisis due to the collapse of the US
subprime mortgage market and flaws of the financial system. In particular,
deregulation and the globalization of financial markets were important factors
for the crisis (Crotty, 2009). In this context, the work of Minsky becomes rel-
evant to analyze this phenomenon. His financial instability hypothesis (FIH)
(Minsky, 1982) acknowledges the unmoderated issuing of private debt as the
causal of instability. Minsky states that there is a cycle of debt which starts
with the appreciation of an asset during a prosperous stage of the economy
and investors targeting this asset, for example, because of innovation in tech-
nology, debt is issued without restrictions to invest in this asset.

An endogenous non-linear cycle model which considers the FIH was pro-
vided by Keen (Keen, 1995). This model is based on the Goodwin model
(Goodwin, 1967) which is a growth model that aims to represent endogenous
cycles between employment rate and wage share, but it disregards the finan-
cial sector. Moreover, originally, the model was set up as a Lotka-Volterra
dynamical systems that provides a predator-prey dynamics. This was done
by setting the Phillip’s curve as a linear relationship in the dynamics of
the wage share. In (Blatt, 1983), the author assumes a non-linear Phillips
curve so that there is a singularity in the dynamics at full employment which
translates into the employed people having power over their wages at full
employment. That modification, also, restricts the employment rate from
zero to one. The empiric analysis has been addressed by works in (Harvie,
2000; Herrera-Medina & Garcia-Molina, 2010; Grasselli & Maheswari, 2018;
Moura & Ribeiro, 2012; Dávila-Fernandez & Araujo, 2019) in which the
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authors provide a methodology to calibrate the model.
A model which includes the private/financial sector was developed by

Keen with the intention of reproducing financial instabilities (Keen, 1995,
2013). This model can be seen as an extension to the Goodwin model. The
idea behind it is that debt follows a cycle which starts with the appreciation
of an asset, then financial entities issuing debt to the private sector without
the proper restrictions. The price of the asset keeps increasing until it is too
expensive. This leads to a decrease in the demand for the asset. This reduces
its price and so it leaves an unpayable debt of a lower value asset (Bernanke,
2012). Such is the case depicted by the transition from the Great Moderation
to the financial crisis of 2008, for example. In the model, debt share is added
as a third variable with its dynamics being affected by the utilities of the
firms and the capital-to-output ratio. Specifically, the increment of debt
share is proportional to the product of the difference of current debt share
and capital-to-output ratio and the utilities. Roughly, if capital is less than
current debt share and there is an increment in the utilities, then firms prefer
to pay their debt, if capital is greater than the current debt and there is an
increment in utilities, then firms prefer to get more debt to invest. Also, the
utilities affect the employment rate postively instead of negatively as the wage
share does in the Goodwin model. The Keen model is not the only extension
of the Goodwin model, for example the work of (Sordi & Vercelli, 2014)
extends the former model in a different way by assuming dissequilibrium in
the goods market, but for this manuscript the focus is on the Keen model.

Well known is the fact that Peru is one of the leading countries in copper
production 1 and the Peruvian economy depends mainly on mineral export-
ing activities 2. Moreover, Peru, which is a small open economy is subjected
to the international commodity prices, particularly, the price of copper. Re-
cently the price of copper and its relative price 3 have been decreasing 4. After
an eventual sustained rise it follows the appreciation of the sector and with
this an increase in private investment. Credit accompanies react to these
changes and the financial sector is more prone to issue debt to investors and
firms. As for this context, the price of copper is unstable and a leverage of

1Based on data from U.S. Geological Survey, Mineral Commodity Summaries 2018,
Peru was the second world producer of copper after Chile.

2According to BCRP Annual Report 2017, external sector, in 2017 the share of total
exports derived from mining and hydrocarbons was 70% and the share of exports of copper
was 30%.

3CPI in USD divided by the price of copper in USD per kilogram.
4As for 2019. The reasons for this might be the commercial war between the US and

China which results in speculation on several markets, particularly, the copper market as
China leads the world’s demand of copper.
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great magnitude, justified by the economic blossom, followed by a slump in
the price would lead to reach high unpayable amounts of debt, so depicting
a financial crisis.

This work is based on the the analysis of equilibria (Costa Lima, 2013)
and the contribution lies in the calibration of the Goodwin and Keen models
for Peru for the period of 1991 to 2014 along with the application of control
techniques to drive Keen’s model states in order to avoid a financial crisis,
which otherwise would be inevitable. It is assumed that the initial state of
the economy lies in the instability region of the model, this is, out of the
significant and stable equilibrium region. The trajectory soon leads to rapid
increments of debt share with shrinkage of employment and wage share. To
be able to steer the state of the economy from this undesirable situation,
first, feedback linearization (Kailath, 1980) is used to obtain a linear version
of the model through a coordinate change known as the Byrne-Isidori trans-
formation (Isidori, 2002). Then, the control techniques are applied to this
linear model. These are pole placement and optimal control.

The first technique does not offer a way to execute constraints on the
control policy, which are of interest, because the results may show abrupt and
unreal jumps, but it is much simpler computationally so results are obtained
faster. Results show that a desirable condition on the real interest rate such
as being positive is not met in general. Given this, optimal control is applied
which guarantees the satisfaction of the constraints when there is feasibility.
One step ahead prediction is used for this setting. For this, Ode45 from
MatLab was modified to obtain the value of the sampling time which is not
fixed in its algorithm. It is shown that by modifying the model and adding
the proper dynamics (linear) of a set of former parameters, the controllability
of the system is guaranteed (exact linearization of the model). With this
modification, the controls of the model are the growth of labor productivity,
total labor force and real interest rate. These economics variables are not
immediately changeable so the results are interpreted in terms of expected or
desirable policies to achieve to get the economy out of financial crisis path.

To steer a point in the financial unstable region to the financial stable
region, a reference trajectory has to be followed. In the present work it is
designed following the gradient-based planner algorithm (Lavalle, 2006). The
procedure consists in modifying the vector field of the Keen model by placing
an attractor point inside the stability region of the vector field. Depending on
the force of this attractor the algorithm results in different reference paths.
It could be the case in which there is no path available, this occurs when
the force of the attractor is not strong enough and the trayectory runs into
singularities, for example, the singularity of the Phillip’s curve when there is
full employment.
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The manuscript is organized as follows. Chapter 2 and 3, address the
Goodwin and Keen models respectively, along with their equilibria analysis.
In chapter 4, the models for Peru are calibrated. The control is performed
and the main results are stated in chapter 5. Conclusions and discussion are
found in chapter 6 and the theoretical aspects of the techniques are found in
the appendix.
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Chapter 2

The Goodwin Model

2.1 The model

The Goodwin model is a two-dimensional dynamical system based on Lotka-
Volterra model in which wages and employment work as predator and prey
respectively generating a cycle. This stylized fact has been empirically tested
in (Harvie, 2000) and (Herrera-Medina & Garcia-Molina, 2010). Evidence
suggests that the model works well qualitatively, this is, the behavior of
the variables taken from real data are strongly correlated with that of the
trajectories of the simulation. On the other side, at the quantitative level,
the model makes inaccurate predictions of the center and direction of the
cycles.

The model does not consider the financial and government sectors, but
extensions to it have been proposed 1. In the present section we follow the
work of (Costa Lima, 2013) in which a mathematical analysis of the model
is provided. In what follows we deduce the Goodwin model from economic
assumptions as presented in (Costa Lima, 2013). We assume that capital and
employment are complementary so production follows a Leontief behavior
determined by capital and labor.

Y (t) = min

{
K(t)

ν
, a(t)L(t)

}
The capital-to-output ratio which indicates productivity of capital invest-

ment is represented by ν. Technology is assumed exogenous and continually
and constantly impacting labor productivity growth. Total labor force is,

1Costa Lima (2013), Harvie, Kelmanson and Knapp (2007) and Sordi and Vercelli
(2014), for example.
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also, growing constantly, this is

ȧ(t)

a(t)
= α, (2.1)

Ṅ(t)

N(t)
= β (2.2)

therefore the functions evolve according to

a(t) = a0e
αt, (2.3)

N(t) = N0e
βt (2.4)

for some real numbers a0 and N0. Employment rate is denoted by

λ(t) =
L(t)

N(t)
(2.5)

In order not to depart from the optimal allocation of resources we take on
full capital utilization

Y (t) =
K(t)

ν
= a(t)L(t) (2.6)

Next, as it is explained in (Blatt, 1983), the Goodwin model assumes that the
fractional rate of change of real wages is a function of the employment rate.
As wages have a positive correlation with inflation and employment is easily
expressed in terms of unemployment such a function is the Phillips curve.
As it is seen in section 4.2, the same author provides an specific form for this
function that guarantees that wages grow faster when the economy is near
full employment. This is explained by the pressure employers produce due to
their appreciation in the labor market in the lapse of economic blossom. Let
us denote w(t) as the real-wage function so that the relationship is expressed
as

ẇ(t)

w(t)
= Φ(λ(t)), Φ′(λ(t)) > 0 (2.7)

The model doesn’t take financial and government sector into account and
embraces Say’s law which states that if there is something demanded it is
because supply makes it affordable through income. This means that aggre-
gate supply and demand are the same. This is

Y (t) = I(t) + C(t) (2.8)
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because of this the profits and consumption functions adopt the following
form:

Π(t) := Y (t)− C(t) = I(t) (2.9)

C(t) = w(t)L(t) (2.10)

This implies that capital grows according to the following expression:

K̇(t) = (Y (t)− w(t)L(t))− δK(t) (2.11)

with a δ depreciation rate. We define ω as the wage share or labor share of
the economy as

ω(t) :=
w(t)L(t)

Y (t)

From equation 2.6, the following relationship holds:

ω(t) =
w(t)L(t)

a(t)L(t)
=

w(t)

a(t)
, (2.12)

also,

Π(t) = Y (t)− w(t)L(t) (2.13)

= Y (t)− ω(t)a(t)L(t) (2.14)

= (1− ω(t))Y (t) (2.15)

from full capital utilization we have 2

Y (t)ν = K(t).

Replacing the latter identity into equation 2.11, we have

νẎ (t) = (1− ω(t))Y (t)− δνY (t)

= (1− ω(t)− δν)Y (t)

then

Ẏ (t)

Y (t)
=

(1− ω(t))

ν
− δ (2.16)

2This also implies that capital and product have the same rate of growth.
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Taking logarithm to equation 2.12, deriving and from the definition of em-
ployment rate in equation 2.5 and full capital utilization we obtain the fol-
lowing system in terms of growth

ω̇(t)

ω(t)
=

ẇ(t)

w(t)
− ȧ(t)

a(t)

λ̇(t)

λ(t)
=
Ẏ (t)

Y (t)
− Ṅ(t)

N(t)
− ȧ(t)

a(t)

(2.17)

taking equation 2.7 and 2.16 into account we finally have the following dif-
ferential equation system:

ω̇(t) = ω(t) [Φ(λ(t))− α]

λ̇(t) = λ(t)

[
1− ω(t)

ν
− α− β − δ

]
(2.18)

2.2 Equilibria

The number of equilibria of the system depends on the functional form of
Φ which represents the relationship of employment and the growth of real
wages in a similar manner as the Phillips curve. In the original setting of
the Goodwin model the Phillips curve is a linear function which reduces the
analysis of the system to a Lotka Volterra system. Later, we take a specific
non-linear curve.

The trivial equilibrium of the model is the origin with jacobian matrix
equal to

J(0, 0) =

[
Φ(0)− α 0

0 1
ν
− α− β − δ

]
the eigenvalues are equal to Φ(0) − α and 1

ν
− α − β − δ. In order for this

equilibrium point to be a saddle point 3, we need to impose the following
conditions:

Φ(0)− α < 0 (2.19)

1

ν
− α− β − δ > 0 (2.20)

The non-trivial equilibria of system 2.18 are equal to

(ω̄, λ̄) = (1− ν(α + β + δ),Φ−1(α)) (2.21)

3Hartman-Grobman theorem is used.
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The jacobian matrix at the equilibrium points is the following:

J(ω̄, λ̄) =

[
0 ω̄Φ′(λ̄)

− λ̄
ν

0

]
the trace of the matrix is zero and the determinant is

detJ(ω̄, λ̄) =
λ̄ω̄

ν
Φ′(λ̄)

assuming Φ′(λ̄) > 0 as we did previously the solutions around the equilibrium
are orbits 4 . The eigenvalues are complex with imaginary coefficient equal
to √

λ̄ω̄

ν
Φ′(λ̄),

then the length of the cycles very close to the equilibrium is

2π

(
λ̄ω̄

ν
Φ′(λ̄)

)−1/2

The direction of the cycle can be obtain from the phase diagram. For
this we take ω = 1− ν(α+ β + δ) which is one coordinate of the non-trivial
equilibrium. From equation 2.18 one has that for Φ(λ)−α > 0 the flow field
arrows head to the right and for Φ(λ)− α < 0 arrows head to the left. Thus
the direction of the trajectories are clockwise.

4Structurally speaking, this is because the growth of the labor share is purely in terms
of the employment rate. In the same manner for the growth of the employment rate.
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Figure 2.1: The Goodwin model represents the trade-off between wage share
and employment rate. In the figure, several cycles of the Goodwin model are
shown.

There is no conclusive answer of whether the cycles in the Goodwin model
are short-run or a long-run cycles 5 . The cycle length for Peru has been
estimated in (Seminario, 2016). The short-run cycle is between 0 and 10
years, the medium-run cycle is between 11 and 49 years and the long-run
cycle is greater than 50 years. As mentioned in (Herrera-Medina & Garcia-
Molina, 2010): the cycle measurement literature focuses on GDP and not so
on labor or wage share as in Goodwin. This leaves the door open for the
possibility of uncorrelated length between the measurement and the classical
literature.

2.3 Cycle structure

The Goodwin model 2.18 describes cycles around the stable equilibrium.
This means that labor share and employment rate are both being limited to
grow or decrease and cannot do it indefinitely. We are going to shed light
on what is the restriction. From the model, it is observed that the rate of

5Harvie (2000)
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growth of both variables fluctuate: increasing for some determined regions
and decreasing for others. These regions are the phases of the business cycle.
To understand the dynamics of the model, we work with the model of growths
and infer features of the behavior of the fluctuation of the variables by taking
the derivative:

d

dt

ω̇(t)

ω(t)
= Φ′(λ(t))λ(t)

[
1− ω(t)

ν
− α− β − δ

]
d

dt

λ̇(t)

λ(t)
= −ω(t)

ν
[Φ(λ(t))− α]

(2.22)

As Φ′(λ(t))λ(t) > 0, the rate of growth of labor share increases if and only if
the complement of capital share accumulated due to economic growth with
respect to the product is greater than labor share. This is,

d

dt

ω̇(t)

ω(t)
> 0 ⇐⇒ ω(t) < 1− ν(α + β + δ)

from the second equation, rate of growth of employment rises if and only if
wage inflation is less than productivity growth:

d

dt

λ̇(t)

λ(t)
> 0 ⇐⇒ Φ(λ(t)) < α

Figure 2.2 describes the phases of the cycle. Labor share rate of growth
increases and the growth of employment is positive during the recovery and
boom

d

dt

ω̇(t)

ω(t)
> 0,

λ̇(t)

λ(t)
> 0

During boom and recession employment rate of growth starts decreasing and
labor share growth remains positive

d

dt

λ̇(t)

λ(t)
< 0,

ω̇(t)

ω(t)
> 0

As the economy advances, the rate of growth of labor share starts decreasing
and employment shrinks. This is what happens in the recession and the later
slump

d

dt

ω̇(t)

ω(t)
< 0,

λ̇(t)

λ(t)
< 0
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Figure 2.2: For the Goodwin model, the space is split in four regions. During
the boom, wage share and employment rate increase, this follows a reces-
sion in which employment rate starts deaccelerating, then wage share starts
srhinking along with the employment rate during the slump stage and finally
the recovery is characterized by the deacceleration of the decrease in wage
share and the increase in employment rate.

In the slump and recovery phases rate of growth of employment increases
and the growth of labor share dwindles

d

dt

λ̇(t)

λ(t)
> 0,

ω̇(t)

ω(t)
< 0

We also observe that during the boom labor share growth is positive and so
does employment rate

ω̇(t)

ω(t)
> 0,

λ̇(t)

λ(t)
> 0

during the recession the growth of labor share still increases, but employment
rate of growth starts decreasing

ω̇(t)

ω(t)
> 0,

λ̇(t)

λ(t)
< 0
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during the slump the growth of labor share turns negative and the growth of
employment keeps decreasing

ω̇(t)

ω(t)
< 0,

λ̇(t)

λ(t)
< 0

Recovery starts by making the growth of employment positive, the the growth
of labor share is still negative

ω̇(t)

ω(t)
< 0,

λ̇(t)

λ(t)
> 0

2.4 Interpretation

The system in terms of growth provides a better grasp of the intuition the
model carries through the equations. Following system 2.17, we have

ω̇(t)

ω(t)
= Φ(λ(t))− α

λ̇(t)

λ(t)
=

1− ω(t)

ν
− α− β − δ

If product growth rate rises faster than the sum of constant rates of labor
productivity and total labor force (equations 2.3 and 2.4) then employment
starts rising. This will pull the growth of labor share to stop decaying and
start increasing as employment reaches its stationary value. Now labor share
is growing. This implies that product growth decreases so slowing employ-
ment growth 6 . As labor share reaches its stationary value employment
starts decaying. It does so until again it reaches its stationary value and the
trade-off between the variables repeats again. The figure 2.1 illustrates the
previous assertion 7 .

Now that we have a thorough understanding of the Goodwin model, we
study the Keen model which extends Goodwin on the basis of the Financial
Instability Hypothesis of Minsky.

6In Hamilton (1979), the author provides the example of business cycles in a small
township analyzing the demand of employment. The example is attributed to M.B Hamil-
ton

7We also note in the figure the asymmetry of the fluctuation.
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Chapter 3

The Keen Model

3.1 The model

The Keen model is presented as in (Costa Lima, 2013). We abandon the
neoclassical idea of Say’s law and relax the assumption that capitalists invest
the total of their profits. Firms can now borrow credit from banks at a fixed
interest rate. Debt is paid when investment is lower than profits and firms
leverage when higher investment is required. In this way we introduce the
finance sector in Goodwin’s model. The time lapse is infinite so that debt is
not necessarily entirely paid and credit can increase boundlessly leading the
economy to a financial crisis.

The variable D stands for the amount of debt in real terms. Profits, as
we had before, are represented by the following equation:

Π(t) = (1− ω(t))Y (t)

we define the share of debt on product

d(t) :=
D(t)

Y (t)

and the net profits share

π(t) := 1− ω(t)− rd(t)

where r is the interest rate. Then we have

Π(t) = (1− ω(t))Y (t)− rD(t)

= (1− ω(t)− rd(t))Y (t)

= π(t)Y (t).
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According to (Keen, 1995) in which the author models the ideas of (Minsky,
1982), new investment is an increasing function of the net profit share, called
here π. Then investment is represented as:

I(t) = κ(π(t))Y (t)

and capital accumulation follows

K̇(t) = κ(π(t))Y (t)− δK(t)

from the Leontief production function and the full capital utilization assump-
tions, capital and product have the same rate of growth 1 , this is

Ẏ (t)

Y (t)
=
κ(π(t))

ν
− δ

and from the definition of λ we obtain

λ̇(t)

λ(t)
=
κ(π(t))

ν
− α− β − δ

where the rate of new investment is a nonlinear increasing function of the net
profit. The model assumes three economic agents which are households, firms
and banks. The varying behavior of debt is led by the return on investment.
If ROI 2 rises considerably, debt is being paid to the banks, on the contrary
if it lowers, firms are leveraging and so financing the increase in investment
with bank credit. This pattern is mathematically crystallized by the following
differential equation:

Ḋ(t) = κ(π(t))Y (t)− π(t)Y (t)

we translate the behavioral equation to

Ḋ(t)

D(t)
= [κ(π(t))− π(t)]

Y (t)

D(t)

= [κ(π(t))− π(t)] d−1(t)

then we have the following rate of growth relationship:

ḋ(t)

d(t)
=
Ḋ(t)

D(t)
− Ẏ (t)

Y (t)

= [κ(π(t))− π(t)] d−1(t)− κ(π(t))

ν
+ δ

= [κ(π(t))− (1− ω(t))] d−1(t) + r − κ(π(t))

ν
+ δ

1See equation 2.6
2ROI = Y/I
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as in 2.17 we have the growth system:

ω̇(t)

ω(t)
=

ẇ(t)

w(t)
− ȧ(t)

a(t)

λ̇(t)

λ(t)
=
Ẏ (t)

Y (t)
− Ṅ(t)

N(t)
− ȧ(t)

a(t)

ḋ(t)

d(t)
=
Ḋ(t)

D(t)
− Ẏ (t)

Y (t)

(3.1)

which yields following system:

ω̇(t) = ω(t) [Φ(λ)− α]

λ̇(t) = λ(t)

[
κ(π(t))

ν
− α− β − δ

]
ḋ(t) = d(t)

[
r − κ(π(t))

ν
+ δ

]
+ [κ(π(t))− (1− ω(t))]

(3.2)

3.2 Equilibria

We are going to calculate the different equilibria of the model. In total there
are five equilibrium points, but only two of them appear always without any
restriction. The existence of the three others equilibrium points are subjected
to the compliance of very strict equations. Thus, most probably these points
will not exist so the stability analysis will focus only on the economically
meaningful points.

We proceed to find the equilibrium points by setting

ω(t) = ω

λ(t) = λ

d(t) = d

and defining

π := 1− ω − rd = π(t),

we have
0 = ω

[
Φ(λ)− α

]
0 = λ

[
κ(π)

ν
− α− β − δ

]
0 = d

[
r − κ(π)

ν
+ δ

]
+ [κ(π)− (1− ω)]

(3.3)
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which is a system with four solutions. The first type of equilibrium has the
following form:

(0, 0, d)

where d is a solution of

d

[
r − κ(π)

ν
+ δ

]
+ [κ(π)− (1− ω)] = 0

π = 1− rd

The second type of equilibrium has the following form:

(0, λ, d)

where λ ∈ R, κ(π) = ν(α + β + δ) satisfying

d =
1− ν(α + β + δ)

r − α− β
,

κ−1(ν(α + β + δ)) = 1− rd

The third type of equilibrium must satisfy Φ(0) = α and has the following
form:

(ω, 0, d)

where ω and d satisfy

d

[
r − κ(π)

ν
+ δ

]
+ [κ(π)− (1− ω)] = 0.

The forth and desirable type of equilibrium is generated by setting λ = Φ−1(α),
κ(π) = ν(α + β + δ) and

d =
ν(α + β + δ)− 1 + ω

α + β − r

then we have the point (ω, λ, d) with

ω = 1− π − rd, (3.4a)

λ = Φ−1(α), (3.4b)

d =
ν(α + β + δ)− π

α + β
(3.4c)
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associated to this point is its stability region. Figure 3.2 shows this region
for the case presented in (Costa Lima, 2013) and figure 3.1 shows a stable
trajectory. Next, by making the following change of variable u(t) = d−1(t)
the system is obtained:

ω̇(t) = ω(t) [Φ(λ)− α]

λ̇(t) = λ(t)

[
κ(π(t))

ν
− α− β − δ

]
u̇(t) = u(t)

[
κ(π(t))

ν
− δ − r

]
− u2(t) [κ(π(t))− (1− ω(t))]

then a fifth equilibrium appears:

(0, 0, 0)

We analyze the stability of these equilibria by the Hartman-Grobman
theorem. The jacobian matrix of the system is the following:

J(ω, λ, d) =



Φ(λ)− α ωΦ′(λ) 0

−λκ
′(π)

ν

κ(π)

ν
− α− β − δ −rλκ(π)

ν

κ′(π)

[
d

ν
− 1

]
+ 1 0 γ


with

γ = r − κ(π)

ν
+ δ + rκ′(π)

[
d

ν
− 1

]
,

we focus on determining the stability of the fourth and fifth equilibrium
as both are meaningful points. For the fourth point we have the following
jacobian matrix:

J(ω, λ, d) =



0 K0 0

−K1 0 −rK1

K2 0 rK2 − (α + β)


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with

K0 = ω1Φ′(λ1)

K1 =
λ1κ

′(π1)

ν

K2 =
(d1 − ν)κ′(π1) + ν

ν

we now compute the characteristic polynomial and then applied the Routh-
Hurwitz criterion for third degree polynomials to give a sufficient condition
for the point to be stable.

p3(y) = y3 + [(α + β)− rK2]y2 +K0K1y +K0K1(α + β)

by the alleged criterion we have that the following condition establishes the
stability of the point:

r[
κ′(π1)

ν
(π1 − νδ)− (α + β)] > 0 (3.5)

assuming a positive real interest rate r > 0, this implies

κ′(π1)(π1 − νδ) > ν(α + β) (3.6)

under the conditions of α > 0, β > 0 and κ′(π1) > 0, this implies that

π1 > νδ. (3.7)

For the point (0, 0, 0) we have

J(0, 0, 0) =



Φ(0)− α 0 0

0
κ(−∞)

ν
− α− β − δ 0

0 0
κ(−∞)

ν
− (r + δ)


Under regular conditions, by assuming κ(−∞) = 0 we have that the point

(0, 0, 0) is stable. In chapter 4, both models are calibrated with Peruvian
data. Then the significant equilibirum is computed and some trajectories are
show to analyze the economy.
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Figure 3.1: A trajectory in the stable region of the Keen model. It starts
with a debt share of 1.2 and converges to the equilibrium point with a lower
debt share.
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Figure 3.2: The graph shows the stability region of a Keen model. Points
outside this region may lead to a rapid increment in debt or to trivial equilib-
rium points, whereas points inside the region converge to a finite debt, wage
share and employment rate.
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Chapter 4

The case of Peru

4.1 Stylized facts

The Goodwin model rests upon one main stylized fact: the trade-off between
labor share and employment rate. Figure 4.1 shows labor share and em-
ployment rate for Peru for the period 1991-2014. We observe part of that
behavior between the two variables. When labor share dwindles employment
rate rises. In figure 4.2 we observe the two variables joint together. The
graphic unveils what seems to be part of a clockwise cycle. Precisely, a quar-
ter of a cycle and, although, the short horizon of the data available curbs our
gains to conclude the fit of the model with certainty, the observed direction
is the same the one predicted by the model and it seems that we are in part
of the dynamics.
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1990 1995 2000 2005 2010 2015
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.935
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0.945
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0.955

0.96
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0.97

0.975

0.98

Figure 4.1: Source: WDI and PWT, own elaboration.The graph shows the
trade-off between wage share and employment rate. While the first has a
decreasing tendency, the second has an increasing tendency with a small
exception at the beginning of the sample between 1990 and 1998.

Figure 4.2: Source: WDI, own elaboration. It is observed that the data
collected resembles a quarter of a cycle located in the third quadrant.
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Real GDP λ ω I
Real GDP 1 0.925622 -0.911305 0.59338

λ 1 -0.871394 0.539893
ω 1 -0.485033
I 1

Table 4.1: Correlation between variables

Parameters

We verify the assumptions of the model. We check if capital-to-ouput ratio
is constant. From figure 4.3, it is clear that the ratio is not constant, but
the mean captures the symmetric fluctuations. As for productivity growth
and total labor force growth, neither of them is constant. Figure 4.4 and 4.5
suggests that there is an upward and downward trend respectively.

1990 1995 2000 2005 2010 2015
4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

Figure 4.3: Source: WDI, own elaboration. The graph shows variation in
the capital-to-output values. This variation seems to respond to a cycle.
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-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 4.4: Source: WDI, own elaboration. It shows a small positive ten-
dency.

4.2 Calibration of the Goodwin model

The purpose of this section is to provide details on how we handled data to
estimate the parameters of the model and how we validated it.

We worked with the World Development Indicator (WDI) database from
the World Bank, the Penn World Table (PWT) and the statistical series of
BCRP. There is data available from 1950 to 2019 in the case of PWT and
from 1960 to 2018 for WDI for many variables, but data for employment
rate is only available from 1991 to 2014 so this is our time horizon for all
the involved variables in the models. The description of the variables and its
source are detailed in Table 4.2.

The parameters of the Goodwin model we need to estimate are the fol-
lowing: growth rate of productivity, growth rate of total labor force, capital-
to-output ratio and deprecation rate of capital. To estimate the growth of,
both, productivity and total labor force α and β we perform the following
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-0.01
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0.05
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0.07

Figure 4.5: Source: WDI, own elaboration. The graph shows a clear negative
tendency.

linear regressions:

ln(at) = ln a0 + αt+ ε, ε ∼ N(0, σ1)

ln(Nt) = lnN0 + βt+ ε, ε ∼ N(0, σ2)

productivity at is calculated by dividing real GDP by employment. For the
latter we need to multiply employment rate with the population older than
14 years old.

EMP = EMPR/100× (100− POP14)/100× POP

so we have

PRODTY = RGDP/EMP

Labor force Nt is calculated by the product of labor force percentage and the
total population

LABF = LABFR/100× (100− POP14)/100× POP
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The details of the estimations are found in table C.1. We compute capital-
to-output ratio ν by taking the mean of CAPITAL/RGDP. Finally, capital
depreciation δ is computed by taking the mean of DELTA. As the esti-
mated value from 1950 to 2014 is close to the one used in (Céspedes &
Ramı́rez-Rondán, 2014), this latter value is used. Table 4.3 provides with
the estimated values and table C.1 shows the details of the regressions.

1990 1995 2000 2005 2010 2015
0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

Figure 4.6: Capital depreciation shows a negative tendency until 2005, then
a rise is observed.

The variable employment rate λ is obtained as

LAMBDA = EMPR/LABFR

and labor share ω is obtained from the variable LABSH specified in the table
4.2.

We replace the values of the parameters in the set of equations 2.18 and
obtain the following model for Peru:

ω̇(t) = ω(t) [Φ(λ(t))− 0.0129]

λ̇(t) = λ(t)

[
1− ω(t)

4.7055
− 0.1016

]
,
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Varible Description Source Code

NGDP GDP (current US$) WDI NY.GDP.MKTP.CD

RGDP GDP (constant 2010 US$) WDI NY.GDP.MKTP.KD

CAPITAL
Capital Stock at

Constant National Prices for
Peru

FRED RKNANPPEA666NRUG

EMPR
Employment to population

ratio, 15+, total (%)
(modeled ILO estimate)

WDI SL.EMP.TOTL.SP.ZS

LABFR
Labor force participation rate,

total (% of total population ages 15+)
(modeled ILO estimate)

WDI SL.TLF.ACTI.ZS

POP Population, total WDI SP.POP.TOTL

POP14 Population ages 0-14 (% of total) WDI SP.POP.0014.TO.ZS

LABSH
Share of Labour Compensation in GDP

at Current National Prices for Peru,
Ratio, Annual, Not Seasonally Adjusted

FRED LABSHPPEA156NRUG

DELTA Constant of capital depreciation PWT90 delta

INV
Gross fixed capital formation,

private sector (% of GDP)
WDI NE.GDI.FPRV.ZS

RIR Real interest rate WDI FR.INR.RINR

DEBT
Domestic credit to private

sector by banks (% of GDP)
WDI FS.AST.PRVT.GD.ZS

REV Revenue, excluding grants (% of GDP) WDI GC.REV.XGRT.GD.ZS

TAXREV
Taxes on income, profits and capital

gains (% of revenue)
WDI GC.TAX.YPKG.RV.ZS

TAXPROF Profit tax (% of commercial profits) WDI IC.TAX.PRFT.CP.ZS

Table 4.2: Variables used for calibrations

Parameter value Methodology
α̂ 0.0129 Ordinary Least square

β̂ 0.0337 Ordinary Least square
ν 4.7055 Mean

δ 0.055 Mean

Table 4.3: Estimated parameters

wage share at the equilibrium is computed from equation 2.2

ω = 0.5216 (4.1)

to compute the employment rate at the equilibrium, a specific form of the
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Phillips curve needs to be assumed. Also, the regularity conditions of the
saddle point provided by equations 2.19 and 2.20 are verified:

1

ν
− α̂− β̂ − δ = 0.111 > 0

equation 2.19 is verified assuming a specific Phillips curve form. Two ap-
proaches are addressed here considering the discretized version of the model.
The first functional form (I) of the Phillips curve considered is the following:

ω[k + h]− ω[k]

ω[k]
+ α = Φ[k], (4.2)

and the second functional form (II) of the Phillips curve is the following:

ν
λ[k + h]2 − λ[k]λ[k + 2h]

λ[k + h]λ[k]
= Φ[k] (4.3)

where h is the sampling time of the system. Here we consider h = 1. The first
approach (I) comes along straightforward by solving for the Phillips curve in
equation 2.18 of the dynamics of the wage share. For the second approach
(II), labor share is expressed in terms of the employment rate in the second
equation of system 2.18:

ω[k] = 1− ν λ[k + 1]− λ[k]

λ[k]
− α (4.4)

and then replace it into the first equation.
We test the fit of two types of Phillips curve. The first is the original linear

curve which makes the Goodwin system a Lotka-Volterra system. Then, in
order to provide a limit for the employment rate and for the cycles, we
consider, as in (Blatt, 1983), a non-linear function. This form also represents
the relationship of high wages when employment rate is near full employment.
The linear Phillips curve is the following:

Φ[k] = φ1λ[k]− φ0, (4.5)

and the non-linear Phillips curve is especified as follows:

Φ[k] =
φ1

(1− λ[k])2
− φ0 (4.6)

Table C.2 provides the technical details of the estimations and table 4.4 sum-
marizes the results. In all the estimations the assumption that the Phillips
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Approached
Φ(.)

φ̂1 φ̂0 λ
Cycle length

(years)
Φ(0)− α

Linear I 0.4313 0.4238 0.9827 28.9881 -0.4109
Linear II 2.5588 2.4948 0.9716 11.9175 -2.4948

Non-linear I 1.9286 · 10−5 0.0231 0.09711 15.1248 -0.0102
Non-linear II 9.7709 · 10−5 0.1084 0.9801 11.9175 -0.1083
Non-linear II

adjusted
4.8855 · 10−5 0.5548 0.9703 3.1333 -0.5543

Table 4.4: Summary of estimated parameters, cycle length and the regularity
condition of the origin.

curve is increasing with respect to employment rate is satisfied. The esti-
mated curves assuming a linear model of the Phillips curve for the first and
second approaches, respectively, are the following:

Φ1[k] = 0.4313λ[k]− 0.4109 (4.7)

Φ2[k] = 2.5588λ[k]− 2.4948 (4.8)

for the non-linear case of the Phillips curve in the first and second approaches,
respectively, we obtained:

Φ3[k] =
1.9286 · 10−5

(1− λ[k])2
− 0.0102 (4.9)

Φ4[k] =
9.7709 · 10−5

(1− λ[k])2
− 0.1084 (4.10)

Last fitting is improved by multiplying by a factor. In this case we choose
k = 5 to affect the coefficients of the Phillips curve. The result of the
simulation is observed in figure 4.2. This provides the best fitting from all
the cases.

35



0.2 0.4 0.6 0.8
0.7

0.8

0.9

1

1.1

1.2

1.3
Linear I

Real data
Equilibrium

0.2 0.4 0.6 0.8
0.85

0.9

0.95

1

1.05

1.1
Linear II

Real data
Equilibrium

0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1
Non-linear I

Real data
Equilibrium

0.2 0.4 0.6 0.8
0.85

0.9

0.95

1
Non-linear II

Real data
Equilibrium

Figure 4.7: The graph shows the estimations of the Phillips curve from data
of Peru along with several simulations starting at the points of the curve
of real data. The different fittings are shown. It is observed that for the
linear models I and II the employment rate surpasses the unity and that is
a drawback. Both non-linear models seem to have a greater fluctuation than
the real one.
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Figure 4.8: The graph shows the curve of real data, the equilibrium point
is at (0.5216, 0.9703) and several simulations starting at each point of the
real data. This model was fit by the second approach (equation 4.3) with an
adjustment in the coefficients of the Phillips curve. This adjustment consists
in multiplying the coefficients by a factor of k = 5. This factor shrinks the
orbits in the vertical axis without altering significantly the displacement on
the horizontal axis. This estimation shows the best fitting of all cases.

In all the estimations the origin of coordinates satisfies the conditions to
be a saddle equilibrium point. None of the estimated cycle lengths matches
to the cycle length of the real data. The best calibration is the one that fol-
lows the second estimation approach with an adjustment on the coefficients
of the non-linear Phillips curve. The parameters corresponding to this esti-
mation are taken to continue with the estimation of the Keen model which
is addressed in the next section.

4.3 Calibration of the Keen model

As the Keen model is an extension of the Goodwin model, it inherits the
parameters α, β, δ and ν, then the only new parameters to estimate are
the real interest rate r and the investment share function κ. For this, as in
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(Costa Lima, 2013), the following functional form is assumed:

κ(x) = κ0 + κ1 arctan(κ2x+ κ3).

The data to estimate the real interest rate is taken from the WDI as presented
in table 4.2. Although data from the BCRP is the first option the available
data starts on 2005. As the period of work in the present manuscript is from
1991 to 2014 and the period from 1991 to 2001 represents the stabilization
efforts of the peruvian economy, then taking account of data only from 2005
on would be misleading. The real interest rate is computed by taking the
mean of the variable RIR described in table 4.2.

r = 0.245902.

The investment share function κ is estimated according to the following cri-
teria:

κ(−∞) = 0, (4.11)

κ(+∞) = 1, (4.12)

κ′(π) = 1.5, (4.13)

κ(π) = ν(α + β + δ), (4.14)

π = 0.46 (4.15)

where π = 1 − ω − rd. From the data in table 4.2 it would be π = 1 −
LABSH − RIR DEBT . This results in the mean π = 0.5992, but from
equation 3.4, which describes the form of the non-trivial equilibrium for the
Keen model, in order to obtain a non-trivial equilibrium with all positive
coordinates, the condition ν(α + β + δ) > π must be satisfied. This is,
π < 0.4784. The value π = 0.46 is chosen as it is located in the confidence
interval [π − 2σ; π + 2σ] = [0.3914; 0.5286] of π where σ = 0.0343 is the
estandard deviation of the utility share π. The following parameters of the
investment share function are obtained: From this and equation 3.4, the good

Parameter value
κ̂0 0.5
κ̂1 0.31831
κ̂2 4.7341
κ̂3 -2.24556
r 0.24592

Table 4.5: Estimated parameters
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equilibrium point is the following:

(ω, λ, d) = (0.4429, 0.9703, 0.3948) (4.16)

the stability of this equilibrium is guaranteed by means of equation 3.2:

π − νδ = 0.2012 > 0. (4.17)

Figure 4.9 shows simulations of the trajectory of the Keen model calibrated
for Peru. It shows that under this parameters the trajectory lies inside the
stability region of the system. This means if the parameters remain the
same, the natural path of the economy is led to a finite stable equilibrium.
Figure 4.10 shows the trajectory of a point inside the stability region for Peru
and the stabiliry region is presented in figure 4.11. Figure 4.12 presents the
trajectory for Peru between 1991 and 2014 along with the equilibrium point
and figure 4.13 shows the region from the z axis.

Figure 4.9: The graph shows the curve of real data and the equilibrium at
(0.4429, 0.9703, 0.3948) along with several simulations starting at the points
of the curve of real data. It is observed that the trajectory of the real data
is placed inside the stability region of the Keen model for Peru.
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Figure 4.10: The graph shows the trajectory of the simulation for the starting
point A = (0.3, 0.97, 0.4).
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Figure 4.11: Stability region for Peru.
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Figure 4.12: The graph shows the stability region and the trajectory for Peru
along with the equilibrium point inside the region.
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Figure 4.13: The graph shows the projection of the stability region.

With the stability of the equilibria analyzed, next the control technique is
explained. The idea behind the application is that for a given point outside
the stability region we would like to force it to enter the region. To under-
stand how we are going to do this in the next chapter we are going to explain
the method and apply it to avoid a financial crisis.
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Chapter 5

Control

In the crisis of 2008, the lack of propper restrictions on credit issueing led
to a constant increase on the demand of houses which raised their prices
until the real value stopped being reflected. A drop in prices was followed,
decreasing the demand and households not being able nor willing to pay their
debts of the, now, less valuable assets. In the Keen model this situation is
represented by the state of the system being in the unstable region of it. In
order to avoid unbounded debt accumulation, a control policy is designed to
steer the point in the unstable region towards a point within the stable region,
where convergence is towards the stable equilibrium. This policy is stated in
terms of the following rate of growths: labor productivity, total labor force
and interest rate which are denominated u1, u2 and u3 respectively in this
chapter. Also, in this section the variables wage share ω, employment rate λ
and debt share d are denominated in the more general notation x1, x2 and
x3 respectively, following the system theory approach.

5.1 Problem formulation

As mentioned in the introduction of this chapter, in abstract, an intial point
in the unstable region is considered and it needs to be steered to the stable
region. As in definition 2, consider the stable region of system 3.2 associated
to point IV in the table of equilibria 4.2. Denote this Es. Formally, the
unstable region of the system is the stable region associated to point V and
it is denoted Eu. Let x0 ∈ Eu and xf ∈ Es. The output y of the initial value
problem associated to the Keen system with initial value x0 converges to point
V if all the parameters of the system are left constant. The goal is to steer x0

to xf by forcing the system to track a pre-designed reference path yr : R→ R3

with intial point yr(0) = x0 and final point yr(f) = xf with the aid of a policy
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function u : R → R3 in a finite time tf . In regards of the controllers which
take the form of economic policies as set by the problem, both, labor share
growth (α) and total labor force growth (β) appear linearly in system 3.2.
This is desirable, as later it is seen in section 5.3, to be able to apply control
with the techniques of presented in this work (pole placement and optimal
control), the system needs to be transformed to a non-linear affine system
with respect to the controllers. The technique to get this transformation is
feedback linearization and is based on a change of coordinates which comes
from the derivatives of the chosen outputs. On the other side, real interest
rate r is in part of the argument of the non-linear function arctan(·) in the
system. This makes it impossible for the linearization technique to put the
real interest rate affinely in the transformed system. This is part of the
reason why the growth of real interest rate ṙ is chosen as a controller. To
begin with the transformation, the model is dynamically extended and a
fourth state equal to the interest rate is added to it. The dynamics is, then,
the following:

ẋ1 = x1 [Φ(x2)− u1] , (5.1a)

ẋ2 = x2

[
κ(x1, x3, x4)

ν
− u1 − u2 − δ

]
, (5.1b)

ẋ3 = x3

[
r − κ(x1, x3, x4)

ν
+ δ

]
+ [κ(x1, x3, x4)− (1− x1)] , (5.1c)

ẋ4 = u3 (5.1d)

y = [x1 x2 x3]T (5.1e)

with

κ(x1, x3, x4) = κ0 + κ1 arctan(κ2(1− x1 − x4x3)) (5.2)

and

x(0) = x0, (5.3)

u(0) = (α, β, 0) (5.4)

The initial point is x0 = (0.9, 0.9, 0.5) with initial parameter values shown
in tables 4.3 and 4.5. Figures 5.1 and 5.2 show the initial trajectory with
respect to the initial setting of the Keen system, the undesirable debt share
accumulation pattern is observed.

The reference path yr is set following a natural transition between the
unstable region Eu and the stable region Es. It is designed with the gradient
based path planner algorithm described in section 5.4. Figure 5.3 shows
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the built path. Results and description of the control techniques applied are
explained and depicted in section 5.2. It is shown that a point in the unstable
region is successfully steered into the stable region. This control application
does not show good tracking performance, but that is not the concern of this
work as long as the controls take the outputs of the model to the desired
stability region.

Figure 5.1: Trajectory of the Keen model with initial point x0 =
(0.9, 0.9, 0.5). At first there is a boom of employment rate, followed by a
sustained increase of wage share, then debt share starts to accumulate fast.

5.2 Main results

First, stabilization of debt share is done by controlling with the pole place-
ment techinique (see section 5.3.1 and B.2) to the dynamically extended Keen
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Figure 5.2: The graph shows the trajectory of the simulation for x0 =
(0.9, 0.9, 0.5) for each variable of the model. It is observed that in the time
lapse of 10 years debt is about the double of the original value and it continues
increasing.

model 5.1. This is model I in section 5.3 where a detailed explanation of the
linearization is provided. As seen in figure 5.4, the controlled trajectory
does not reach the targeted reference point B which here is the equilibrium
point of the Keen model (equation 4.16), but the obatined policy does not
stop from reaching a point (C) in the stability region. Once the trajectory
reaches its final point, system 5.1 stops working and the original Keen model
3.2 is set to function with the original constant parameters. After this, Debt
share decreases until the system reaches the stable equilibrium point and the
economy is stabilized. The control policies applied to the model to stabilize
the economy are shown in figure 5.5. The time to perform this was set to 5
years with policies applied monthly. According to this result, labor produc-
tivity needs to decrease, while total labor force and real interest rate must
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Figure 5.3: Reference trajectory from the initial point A = x0 in the unstable
region Eu to a final point B in the stable region Es. Here B is set equal to
the equilibrium in equation 4.16. This path is obtained with the Gradient
Based Path Planning algorithm. The algorithm starts with a target point
B which is the desired point to achieve, then the trajectory is obtained by
modifying the vector field of the dynamical system. It is possible, as it is
the case here, that the final point C of the built path is not the same as the
target point, but lands on a neighborhood of it in the stability region. The
trajectory depends on the force of the attraction field of the target point,
so by increasing this parameter a more direct trajectory is obtained, but it
would make it less natural with respect to the field of the system.

increase. A serious drawback of this technique is that for the specified control
parameters, a big abrupt change in the real interest growth u3 at t = 4.5 is
generated making the control policy look unreal as it is seen in figure 5.5.
This policy input is smoothed out by assuming a longer controlling time or
by increasing the frequency in which the policies are set. Figure 5.7 shows
the results of the stabilization assuming t = 9 years and figure 5.8 shows a
smoother version of the inputs for this case. A better tracking of the output
is seen in figure 5.9.

The decreasing of labor productivity might seem counter-intuitive to get
an economy out of a future burst in debt share which might lead to a crisis,

48



but as the Keen model inherits the trade-off behavior between firms and
households from the Goodwin model, what it is truly meant is that either
resources from production must be reduced so more of the utility goes to
households or that more labor should be hired. In either case this translates
into more of the share going to the households. From the financial sector
side, the decreasing of the interest rate fosters less saving and promotes more
investment. Figure 5.6 shows a considerably good tracking of the reference
and certain parts of negative real interest rate which by the Fisher equation
(Blanchard, 2017) it means that inflation is higher than the nominal interest
rate in the corresponding parts.

To overcome the fact of real interest rate growth changing abruptly, a
saturation function is imposed to the policies u as expressed in equation
5.3.2. In figure 5.12 the control policies are constrained to be between ±0.09
and the time is t = 3 years. It is observed that the policy functions are
less smooth than in figure 5.5 without the saturation. Figure 5.10 shows
that the tracking of the reference path gets worse, but a point (C) in the
stable region is still reached. Pushing the saturation of the control policies
further, does not result in an stabilizable set of policies, this is the case when
policies are bounded by ±0.08. To tackle this problem, model II from 5.3
is provided as an alternative. The extra feature with respect to model I is
that the variation of the control policiy dynamics are included. These are
equations 5.11e and 5.11f of system 5.11 where a decay of the variation of
each control policy u1 and u2 is set to 10. This represents a delay in the
variables labor productivity and total labor force as they are not inmediately
changeable as nominal interest rate is, for example. In this case optimal
control is performed to obtain the policies. The cost function is the error of
the tracking problem described in section 5.3.2 and the policies are limited
to vary between ±1. The time of the stabilization is kept to three years.
Figure 5.13 shows that the tracking gets compromised compared to the case
without optimization, but with saturation of the policies. The trajectory
looks smooth and the control policies in figure 5.14 show an erratic behavior
with smaller variation. The real interest rate in figure 5.15 is negative in part
of the controlling time.

In order to avoid regimes with greater inflation rate than nominal interest
rate that result in a negative real interest rate, the previous optimization is
enhanced with a constraint based on Taylor’s approximation polynomial of
first degree r(t + h) = r(t) − ṙh where r(t + h) which is the real interest
rate in the next step x4(t + h) and r(t) is x4(t) and h is the sampling time.
The imposed constraint is rmin ≤ x4(t+ h) ≤ rmax where the maximum real
interest is set to be rmax = 0.05 and the minimum rmin = 0.01. Figure 5.16
shows a a small swinging at the beginning. The auxiliary inputs in figure 5.17
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show a relative small range of variation and the outputs in figure 5.18 show
the same trade-off between labor productivity and total labor force growth
and the compliance of the constraints on the real interest rate which, now, is
positive. The variation of the real interest rate can be shrunk even more to
be less than 0.05, by allowing the control to be performed in a longer period,
for example, five years. Another modification that helps with this goal is the
increasing of the decaying factor of the labor productivity and total labor
force which are τ1 and τ2 in equations 5.11e and 5.11f.

Figure 5.4: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 5 years. The initial point A is in the unstable
region of the system. The controlled path does not reach the targeted point
B, instead reaches point C which is also in the stable region. The tracking
is good and after the system reaches point C the system goes back to the
original setting with original constant parameters.

5.3 Control of the Keen model dynamics

In this section the control of debt share in the model of Keen is performed.
First, the model is linearized by feedback linearization (Isidori, 2002). This
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Figure 5.5: The graph shows the inputs of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 5 years. The growth of labor productivity and
total labor force show a trade-off behavior, while the first shows a decreas-
ing tendency the latter has an increasing tendency. This translates into a
trade-off between firms and households. Real interest growth has a big peak
at t = 4.5. This is a drawback which is overcome by setting a saturation on
the inputs.

procedure is described, then pole placement and optimal control are applied
to obtain the economic policy that takes debt share to an stable state. A
diagram of this is depicted in Figure 5.19.

Keen model linearization

The real interest rate r in system (3.2) is a parameter of the investment
function κ(.). As this is composed by the inverse of a trigonometric function,
then r is difficult to appear linearly after taking derivatives of the outputs
y2 and y3. Because of this r is not considered as an input, but instead ṙ is.
The model is dynamically extende a new artificial state x4 := r, this is

x4 := r

u3 := ṙ
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Figure 5.6: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 5 years. The control policy applied generates
an steady reduction in wage share and increment in the employment rate.
Debt share is reduced during most of time. A jump is observed in the last
part of control. Real interest rate is negative in some parts indicating that
the inflation rate is higher than the nominal interest rate. Also, a peak is
observed in the real interest rate during last part of the control which is later
improved by applying a saturation on the inputs or by setting a longer time
to perform the control.

with u3 the input that can be manipulated at will. With this, the system is
easily written in the form

ẋ = f(x) + g1(x)u1 + g1(x)u2 + g3(x)u3. (5.5)

Two models are handled in this manuscript. These are model I and model II
described in the next sections. The first model is used with the pole place-
ment control technique after the linearization. The saturation of the controls
is also applied to this model. The second model extends the first by adding
a set of two equations which represents the dynamics of labor productivity
growth and total labor force growth by adding a delay in their response.
It is used with optimal control which allows the handling of constraints, in
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Figure 5.7: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 9 years. The initial point A is in the unstable
region of the system. The controlled path does not reach the targeted point
B, instead reaches point C which is also in the stable region. The tracking
is good and after the system reaches point C the system goes back to the
original setting with original constant parameters.

particular the positiveness of the real interest rate is targeted.

Model I

System (5.1) is taken as a base and the derivatives of the output y =
[y1, y2, y3]> := [x1, x2, x3]> are computed in order to find the vector rela-
tive degree of the augmented system. In a nutshell, the relative degree is the
time an ouput function is derivated until the controls appear linearly. More
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Figure 5.8: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 9 years. The growth of labor productivity and
total labor force show a trade-off, while the first shows a decreasing tendency
the latter has an increasing tendency.

details on this technique are found in section B.2 . The following is obtained:

ẏ1 =x1 (Φ(x)− u1) ,

ẏ2 =x2

[
κ(x)

ν
− u1 − u2 − δ

]
,

ẏ3 =x3

[
x4 −

κ(x)

ν
+ δ

]
+ [κ(x)− (1− x1)] ,

ÿ3 = ẋ3

[
x4 −

κ(x)

ν
+ δ

]
+ x3

[
u3 −

(κx(x))(−ẋ1 − x4ẋ3 − u3x3)

ν

]
+

+ (κx(x))(−ẋ1 − x4ẋ3 − u3x3) + ẋ1

so the vector relative degree is p = (1, 1, 2). As described in section B.2, the
linearized system has the form of an affine non-linear system ẏ = f + g · u.
Denoting by fi the ith component of f in equation (5.5) for i ∈ {1, 2, 3, 4},
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Figure 5.9: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique without saturation. The
time of the control is set to 9 years. The control policy applied generates an
steady reduction in wage and debt share, employment rate increases. Real
interest rate is negative in some parts indicating that the inflation rate is
higher than the nominal interest rate.

the decoupling matrix (equation B.14) is

Dk(x) =

 −x1 0 0
−x2 −x2 0
Lg1f3 0 Lg3f3

 , (5.6)

where

Lg1f3 = −x1

(
0.3202x3

(4.734x1 + 4.734x3x4 − 2.489)2 + 1

− 1.507

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ 1

)
,

(5.7)
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Figure 5.10: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique where a saturation of
±0.09 on the inputs is imposed. The time of the control is set to 3 years.
The initial point A is in the unstable region of the system. The controlled
path does not reach the targeted point B, instead reaches point C which is
also in the stable region. Tracking is not as good as without constraints, but
it satisfies the goal of stabilizing the economy.

Lg3f3 =x3

(
0.3202x3

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ 1

)
− 1.507x3

(4.734x1 + 4.734x3x4 − 2.489)2 + 1

(5.8)
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Figure 5.11: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique where a saturation of
±0.09 on the inputs is imposed. The time of the control is set to 3 years.
This does not show a good tracking of the output, but this is not important
as the last point is in the stable region. It is also observed that real interest
rate has reaches positives and negative values.
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Figure 5.12: The graph shows the results of the control of the outputs per-
formed to model I with the poleplacement technique where a saturation of
±0.09 on the inputs is imposed. The time of the control is set to 3 years.
The growth of labor productivity and total labor force show a trade-off be-
havior, while the first has a decreasing tendency the latter has an increasing
tendency. This translates into a trade-off between firms and households.
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Figure 5.13: The graph shows the results of the control of the outputs per-
formed to model II with optimal control and a constraint on the input of ±1.
The time of the control is set to 3 years. The initial point A is in the unstable
region of the system. The controlled path does not reach the targeted point
B, instead reaches point C which is also in the stable region. The generated
controlled path is smooth, and after the system reaches point C the system
goes back to the original setting with original constant parameters.
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Figure 5.14: The graph shows the results of the control of the outputs per-
formed to model II with optimal control and a constraint on the inputs of
±1. The growth of labor productivity and total labor force show a trade-
off, while the first shows a decreasing tendency the latter has an increasing
tendency.
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Figure 5.15: The graph shows the results of the control of the outputs per-
formed to model II with optimal control and a constraint on the inputs of
±1. The control policy applied generates an steady reduction in wage share,
increment on employment rate and a small fluctuation on debt share. Real
interest rate is negative in some parts indicating that the inflation rate is
higher than the nominal interest rate.
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Figure 5.16: The graph shows the results of the control of the outputs per-
formed to model II with optimal control with a constraint on the inputs of
±1 and a constraint on the growth of the real interest rate bounded by 0.01
and 0.05. The initial point A is in the unstable region of the system. The
controlled path does not reach the targeted point B, instead reaches point C
which is also in the stable region and closer than without optimization. The
generated controlled path is smooth, and after the system reaches point C the
system goes back to the original setting with original constant parameters.
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Figure 5.17: The graph shows the results of the control of the outputs per-
formed to model II with optimal control with a constraint on the inputs of
±1 and a constraint on the growth of the real interest rate bounded by 0.01
and 0.05. The inputs have associated with labor productivity and total labor
force show a trade-off behavior.
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Figure 5.18: The graph shows the results of the control of the outputs per-
formed to model II with optimal control with a constraint on the inputs of
±1 and a constraint on the growth of the real interest rate bounded by 0.01
and 0.05. The growth of labor productivity and total labor force show a
trade-off in the speed of change. There is a tendency of faster increasing of
labor productivity than total labor force, but both increase. Real interest
growth is no longer negative.

Figure 5.19: Diagram representation of the problem.
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α1(x) =x1

(
0.0004886

(x2 − 1)2
− 0.5419

)
(5.9a)

α2(x) =− x2(0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 0.05126) (5.9b)

α3(x) =

(
x1 − 0.3183 arctan(4.734x1 + 4.734x3x4 − 2.489)+ (5.9c)

+ x3(x4 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 0.05126)− 0.5

)
× (5.9d)

×

(
x4 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 1.507x4

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ (5.9e)

0.3202x3x4

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
− 0.05126

)
+ (5.9f)

+

(
0.3202x3

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
− 1.507

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ 1

)
× (5.9g)

× x1

(
0.0004886

(x2 − 1)2
− 0.5419

)
(5.9h)
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and the determinant of the decouple matrix is detDk(x) = x1x2Lg3f3.
The system losses vector relative degree whenever x1x2Lg3f3 = 0 or equiva-
lently when

x1 = 0 or x2 = 0 or x1

[
κx(x)

(x3

ν
− 1
)

+ 1
] [
x3κx(x)

(
−x3

ν
+ 1
)
− 1
]

= 0

with κx(x) := ∂κ(x)/∂x. When this happens a change of coordinates (Byrnes-
Isidori) cannot be performed to obatin a linear system. The feedback lin-
earizing inputs are

u1 = Φ(x2)− v1

x1

,

u2 = − v2

x2

+
κ(x)

ν
− δ − u1,

u3 =
1

x3(1 + (κx(x))( 1
ν

+ 1))

[
v3 − ẋ3

[
x4 −

κ(x)

ν
+ δ

]
+(κ(x))(−f1 − x4f3)(

x3

ν
− 1)− f1

]
where v = [v1, v2, v3]T is the vector of input after exact linearization. The
system in Byrnes-Isidori normal form is the following:

ż1

ż2

ż3

ż4

 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



z1

z2

z3

z4

+


1 0 0
0 1 0
0 0 0
0 0 1


v1

v2

v3

 , (5.10a)

y1

y2

y3

 =

1 0 0 0
0 1 0 0
0 0 1 0



z1

z2

z3

z4

 (5.10b)

now a matrix K can be designed to achieve some pre-defined objective by
means of a linear input, this is, v = Kz.

Remark: Careful attention must be paid on the design of a feedback
linearizing controller for the manipulation of dynamics of the form of the
affine non-linear system (B.3) because of the so-called zero dynamics. For
a system with relative degree p < n, there exist a subsystem z̃i = f̃(z̃) for
p + 1 ≤ i ≤ n, whose behavior does not affect the output and therefore it
comprises an uncontrollable dynamics that if not stable can break the system
even though the system looks linear and controllable from the input-output
perspective. In fact, what this hidden dynamics represent is the nonlinear
generalization of the well-known transmission-blocking property of zeros for
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linear-time invariant systems (Kailath, 1980). Model I has full relative degree
as the sum of each relative degree for each output is 3 which is the same as
the number of outputs.

Model II

To delay the response labor productivity growth and total labor force a dy-
namics is added to system 5.1:

ẋ1 = x1 [Φ(x)− α0 − x(5)] , (5.11a)

ẋ2 = x2

[
κ(x)

ν
− α0 − x(5)− β0 − x(6)

]
, (5.11b)

ẋ3 = x3

[
x4 −

κ(x)

ν
+ δ

]
+ [κ(x)− (1− x1)] , (5.11c)

ẋ4 = u3, (5.11d)

ẋ5 = −τ1(x(5)− u1), (5.11e)

ẋ6 = −τ2(x(6)− u1), (5.11f)

y = [x1 x2 x3]T . (5.11g)

where x(5) and x(6) are now the rate of growth of the original states which
are the rate of growth of the productivity and the labor respectively. The
linear dynamics consisting of equations 5.11e and 5.11f is augmented. This
model has relative degree vector (2, 2, 2)T which sum to the number of states
in the system, therefore there is no zero dynamics. The decoupling matrix is
the following:

Dk(x) =

−x1 −x2 0
0 −x2 0
0 Lg2f3 Lg3f3

 , (5.12)

Lg2f3 = − 6.8x2x3

(64x1 + 64x3x4 − 52)2 + 1
(5.13)

Lg3f3 =
6.8x2

3 − 20x3

(64x1 + 64x3x4 − 52)2 + 1
+ x3 (5.14)

and the function alpha function as in equation B.16 which along with the
decoupling matrix build the linearizing controller (equation B.17) is especified
in equation 5.15.

67



α1(x) =10x1x5 + x1(x5 −
0.0004886

(x2 − 1)2
+ 0.5548)2 +

0.0009771x1x2(x5 + x6 − 0.004556)

(x2 − 1)3
(5.15a)

+
0.0000660x1x2 arctan(4.734x1 + 4.734x3x4 − 2.489)

(x2 − 1)3
(5.15b)

α2(x) =x2(x5 + x6 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 0.004556)2 + 10x2x5 + 10x2x6 (5.15c)

− 0.3202x2x4(x1 + x3(x4 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 0.05126)− 0.5)

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
(5.15d)

+
0.3202x1x2(x5 − 0.0004886

(x2−1)2
+ 0.5548)− 0.1019x2x4 arctan(4.734x1 + 4.734x3x4 − 2.489)

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
(5.15e)

α3(x) =− x1

(
0.3202x3

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
− 1.507

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ 1

)
× (5.15f)

×
(
x5 −

0.0004886

(x2 − 1)2
+ 0.5548

)
+ (5.15g)

+

(
x1 − 0.3183 arctan(4.734x1 + 4.734x3x4 − 2.489)+ (5.15h)

+ x3(x4 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 0.05126)− 0.5

)
× (5.15i)

×
(
x4 + 0.06764 arctan(4.734x1 + 4.734x3x4 − 2.489)− 1.507x4

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
+ (5.15j)

+
0.3202x3x4

(4.734x1 + 4.734x3x4 − 2.489)2 + 1
− 0.05126

)
(5.15k)
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As described in the previous model and in section B.2 of the appendix,
the input u(x) which transforms to the Byrnes-Isidori normal form is the
following:

u(x) = Dk(x)−1(−α(x) + v) (5.16)

the system in Byrnes-Isidori normal form is the following:
ż1

ż2

ż3

ż4

ż5

ż6

 =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




z1

z2

z3

z4

z5

z6

+


0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


v1

v2

v3

 , (5.17a)

y1

y2

y3

 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



z1

z2

z3

z4

z5

z6

 (5.17b)

Once linearized the control techniques are applied to this system with control
in v, then to obtain the control in u the decoupling matrix is used to transform
coordinates from the first to the latter. Next, the control techniques are
explained.

5.3.1 Pole placement

For Model I, once the system is in the Byrne-Isidori normal form, this is,
system 5.10, the input v used is the following:

v(i) = y(i)− kTi e(i), (5.18a)

e(1) = z(1)− yr(1), (5.18b)

e(2) = z(2)− yr(2), (5.18c)

e(3) =

[
z(3)− yr(3)
z(4)− ẏr(3)

]
, (5.18d)

k1 ∈ R, k2 ∈ R, k3 ∈ R2 (5.18e)

The gains used are k1 = 10, k2 = 10 and k3 = (100, 20)T .
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5.3.2 Restrictions and optimization

For Model I and pole placement by saturation of the control policies it is
meant the following:

u∗[k] =


umax, if u[k] > umax

u[k], if umin ≤ u[k] ≤ umax

umin, if u[k] < umin

(5.19)

or equivalently

u∗[k] = max(−umin,min(umax, u[k])) (5.20)

where u[k] is the control policy obtained by pole placement and u∗[k] is
the policy after the saturation. This sets u∗[k] between umax and −umin.
This is, −umin ≤ u∗[k] ≤ umax The parameters used are umin = umax =
(0.09, 0.09, 0.09)T . Saturation poses a challenge. As mentioned in section
5.2, trying to restrict more the policies to umin = umax = (0.08, 0.08, 0.08)T

results in the controller not being able to steer to a point in the stability
region, therefore debt share growing fast. The results of pole placement do

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
-0.1

-0.08

-0.06

-0.04
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0.04

0.06

0.08

0.1

Figure 5.20: Saturation function with limits equal to ±0.09.

not guarantee the compliance of the positiveness of the real interest rate.
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To enforce this condition, optimal control is used. For this, one-step ahead
prediction of the state is used. This is, consider the discretized version of
system 5.17 with sample time τS equal to the sample time of the algorithm
of the differential equation solver (ODE45 is used):

z[k + 1] = M [k]z[k] +Nv[k] (5.21a)

y[k] = Wz[k] (5.21b)

the error to minimize is

e[k] = y[k + 1]− yr[k + τS] (5.22)

define a matrix of weights Q for the error and the objective function is

J(v[k]) = e[k]TQe[k] (5.23)

from 5.16, the objective function can be expressed in terms of the original
discretized control u[k] as follows

J(u[k]) = eu[k]TQeu[k], (5.24)

eu[k] = W (M [k]z[k] +N(Dk(z[k])u[k] + α(z[k])))− yr[k + τS] (5.25)

an upper bound of 1 and a lower bound of −1 is imposed for u(1), u(2) and
u(3). This is

L :


1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0
0 0 −1

u[k] ≤


1
1
1
1
1
1

 (5.26)

in both models x(4) is the growth rate of the real interest rate. To enforce
the condition of positiveness of it, the following constraint based on the
polynomial of Taylor is added to L:

(rmin − x(4))/τS ≤ u(3) ≤ (rmax − x(4))/τS (5.27)

in matrix terms, this is,[
0 0 1
0 0 −1

]
u[k] ≤

[
(rmax − x(4))/τS
(x(4)− rmin)/τS

]
(5.28)
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the optimal input is then defined as

u∗[k] := arg min J(u[k]) (5.29)

s.t L (5.30)

here, rmin = 0.01 and rmax = 0.05 are used. Constraining u[k] to a narrower
band may lead to unfeasibility of the optimization an strategies to compen-
sate this could be a longer period of control as well as the modification of
the weight matrix Q which here is taken as the identity matrix.

5.4 Reference signal

To obtain a reference signal in a natural way, the Gradient Based Planner
algorithm is used. This uses same dynamics of the model to generate a path
from two desired points under the vector field of a system. Call x0 a initial
point in the unstable region and xf a final point in the stable region. Call
FK the vector field of the model and Fx an attractor field generated by the
point xf with attractive force K. The reference signal is trajectory of the
point x0 following the sum Fs of the fields FK and Fx. The algorithm is the
following:

Algorithm 1 Gradient Based Planner

1: procedure GBP(x0, xf , FK , Fx, T, δ) . Path between x0 and xf
2: Fs ← FK + Fx
3: while i 6= T ∨ ||xf − position|| < δ do
4: position← x0

5: Delta← interpolate(Fs, position)
6: position← position+Delta/(T ||Delta||)
7: route← stack(route, position)
8: i← i+ 1
9: end while

10: return route
11: end procedure

A greater attractive force K could deform the vector field in a way that
although the generated path might be more straight forward and faster reach-
ing, it might not be the more appropriate for control as a path like this one
represents more control effort. If additionally the there are constraints this
might lead to unfeasibility of the control problem. On the other side, a small
attractive force K might not be able to build a path with a final point inside
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the desirable region. It could be also the case as in the present work that
there is a singularity at x2 = 1, because of the Phillips curve and if the at-
tractive force is not strong enough the path might cross this singularity as
the building mechanism relies on the mixture of both vector fields and not
only on the vector field of the system. Then the control implementation is
necessary have problems with this ill-behaved path. For the present work
the attractive force of the targeted point in the stable region is K = 7.
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Chapter 6

Conclusions and further
research

In this manuscript, the calibration of the Goodwin model (equation (2.18))
and Keen model (equation (3.2)) for Peru for the period of 1991 to 2014 is
performed. The sources of the data used are presented in table 4.2. After
an adjustment of the parameters obtained from the regression, figure 4.2
shows a good fitting of the Goodwin model for Peru. With these parameters,
the Keen model is calibrated. A hurdle is observed at first, because the
significant equilibrium point has a negative coordinate which does not make
sense in reality. This is overcome by taking the mean of the utility share in
equation 4.3 to be a value in the confidence interval of it. The calibrated
model shows that data for Peru lies inside the stability region which means
that if no alterations of the parameters occur, then the Peruvian economy is
being driven to a healthy state of finite debt share. Living in an small open
economy, depending on the price of copper and with an unstable political
situation this is likely not to happen. In the present work it is shown that
if the economy of Peru gets out of the stability region and faces a financial
crisis, then it is possible to stabilize it. For this, the stability region of the
Keen system (3.2) for Peru is computed. It is shown in figure 4.11. Then, the
system is dynamically extended and then feedback linearized as described in
section 5.3 and section B of the appendix.

Two techniques are used to perform control: pole placement and optimal
control. The first one shows a clear trade-off between labor productivity
growth and the growth of total labor force and a decreasing real interest
rate policy. The results obtained suggest that more resources should be
placed on generating employment and a tendency to promote spending. This
technique is applied on model I and satisfies the goal of reaching a stable
point, despite the non-perfect tracking. Two scenarios are provided for this
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model, one with unsaturated and the other saturating the policy controls.
As it is to expect, the saturated case performs better. The real interest rate
is negative for this model and technique. To be able to impose the condition
of positiveness of real interest rate along with the assumption of a delay
on the of labor productivity growth and total labor force growth as they
are not directly controlled, optimal control is applied to Model II with one
step ahead prediction. In this case, the performance depends on the growth
rate (τ) of the acceleration of labor productivity and total labor force. The
smaller these parameters are, better performance is obtained. The smaller
these parameters means that the labor productivity and total labor force are
easier to be affected. Labor productivity and total labor force are not as
smooth as with pole placement, but they still show trade-off between them
and there is less variation as shown in figure 5.15. First, no constraint on
real interest rate is considered showing no positiveness, then this is enforced.
Although the trajectory of it is not that smooth as shown in figure 5.18.
This is improved by changing the parameters such as making the control
be performed in longer than three years or decreasing the delay of labor
productivity and total labor force growth.

There are topics of further research for the present work such as formal-
izing the parameter adjustment in the process of calibration of the Goodwin
model. The system is non-linear in the states, but linear in the parameters
so a linear regression must be enough, but data for Peru shows that this is
not the best calibration or there is not enough data. The calibration of the
Keen model presents challenges, also, such as formalizing the choice of the
investment function which for the present work was assume the same as in
(Costa Lima, 2013). This function, as presented here, makes the the system
non-linear in terms of the estimation so approaches such as neural networks
might be better to calibrate this function. Another way of further research is
found by making the optimization more complex by using, for example, the
well-known MPC (Model Predictive Control) technique. This allows to make
a more general framework by taking more than only one step ahead of predic-
tion. Input terms can be added to the objective function as to put a weight
on the controllers, a bigger penalty could be imposed on one of them, for
example. This provides to policy making process with consciousness about
which are more complex and which are simpler and more desirable policies
to implement.

Finally, other algorithms for the generation of the reference path could
be used. Depending on how they modify the dynamics a different path is
obtained. A comparison between these algorithms is desirable to know which
would be the optimal in the sense that less variation in the economic policies
and economic variables is obtained.
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Appendices
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This section addresses theoretical aspects of non-linear control. The focus
is on Feedback Linearization and the preliminaries to understand the tech-
nique. An outline of linear control is provided and zero dynamics are also
explained. This section is based on the non-linear control work of (Gray,
1995), (Isidori, 2002) these are geometric based techniques and the linear
part is succinctly summarized from (Kailath, 1980).
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Appendix A

Ordinary differential equations

Consider the initial point x0 ∈ Rn and the Lipschitz continuous function
f : Rn → Rn. The initial value problem is the following:

Definition 1 (Initial value problem).

ẋ = f(x), (A.1a)

x(0) = x0 (A.1b)

Let the system have an stable equilibrium at x = p. The stability region
of p is defined as

Definition 2 (Stability region).

E(p) = {x0 ∈ Rn : lim
t→∞

X(t) = p} (A.2)

where X(t) is the integral path of the initial value problem A.1.
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Appendix B

Control

The underlying assumption in this section is that the initial point of the
Keen model (3.2) is in the unstable region, therefore, it is in a financial
crisis scenario, which is outside the stability region descried in Figure 4.11.
The idea is then to come up with framework under which one can devise a
policy that manipulates the dynamics of the system to bring the state inside
stability region shown in Figure 4.11. It is here where control theory provides
systematic procedures to create policies for the positioning of the relevant
states into the desired stable region (Kailath, 1980; Isidori, 2002).

B.1 Linear Control Systems

Consider a linear dynamical control system of the form

ẋ =Ax+Bu, (B.1a)

y =Cx, (B.1b)

where x ∈ Rn, u ∈ Rm, y ∈ Rq and A,B and C are matrices of appropriate
dimension. Moreover, system (B.1) is said to be controllable if one can
manipulate x in (B.1) from some xf ,∈ Rn back to the origin by providing
an appropriate control policy u. It turns out that the only condition for this
to be possible is that the rank of C = (B AB · · · An−1B) ∈ Rnm×n is n,
which implies that there are n directional vectors that can be employed to
steer x to any desired place in Rn. A control policy u = Kx, K ∈ Rm×n is
known as state feedback, and it provides the desired policy by selecting the
components of K appropriately. If it exists, system (B.1) becomes

ẋ = (A+BK)x, y = Cx. (B.2)
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Trivially, the solution of (B.2) is x = C exp(A+BK)t x0, which can be made
zero by choosing K in a way that the eigenvalues of A + BK are negative
and large enough. Thus, the system is guaranteed to reach the origin after
some time commanded by how fast the exponential decays, which is a tuning
parameter for the control policy.

Unfortunately, (3.2) is not in the form (B.1). There are however tech-
niques that allow to manipulate the states of a system towards desired lo-
cations in the phase protrait. In particular, differential geometry concepts
allow for a transformation of nonlinear dynamics into an exact linear system
when certain conditions are satisfied. This manuscript utilizes one of such
techniques known as feedback linearization, which after applied allows the
design of a vector K as in (B.2) for tracking closely a desired pre-defined
path for the variables of (3.2). The next section, presents the tools necessary
for feedback linearizing (2.18) and (3.2).

B.2 Feedback linearization

It is a technique used to obtain a linear system from an affine system. To
accomplish this a diffeomorphism that works as change of coordinates must
be found. In what follows the procedure to obtain this function is stated.

Definition 3 (Lie Derivative). Let f and h be smooth functions. Denote by

Lfh(x) =
∂h

∂x
f(x)

the Lie derivative of h with respect to f , and

Lkfh(x) = Lf (L
k−1
f h(x)) =

∂Lk−1
f h(x)

∂x
f(x)

is the kth iterated Lie derivative of h with respect to f .

The relative degree of a nonlinear system is then provided by the next
definition.

Definition 4 (Relative degree). Consider the system

ẋ = f(x) + g(x)u, x(0) = x0, (B.3a)

y =h(x) (B.3b)

with x ∈ Rn and f, g and h sufficiently smooth in a domain of R ⊂ Rn. (B.3)
is said to have relative degree 0 ≤ p ≤ n in the region Rx0 ∈ Rn if for all
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x0 ∈ Rx0

LgL
i−1
f h(x) = 0 for i = 1, 2, . . . , p− 1,

LgL
p−1
f h(x) 6= 0,

It is easy to show that if the relative degree of a system is p > k, then it
follows that the k-th derivative of y in (B.3) is

y(k) = Lkfh(x)

in a neighborhood of t0 and

y(p)(t0) = Lpfh(x0) + LgL
p−1
f h(x0)u(t0). (B.4)

Therefore, the relative degree p of a system is equal to the number of times
the output must be differentiated to have the input appear explicitly. The
functions h(x), Lfh(x), . . . , Lp−1

f h(x) define a key local coordinate transfor-
mation for the system about x0 for this define the new set of coordinates
z = T (x) where T : Rn → Rp

T (x) =


h(x)
Lfh(x)

...

Lp−1
f h(x)

 (B.5)

after this change, the system is the following:

ḣ = z1 (B.6)

ż1 = z2 (B.7)

... (B.8)

żp−2 = zp−1 (B.9)

żp−1 = Lpfh(x0) + LgL
p−1
f h(x0)u(t0) (B.10)

defining D := LgL
p−1
f h(x0) and setting

u = D−1(v − Lpfh(x0)) (B.11)

the following linear system is obtained:
ḣ
ż1
...

żp−2

żp−1

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0




h
z1
...

zp−2

zp−1

+


0
0
...

0
1

 v (B.12)
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The controllability matrix

[B AB · · · Ap−1B] =


0 0 · · · 0 1
0 0 · · · 1 0
...

... · · · ...
...

0 1 · · · 0 0
1 0 · · · 0 0

 (B.13)

has full rank, therefore the system is controllable.
For a system with ` outputs and m inputs, one can compute the relative

degree for each output, say pi for i = 1, . . . , `, by simply computing deriva-
tives until any of the inputs appear. This defines the vector relative degree
(p1, . . . , p`), which is well-defined if

D(x) =

Lg1L
p1−1
f h1(x) · · · LgmL

p1−1
f h1(x)

...
. . .

...

Lg1L
p`−1
f h`(x) · · · LgmL

p`−1
f h`(x)

 (B.14)

is invertible. If such is the case, then D is known as the system’s decoupling
matrix. Even in the case of a non-square matrix which means that the number
of outputs and inputs are not equal (` 6= m), the pseudo inverse can be taken
(Kolavennu, Palanki, & Cockburn, 2001). Analogous to the case of only one
output, this creates ` decoupled linear systems in normal form. That is, let
zi,j be the j-th component of the i-th system, the linearized system in normal
form is given by

żi,1 = żi,2, żi,2 = żi,3, · · · , żi,pi = vi with yi = zi,1 (B.15)

for i = 1, . . . , `. As before, this system was obtained from (B.4), where one
can define a chain of integrator as above. Defining

α(x) :=

L
p1
f h1(x)

...
Lp`f h`(x)

 (B.16)

and putting together (B.4) for all outputs gives the control law

u(x) = D−1(x)
[
−α(x) + v

]
. (B.17)

Note that (B.15) is also a linear system that is controllable. A standard
state feedback law can now be applied as in (B.2) so that the overall system
is stable and can be made to follow a desired path. The state feedback law is

applied on vi = Kizi, where zi =
(
z1,i · · · z1,pi

)>
can be obtained from the

derivatives of each output and Ki is a user-defined vector of gains. A block
diagram of the overall system is shown in Figure 5.19.
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Appendix C

Estimations
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Table C.1: Results

Dependent variable:

log of labor productivity log of total labor force

(1) (2)

Year 0.013∗∗∗ 0.034∗∗∗

(0.002) (0.001)

Constant −16.807∗∗∗ −51.274∗∗∗

(4.308) (2.139)

Observations 24 24
R2 0.620 0.978
Adjusted R2 0.603 0.977
Residual Std. Error (df = 22) 0.073 0.036
F Statistic (df = 1; 22) 35.968∗∗∗ 999.661∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.2: Results

Dependent variable:

VWS NLFL VWS NLFL

(1) (2) (3) (4)

lambda 0.431 2.557
(0.565) (6.747)

1/(1− lambda)2 0.00002 0.0001
(0.00002) (0.0003)

Constant −0.411 −2.494 −0.010 −0.108
(0.538) (6.429) (0.013) (0.155)

Observations 23 22 23 22
R2 0.027 0.007 0.034 0.007
Adjusted R2 -0.019 -0.043 -0.012 -0.043
Residual Std. Error 0.028 (df = 21) 0.324 (df = 20) 0.028 (df = 21) 0.324 (df = 20)
F Statistic 0.582 (df = 1; 21) 0.144 (df = 1; 20) 0.743 (df = 1; 21) 0.138 (df = 1; 20)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
VWS = variation of wage share as in the left side of equation 4.2.

NLFL =Non-linear function of lambda as in the left side of equation 4.3.
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