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Abstract

This thesis proposes a novel approach for a nonlinear adaptive observer design applied
to a reverse osmosis desalination plant. The considered mathematical model of the de-
salination system includes nonlinearities of the states and the parameters that cannot
be handled with previously published estimation methods which are based on the mod-
ulating function technique. Therefore, the proposed real-time capable approach uses a
decoupled parameter estimator and state observer. These estimates can be utilized for
developing a controller or a fault detection system of the desalination plant with the
aim of improving the quality and effort of fresh water production.

The parameter estimator is composed of a convolution filter with modulating func-
tions and the common Extended Kalman-Bucy Filter in order to estimate nonlinear
parameters of a state-linear input/output relation. To receive a regression form of the
nonlinear system for the state observer and to avoid the necessity of time-derivatives
of the measured input and output signals, a linearization by means of the Taylor se-
ries and the modulating function technique are applied. The estimates can be non-
asymptotically obtained by using a sliding window of finite length. This procedure
allows a continuous and recursive update of the state estimates and extends the possi-
ble applications of the modulating function technique to nonlinear systems.

Comparative simulations are executed with the considered nonlinear system of a
reverse osmosis desalination plant. Distinct scenarios with respect to the parameter
change and the impact of noise are examined. The parameter and state coupled Ex-
tended Kalman-Bucy Filter shows an asymptotic convergence of its estimates, whereas
the decoupled proposed adaptive observer confirms its non-asymptotic behavior by fast
estimation results.
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1 Introduction

1 Introduction

1.1 Motivation

Water is the most important good in the world: Without it, humanity cannot survive.
Although two thirds of the earth is covered with water, almost all of it is saltwater,
which is mostly stored in ocean. Of the remaining 2.5% fresh water are only 0.3%
accessible to humans because the rest is bonded as glaciers or is located as groundwater
deep under the earth. [Bun17]

On the one hand, the global water consumption by humans is rising since the 1930s
approximately 1% every year, which is caused due to the steady growth of the world
population and economy. On the other hand, the climate change and natural disasters
like prolonged heat and the resulting aridity limit the access to drinkable water. Because
of the rising demand of accessible fresh water, new methods must be developed or
existing ones must be improved to satisfy the demand of fresh water. [Foo17]

One idea is to use a part of the 97.5% saltwater of the earth and transform it into
fresh water with a seawater Reverse Osmosis (RO) desalination plant. The aim of a RO
process is to diminish the content of salt and other minerals in a brackish or seawater
stream, which is done by pressing the water through a semipermeable membrane. As
the membrane rejects the salt, the input stream is separated into the permeate stream
with a lower salt concentration and the brine stream with a higher salt concentration.
The permeate stream is used for the supply of freshwater for the industry or domestic
sector. [Bun17; FRL17]

1.2 Objective of Research

This leads to the problem at hand and thus to the research question of how to improve
the efficiency of water desalination with a RO plant. Before developing a controller or a
scheme for a fault detection of the desalination plant, all process states and parameters
of the time-varying nonlinear system have to be known. It is usually not possible
to measure all the necessary process states due to costs and physical limitations of
the nonlinear system. For instance, the salt concentration of the streams cannot be
measured but must be calculated with the conductance and the pH value. Moreover, the
parameters of the system change under certain conditions, e.g. the amount of particles
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1 Introduction

clogging the membrane has to be supervised in order to prevent the destruction of the
membrane rack. [Riv+19]

Therefore, an adaptive observer for the dynamic system with time-varying parame-
ters, uncertainties, multivariable coupling and sensor noise must be designed in order
to estimate the system states and parameters only by using input and output measure-
ments. The observer approach is based on a mathematical model of the system which
describes the behavior of the desalination process and must fulfill a certain accuracy.

The general objective is the development of two different nonlinear observer ap-
proaches for the RO seawater desalination plant and setting the boundaries of each
observer considering several requirements like the model itself, the sensor placement
and noise, nonlinearities or parameter changes. The Extended Kalman-Bucy Filter
(EKF) is considered as a common observer already used in industrial solutions. In
contrast, the Modulating Function Method (MFM) is a current research interest and
is applied with the aim of new results to the investigative contribution of the non-
linear adaptive observer design. This is one of the objectives of the PURE-WATER
project, namely a real-time capable observer design for membrane systems for water
desalination by using an advanced parameter and state estimation technique including
the Modulating Function (MF) approach.

1.3 Limitations and Structure of the Thesis

This research is limited to a theoretical framework and the simulation of nonlinear
observers for the RO seawater desalination plant. The implementation and test with
the real RO plant in the laboratories of the Pontifical Catholic University of Peru
(PUCP) in Lima is not possible due to the COVID-19 pandemic but can be part of
further research.

The content of this thesis will cover the application of a common observer and the
development of a decoupled adaptive observer for nonlinear systems using the MF
technique. The outline of contents is constructed as shown in figure 1.1. In chapter
2, the RO system is modeled with respect to (w.r.t.) the sensor configuration and the
model is given in form of a state-space representation. After introducing the necessary
nonlinear observability definitions, the observability of this nonlinear system is analyzed
in chapter 3. Chapter 4 describes the EKF which will be used as a part of the parameter
estimator in section 5.3 and in chapter 6 as a basis for a comparison.

The main focus of this work is built around the MF approach which is outlined in
chapter 5. The MFM is applied for both, a parameter and a state estimation. Both
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RO Plant

Sensor
Configuration
(section 2.2)

Model
(sec. 2.3)

Observer Design

Observability
(chapter 3)

Feasibility Study
(section 3.2)

EKF
(chap. 4)

Parameter
Estimation
(sec. 5.3)

MFM
(sec. 5.2)

State
Estimation
(sec. 5.4)

Adaptive Observer
(section 5.5)

Simulation
(chapter 6)

Figure 1.1: Structure of the thesis

estimators can be used as a standalone one or coupled in order to receive an adaptive
observer in section 5.5. This observer is applied to the model of the RO desalination
system and compared to the EKF in chapter 6.
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2 System Modeling of the Reverse Osmosis Plant

2 System Modeling of the Reverse
Osmosis Plant

The considered system is a pilot-scale RO desalination plant and is set up in the Control
and Automation Laboratory of the PUCP. This plant is used for training and optimiza-
tion purposes which can then be applied to commercial desalination plants. Compared
to these commercial desalination plants, no post-treatment stage and no energy recov-
ery devices are necessary in the pilot-scale setup since the water stays in a closed-loop
system of the plant. [Riv+19]

2.1 Structure

The mathematical modeling of the RO plant is based on a light-gray-box model which
is a mixture of theoretical and experimental modeling. This identification method
uses physical laws in form of Ordinary Differential Equations (ODEs) if the process is
only time-dependent. If the process is time- and space-dependent, Partial Differential
Equations (PDEs) are used to describe the process behavior. The parameters of the
model are unknown and must therefore be estimated by the measured process signals.
In contrast, a white-box model is completely defined by established physical laws and
known parameters, whereas a black-box model only assumes the model structure by
measured signals of the process. [IM11]

From
pre-treatment

Pump

Motor
M~

Variable
frequency
controller

ωel

ωp

Membrane

Qf , Cf , γf , pH ∆PVb

Vp

Cms
Cm

Qm

Av
Qb, Cb

Qp, Cp, γp

Figure 2.1: Schematic representation of the RO [Göp21]

In [Göp21] a light-gray-box model of the considered RO plant has been developed
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2 System Modeling of the Reverse Osmosis Plant

which will be further used in this work. The pilot-scale RO plant was divided into three
subsystems, namely the pre-treatment, the membrane module and the high pressure
pump module which is shown in figure 2.1.

Additionally, [Göp21] proposed a hydraulic circuit to model the interaction between
the high pressure pump and the brine valve (see figure 2.3). Since the dynamics of the
brine valve is slow, it is not used for the further mathematical model of the considered
system. Therefore, the cross sectional area of the valve Av is assumed to be constant
and is measured in [Av] = cm2 in order to minimize numerical errors due to the huge
differences of values. Accessorily, the pressure change is calculated in [∆P ] = bar and

all flows in [Q] = m3

min.
All static parameters of the model are assumed to be known and are listed in table

2.1. The data of the installed membrane in the considered plant are extracted from
[TOR19]. Since the pilot-scale RO desalination plant is set up in Peru, the peruvian
utility frequency fel = 60 Hz is used in the model. Besides fixed physical parameters
like the ideal gas constant R, the rest of the static parameters are an estimation of the
real parameters of the plant since the validation of the parameter values has not been
possible yet.

Vp = 0.576× 10−3 m3 pH∗ = 7.0 C∗f = 2 kg m−3 p = 1
Vb = 14.9× 10−3 m3 A∗m = 16 m2 C∗p = 0.5 kg m−3 ρb = 1 kg l−1

Vd = 13.04× 10−6 m3/rev A∗v = 3.67 cm2 γ∗f = 0.108 S m−1 αv = 0.04
κ = 0.2 kg m2 s−1 rad−1 ω∗el = 377 rad s−1 γ∗p = 0.05 S m−1 τv = 1.5 s−1

bp1 = bf1 = 0.05 S m−1 Jp = 0.2 kg m2 ks = 12.0× 10−6 m min−1

bp0 = bf0 = 0.1 S m2 kg−1 d = 0.002 N m s km = 12.0× 10−5 m min−1 bar−1

R = 8.314 472× 10−5 m3 bar mol−1 K−1 Mm = 0.058 44 kg mol−1

Table 2.1: Parameter values taken for simulation

2.1.1 Pre-treatment

The pre-treatment is mandatory for every RO plant, whereas it is not for other desalina-
tion methods, e.g. thermal processes like the most-used Multi-Stage Flash Distillation
(MSF) [EE02]. In contrast to the obligatory pre-treatment to obtain a certain qual-
ity of the feed water, the RO membrane separation technology has several advantages
compared to the thermal evaporation: The energy consumption and operational costs
are less and the water recovery rate is higher [Pér+20]. A complete comparison can be
found in [SR14].
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2 System Modeling of the Reverse Osmosis Plant

The pre-treatment system is applied to assure the RO operation for a substantial
period of time, e.g. longer than six months, without the time consuming and expensive
cleaning of the membrane. An inadequate pre-treatment of a RO plant would lead to
a reduction of the membrane life. Additionally, the plant availability will be shortened
due to frequent RO chemical cleanings. [Bad+19]

Ultraviolet
(UV) Filter

Mechanical
Filters

Adding
additives

The pre-treatment process treats the feed water before it enters
the high pressure pump (see figure 2.1). In the first step of the
pre-treatment, the water passes through an UV filter in order to
be sterilized. The sterilization is necessary in order to avoid bio-
logical fouling, also called biofouling. This biological contamination
describes the growth of bacteria on the membrane surface. It de-
pends on the membrane composition as cellulose acetate membranes
or polyamide hollow fibers are susceptible to bacteria but thin-film
composite membranes, which are used in the considered plant, are
quite resistant to a bacterial attack. Beside an UV filter, it is also
possible to add chlorine to the water but it must be filtered after-

wards. Thus, UV filters are used in the considered plant. [Bak04]
As a second step mechanical filters are applied in order to filter suspended solids

and to avoid the deposition of solid particles on the membrane surface which is called
fouling. At last, additives are adjoined to the water in the pre-treatment process in
order to adjust the pH-value by adding acid, sterilizing the water by adding chlorine or
preventing scaling. Scaling means the formation of mineral deposits on a membrane,
effecting the permeation rate of the RO system. A measure against scaling comprises
an antiscalent additive. [Bak04; Göp21]

Scaling and (Bio-)Fouling inevitably cause the membrane to plug which is described
in section 2.1.3.2. The pre-treatment system of the pilot-scale RO plant consists of a
feed pump, an UV filter, a set of mechanical filters, namely a multimedia filter and a fine
filter, and two additives tanks (see figure 2.5). Additionally, the pre-treatment includes
an active carbon filter which removes organic compounds, e.g. pesticides, herbicides
and insecticides, and surplus chlorine. [Riv+19]

The multimedia filter consists of several layers of distinct media. In these layers the
particles are captured. The multimedia filter can remove particles down to a size of
5− 10µm. The multimedia filter is described more precisely in [Meh10].

The removal of smaller particles can be improved by using micro- and ultrafiltration,
respectively. Both techniques are based on membrane filtration, and their pore size
ranges between 0.01− 0.1µm. [Bad+19]

6



2 System Modeling of the Reverse Osmosis Plant

Due to the small pore size, the porous structure allows the permeability of microsolutes
through the membrane. Hence, no representative osmotic pressure is generated across
the ultrafiltration membrane on the contrary to RO membranes. [Wan+11]
Compared to media filtration, the membrane filtration is capable of removing more
foulants and biopolymers in the water than the media filtration. Moreover, ultrafil-
tration is very effective for turbidity removal and produces a constant product water
quality with low turbidity. Also ultrafiltration membranes can effectively remove viruses
which leads to less chlorine use. [Bad+19]

Nevertheless, the pre-treatment has not been modeled in [Göp21] and is neither
modeled in this thesis since the influence of the pre-treatment on the desalination
process in the interesting range of operation is negligible.

2.1.2 High Pressure Pump Module

The high pressure pump module follows the pre-treatment and is separated into two
subsystems: the electrical and the mechanical part. Due to the negligence of the dy-
namics of the brine valve, the electrical subsystem and therefore the whole system has
one input u = ωel. The frequency set point ωel is used by the variable frequency con-
troller to control the electrical motor which is connected to the high pressure pump.
By variation of the input, the rotational speed ωp of the mechanical part is affected.
The high pressure pump with the rotational speed ωp generates the feed stream Qf :

Qf = 30
π
Vd ωp. (2.1)

Equation (2.1) includes the pump displacement Vd which equals the volume of the fluid
that the pump delivers per revolution.

The dynamics of the rotational speed ωp of the pump is based on Newton’s law of
motion:

ω̇p = 1
Jp

−∆P 5× 104 Vd

π︸ ︷︷ ︸
Mp

−dωp + κ (−p ωp + ω∗el up)︸ ︷︷ ︸
τp

 (2.2)

with the moment of inertia Jp and the friction coefficient d of the pump. The pump
generates the torque Mp which is expressed as a function of the pressure difference
∆P since the hydraulic power equals the mechanical power. Furthermore, the torque
produced by the motor of the pump τp uses a simplified expression because the frequency
converter connected to the motor has a so-called ’volts per hertz’ mode. Therefore, the
ratio Ueff/ωp obeys the proportionality κ with the number of poles of the motor p, the

7



2 System Modeling of the Reverse Osmosis Plant

electrical resistance of the rotor Rr, the mutual inductance between stator and rotor
M , the effective voltage of the stator Ueff , and the inductance of the stator Ls:

κ = 3 p
2Rr

(
M Ueff

Ls ωel

)2
. (2.3)

The output frequency of the variable frequency controller ωel has a limit to a certain
range and equals to its set point frequency. Thus, it is replaced by the product of the
nominal value of the supply frequency ω∗el and the weighting factor of the frequency up

which is limited to the range [0, 1].

2.1.3 Membrane Module

The membrane module is the process part in which the RO respectively the desalina-
tion takes place. This module is divided into two control volumes Vb and Vp. Both
are assumed to be constant and are coupled through the semipermeable membrane.
Another assumption is that the flow of water (solvent) and salt (solute) through the
membrane occurs independently as stated in the solution-diffusion model in [Kuc15].
Moreover, all fluids are considered as incompressible ρ = const. and have the same
density ρf = ρb = ρp. Thus, the impact of the salt concentration on the density of the
solution is negligible.

2.1.3.1 Reverse Osmosis

Semipermeable
membraneForce

∆P ⇒

Force

∆P > ∆π

∆P

Salt flow
Water flow

Figure 2.2: Process of reverse osmosis [EE02]

The working principle of the RO can be described as the application of a pressure ∆P
which is higher than the osmotic pressure ∆π of the solution to the high concentration
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2 System Modeling of the Reverse Osmosis Plant

region (see figure 2.2). The osmotic pressure ∆π is influenced by the concentration
difference across the membrane and the solution’s temperature. Thereby, the hydraulic
pressure differential is used to drive the water from regions of high concentration to the
ones with low concentration, namely through the membrane. In contrast to osmosis, the
direction of the solvent flow changes but the direction of the solute remains the same.
The result is purified water called the permeate stream on one side of the membrane,
and a more concentrated salt solution on the other side, which is the brine stream.
[Göp21; Sta16; CCE06]

Applied to the pilot-scale RO plant displayed in figure 2.1, the pressure ∆P inside
the membrane module is generated by the feed stream Qf with the salt concentration
Cf as the membrane with the brine valve acts like a resistance to Qf . This causes the
RO and the feed stream Qf to separate into the brine stream Qb and the permeate
stream Qp with the lower concentration of the solute.
Since the control volumes are constant, the mass balance of the control volume on

the brine side of the membrane module Vb holds as follows [GKB07]:

Qf = Qm +Qb (2.4)

Ċb = 1
Vb

(Qf Cf −Qb Cb −QmCm). (2.5)

The formula (2.4) describes the separation of the feed stream Qf into the flow passing
through the membrane Qm and the brine stream Qb. This balance is used to calculate
the dynamics of Cb with the formula (2.5). On the other side of the membrane, the
balance of the control volume of the solvent and the differential solute can be described
as [GKB07]:

Qp = Qm (2.6)

Ċp = 1
Vp

(QmCm −QpCp). (2.7)

However, it is not possible to measure the salt concentration directly. Therefore, the
relation between the measurable conductivity of the permeate γp and the feed stream γf ,
and the solute concentration is used. Additionally, the constants around the operating
points C∗, pH∗, γ∗ of the feed stream bf and the permeate stream bp are required:

γf = bf0 (Cf − C∗f )− bf1 (pH − pH∗) + γ∗f (2.8)

⇐⇒ Cf = C∗f + γf − γ∗f + bf1 (pH − pH∗)
bf0

. (2.9)
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2 System Modeling of the Reverse Osmosis Plant

[Göp21] modeled the hydraulic circuit with an electronic-hydraulic analogy (see figure
2.3) so that the pressure drop corresponds to the electrical potential and the volume
flow rate equals the electric current. Thus, the hydraulic pump is a current source

Vdωp
Rm(∆P, Cms) Rv(∆P, Av)

Qf Qm Qb

∆P ∆P

Figure 2.3: Hydraulic network with the electronic-hydraulic analogy [Göp21]

in this analogy and can be adjusted by changing the rotational speed of the pump
ωp. Since the membrane and the valve act like two nonlinear resistors in parallel, the
pressure drop ∆P is caused by the flow streaming through the resistors and leads to
the following expression for ∆P :

∆P =
[

2√
3
√
−p sin

(
1
3 arcsin

(
3
√

3q
2(√−p)3

))
− a2

3

]2

(2.10)

with

a0 = Q2
f

kmAmνAv
+ Qf(Cms + α)

βνAv
(2.11)

a1 = −Cms + α

β
− 2Qf + α

kmAm
(2.12)

a2 = νAv

kmAm
− Qf

νAv
− αkmAm

βνAv
(2.13)

p = a1 −
a2

2
3 (2.14)

q = 2a3
2

27 −
a2a1

3 + a0. (2.15)

The calculation of ∆P underlies the physical assumptions that the values of Cms, Av

and Qf are non-negative. Thus, the value of ∆P must be positive as well. If Qf or Cms

rises, ∆P will increase comparable to the equivalence of an electric resistor R = U
I
.

The volume stream through the brine valve is defined by the flow coefficient of the
valve αv, the cross sectional area of the valve Av, the density of the brine stream ρb

10



2 System Modeling of the Reverse Osmosis Plant

and the pressure drop ∆P (2.10):

Qb = 0.06αv

√
2
ρb
Av
√

∆P . (2.16)

The dynamics of the valve can be expressed with the mechanical time constant of the
valve τv, the nominal value of the cross sectional area of the valve A∗v and the opening
factor of the valve uv in the range of [0, 1]:

Ȧv = 1
τv

(−Av + A∗v uv). (2.17)

Due to a big value of τv, the valve is not designed to act fast. Therefore, the dynamics
of the brine valve can be neglected which leads to Ȧv = 0.
Regarding the solution-diffusion model, the solvent passes through the membrane

independently, and thus, the volumetric flow rate flowing through the membrane can
be defined with the surface area of the membrane Am and the solvent permeability of
the membrane km [Kim17]:

Qm = km Am (∆P −∆π). (2.18)

In order to calculate Qm (2.18), the osmotic pressure difference ∆π is assumed to be
linearly proportional to the solute concentration. The formula (2.19) is also known as
Van’t Hoff equation. ∆π can be seen as a resistance and is defined by the difference
of the solent concentration high and low of the membrane Cms and Cm multiplied with
the proportionality β consisting of the values of the molar mass of salt Mm, the ideal
gas constant R, and the temperature of the solvent T [Kim17]:

∆π = 1
β

(Cms − Cm) with β = Mm

R · T
. (2.19)

The considered plant operates in RO mode if the osmotic pressure difference ∆π is
smaller than the applied pressure difference across the membrane ∆P . Nevertheless, if
∆π ≥ ∆P , e.g. when the high pressure pump turns off suddenly, Qm in equation (2.18)
becomes negative. Thus, the plant works in osmosis mode.

Due to the independence of the solvent and the solute stream through the membrane,
the solute flow Qs can be defined in a similar way to Qm but with the solute permeability
of the membrane ks:

Qs = ks Am(Cms − Cm). (2.20)
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2 System Modeling of the Reverse Osmosis Plant

Using equations (2.18 - 2.20), the solute concentration on the low side of the membrane
Cm can be described as the ratio of the solute flow to the solvent flow [Kim17]:

Cm = Qs

Qm
= ks Am(Cms − Cm)
km Am(∆P −∆π) = ks Am (Cms − Cm)

kmAm (∆P − 1
β

(Cms − Cm)) . (2.21)

After the solute molecules have passed through the membrane, it is assumed that the
solutes are uniformly mixed in the permeate stream [Kim17]. In order to receive Cm,
equation (2.21) is solved explicitly under the assumption that all concentrations are
greater than zero:

Cm =1
2

(
Cms − β∆P − α +

√
β2 ∆P 2 − 2 ∆P (Cms − α)β + (Cms + α)2

)
(2.22)

with α = ks

km
β.

For the calculation of Cms, a simple approach is chosen from [EE02]:

Cms = 1
2(Cf + Cb). (2.23)

The salt concentration on the membrane Cms cannot be equated with Cb since the
membrane rejects salt and with it increases the salt concentration on the surface of
the membrane. This phenomenon is called Concentration Polarization (CP) and is
described in the next section 2.1.3.2.

2.1.3.2 Membrane Fouling and Concentration Polarization

The CP can be described as an uneven concentration distribution near the membrane
surface, so that Cms > Cf . To describe this phenomenon, a nonlinear PDE is necessary
as the CP is a two dimensional problem. Into one dimension, namely the direction of
the surface of the membrane, the concentration increases as well as into the direction
of the outlet of the brine stream. [Kim17]

The solute build-up by the CP on the membrane surface is considered as reversible
and controllable. Possible countermeasures would be the velocity adjustment of the
feed stream or using pulsation, ultrasound or an electric field. Compared to that, the
membrane fouling is more complex because as described in section 2.1.1 the adhesion of
undesirable particles at the membrane is influenced by physical, chemical and biological
effects. Thus, the membrane fouling is irreversible and causes the decrease of the
membrane permeability. [Sab+01]

12
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The reason for this lies in the trapped particles within the membrane. Therefore,
the high-pressure set-point must be increased in order to compensate the fouling effect
of the membrane. Otherwise, the flux declines at a constant pressure and the useful
filtrate rate decreases as well. However, the adjustment of the pressure should be
avoided. Since the lifetime of a membrane is proportional to the particle loading of the
feed solution, membrane fouling can be handled by the pre-treatment and should be
better monitored. [Bak04]

Without any countermeasure, the membrane is clogged due to fouling or CP and
then the membrane normally has to be removed and flushed with a cleaning solution.
In order to restore the whole efficiency of the plant, the dynamic process parameters of
the plant must be re-determined since they are needed for the light-gray-box model of
the plant. [Göp21]

However, it is more efficient to avoid the clogging of the membrane as it reduces
the maximal amount of clean water produced by the plant. Therefore, the membrane
material (see section 2.1.3.3) and the membrane pre-treatment must be chosen properly.
[Sab+01]

In addition, a parameter observer might be possible to supervise the trend of the
important parameters for the membrane fouling and the CP in order to maintain an
efficient process. As stated in [Kuc15], the change of the water transport coefficient
A = Am km and the salt transport coefficient K = Am ks indicates the degradation,
fouling or scaling of the membrane. In order to describe both effects of membrane
fouling and CP, the gradually decrease of the membrane area Am is assumed as time-
variant parameter for the pilot-scale RO plant which needs to be observed.

2.1.3.3 Membrane Type and Material

The considered RO plant has two spiral wound modules connected in parallel. It is also
possible to combine the modules in series, but additional pressure generation between
the connected modules would be necessary which is not given in the pilot set-up. Also
the used mathematical model has to be adapted. [Göp21]

Furthermore, the type of the membrane module could be changed from spiral wound
to hollow fiber. Hollow fiber membranes are explicitly explained in [Kuc15] and can be
described as tubes with an inner diameter in the micrometer range. The outer wall of
the tube acts as the membrane. They have the advantage of higher package densities
which is the effective membrane area per volume of the membrane module. Compared
to that, the used spiral wound membrane module does not consist of tubes but sheets
positioned on both sides of a permeate carrier (cf. figure 2.4). This carrier is a nylon
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mesh and is used as a spacer between two membrane sheets. [Kuc15]

Perforated
collection tube

Brine
Permeate

Membranes

Feed water
and brine spacer

Permeate flow
toward collection tubeCovering

and bypass spacer

Permeate
carrier

Feed

(b)

Figure 2.4: Schematic composition of a spiral wound membrane module [Kuc15]

The spacer forms the permeate channel and leads the permeate stream helically to the
perforated collection tube in the center of the membrane module and then to the outlet.
On the other side of the membrane sheets, the feed/brine spacers are placed in order
to provide the channel for the respective stream. Due to the spiral form, various layers
are wrapped around the collection tube. Therefore, spiral wound modules compared to
hollow fiber modules do not have areas where the water cannot flow properly, and thus,
are less sensitive to membrane fouling. [Kuc15; Göp21]

Nevertheless, helical modules are susceptible to CP and could lead to a clogging of
the membrane which harms the production of clean water [Bak04]. Due to the parallel
set-up, the RO plant can remain in operation during the cleaning of one membrane
module. Another positive aspect of the spiral wound modules are the variability of the
membrane material. [Göp21]

In the case of the pilot-scale RO plant, the membrane type is a cross linked fully aro-
matic polyamide composite with the technical designation Toray TM710D [TOR19].
This choice can be explained by the required rejection rate of > 99.3% in order to de-
liver drinkable water from seawater with only one stage of membrane modules [Göp21].
This rate can be reached with the used type of membrane since the composite mem-
brane Toray TM710D obtains a salt rejection of 99.8% [TOR19]. In comparison, the
previously developed cellulose acetate membranes only reach a rejection rate of 98−99%
and thus are not utilized, although they are cheap in production and robust against
chlorine in order to prevent biofouling [Göp21].
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However, the most popular RO membrane is the fully aromatic polyamide membrane
which is based on 70s technology of interfacial polymerization of a selective layer directly
on a porous support [Bak04; Sta16].
The composite membrane consists of a very thin polymer barrier layer (< 1µm) formed
on a thick porous support layer. The thin surface layer allows high water fluxes and a
proper rejection of salt which is the aim of an efficient RO process. [CCE06; Wan+11]

There exists an inverse relationship between the applied pressure and the membrane
thickness. A thinner membrane needs less pressure to generate a given amount of
water. [Sta16] The ratio of membrane surface to volume for a spiral wound module is
approximately between 656m2

m3 and 820m2

m3 [Wan+11] and is used for the calculation of
the fixed parameters (see table 2.1).

2.2 Sensor Configuration

The sensor configuration of the considered RO plant is depicted in figure 2.5.

UV filter

Multimedia
filter

Carbon
filter

Membrane
rack

High pressure pump

Variable
frequency
controller

Fine
filter

Feed
stream

Brine
stream

Permeate
stream

Drainage

Additive
unit

Pretreatment

Figure 2.5: Sensor configuration of the RO plant [Riv+19]

The pre-treatment system is explicitly described in section 2.1.1. This part includes
a pH sensor after the last tank of additives. The pH measurement is later used for the
calculation of the concentration of the feed and permeate stream (cf. equation (2.9)).

15



2 System Modeling of the Reverse Osmosis Plant

Moreover, after each additive tank a dosing pump is installed to control the supply of
additives.

The conductivity is measured before the water flows in the high pressure feed pump
and after the desalination process, namely the conductivity of the permeate stream.
Also a flow sensor is positioned at the outlet of the RO membrane rack. With the
values of the conductivity and the flow sensor, the conversion rate can be determined.
The permeate conductivity is controlled by the adjustment of the proportional valve
in the brine flow which is assumed to have a slow dynamics. In normal operations
the proportional valve in the brine stream is opened half by a nominal pressure of
P ∗ = 20 bar. It is also never completely closed in order to avoid membrane damages.
[Riv+19]

Both, a pressure sensor and a flow sensor, are placed at the brine flow outlet. The
second pressure sensor of the system is located after the feed water leaves the high
pressure feed pump. At the same position, a sensor is put to measure the temperature
of the water.

Due to the closed-loop design of the pilot-scale RO plant, drainage and water tanks
are necessary since the process is not directly connected to a saltwater source and the
water is in a cycle of desalination and salinization [Göp21]. The salt concentration
of the feed stream can be replicated by adding Sodium Chloride (NaCl) to the storage
tank. Water with the salinity content between 0.5 kg m−3 and 30 kg m−3 is considered as
brackish water. Seawater has a salt content between 30 kg m−3 and 50 kg m−3 [NW19].
Each tank has a level sensor and either in the inlet or the outlet is put a proportional
valve to control the system.

In comparison, a real plant suffers more intensively from changing conditions of the
feed water quality, e.g. the temperature, the rate of salinity or other environmental
factors, which leads to membrane fouling [FRL17]. However, the dynamics of the pilot-
scale RO plant closely resemble the dynamics of a real seawater RO desalination plant.
Therefore, the state and parameter estimation of the considered plant gives a good
example for a real plant. [Riv+19]

Summarized, the values of pH, γf , γp, ∆P , Qp and Qb can be measured with the
sensors. The tasks of the dynamic behavior of the plant are the large time-varying
parameters, e.g. the membrane permeability and the surface of the membrane, un-
certainties in the model, load disturbances and sensor noise due to the measurement.
[FRL17]
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2.3 State-space Representation

In figure 2.1 all used variables in the physical context are shown. Aforementioned, the
dynamics of the brine valve is neglected, and thus, only one input ωel is considered with
a weighting factor up. As described in the previous section 2.2, the measured variables
are listed in green:

Measured Signals: m1 = pH

m2 = Qp

m3 = Qb

m4 = ∆P
m5 = γp

m6 = γf

Inputs u = up ∈ [0, 1]
States x1 = Cp

x2 = Cb

x3 = ωp

Output y = x1

The dynamic states of the system are Cp, Cb and ωp. The output of the system is
set equal to the first state Cp (see formula (2.27)).

2.3.1 Nonlinear Representation

Based on the formulas of the sections 2.1.2 and 2.1.3.1, the nonlinear state-space rep-
resentation of the system Σ is given by:

ẋ1 =0.5αAm

Vp

(
ks + ∆P km

)
+ 0.25
Vp bf,0

(
Am ks σ1 − 4Qp bf,0 x1 + Am ks bf,0

(
C∗f + x2 (2.24)

−
√

(C∗f + x2 + σ1

bf,0
+ 2α)2 + 4 β2∆P 2 − 8 β∆P (0.5C∗f + 0.5x2 + 0.5σ1

bf,0
− α)

))

ẋ2 =− 0.499αAm

Vb

(
ks + ∆P km

)
− 0.0796
Vb bf,0

12.566Qb bf,0 x2 (2.25)

− 120Vd x3 (σ1 + C∗f Vd bf,0) + π Am ks

(
C∗f bf,0 + bf,0 x2 + σ1

− bf,0

√
(C∗f + x2 + σ1

bf,0
+ 2α)2 + 4 β2∆P 2 − 8 β∆P (0.5C∗f + 0.5x2 + 0.5σ1

bf,0
− α)

)
ẋ3 =− 15915Vd ∆P + d x3 − c (ω∗el u− p x3)

Jp
(2.26)

y =x1 (2.27)
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with

σ1 =γf − γ∗f + bf,1 (pH− pH∗) (2.28)

α = ks

km
β (2.29)

β =Mm

RT
. (2.30)

The numeric expressions in the state-space representation can be explained with the
changed units which have been chosen in order to avoid numerical errors. Due to the
CP and the membrane fouling, the parameter Am(t) is assumed to be time-variant and
should be supervised with the proposed parameter estimator (cf. section 5.3).

This estimator uses the MFM (cf. section 5.2) and thus, requires a modulatable form
of the Input/Output (I/O) relation built through the state-space representation. The
operation with equations (2.24-2.27) leads to a highly nonlinear I/O relation (B.1) on
which the MFM could not be applied easily. Therefore, a linearization of the state-space
representation is executed in the following section 2.3.2.

2.3.2 Linearized Representation

Examining the equations (2.24-2.26) closely, the nonlinearity of the states occurs within
the discontinuity of the roots. Assuming that the summand 4 β2∆P 2 dominates nu-
merically, the root can be simplified by using a Taylor series w.r.t. the operating points
x̄2 = 0.6 kg m−3 and ∆P̄ = 20 bar. The linearized state-space representation of the RO
system is given as follows:

ẋ1 =0.5αAm

Vp

(
ks + ∆P km

)
+ 0.25
Vp bf,0

(
Am ks σ1 − 4Qp bf,0 x1

+ Am ks bf,0
(
C∗f + x2 − (2 β∆P − 0.9895x2 − 1.4025)︸ ︷︷ ︸

linearized square root

))
(2.31)

ẋ2 =− 0.499αAm

Vb

(
ks + ∆P km

)
− 0.0796
Vb bf,0

12.566Qb bf,0 x2 − 120Vd x3 (σ1 + C∗ Vd bf,0)

+ π Am ks

(
C∗f bf,0 + bf,0 x2 + σ1 − bf,0 (2 β∆P − 0.9895x2 − 1.4025)︸ ︷︷ ︸

linearized square root

) (2.32)

ẋ3 =− 15915Vd ∆P + d x3 − c (ω∗el u− p x3)
Jp

(2.33)

y = x1 (2.34)
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with the equations (2.28-2.30).
In the appendix section B.3, the comparative plots of the evaluated nonlinear and

linearized state-space representation are given. After inserting the fixed parameters of
table 2.1 into the state-space representations, each dynamics of the states only depend
on two variables, i.e. ẋ1 needs x1 and x2, ẋ2 requires x2 and x3 and ẋ3 depends on
x3 and u. These span a plane in space without nonlinear outliers. The plots of the
nonlinear state-space representation (see figures B.1a, B.2a and B.3a) already suggest
a linear behavior due to their flat surface area. There is no noticeable difference in the
plots of ẋ1 (see figures B.1), ẋ2 (see figures B.2) and ẋ3 (see figures B.3) compared to
the nonlinear plots.
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Figure 2.6: Comparison of the responses of the nonlinear (2.24-2.27) and the linearized
system (2.31-2.34)

This is confirmed by the comparison of the step responses of the nonlinear and the
linearized system in figure 2.6a since the step responses are congruent. This approxi-
mated linearized form of the state-space model is used in section 5.3 in order to estimate
the time-variant parameter Am.

Also the response of the nonlinear and linearized system to a normalized sine signal
with a frequency of f = 4 rad s−1 is analyzed. In figure 2.6b, a small deviation between
both responses is recognizable. The operation of the RO system normally includes
periodic changes in the rotational speed of the pump ωp. Therefore, the nonlinear
system is directly used for the state estimation in section 5.4 instead of the linearized
form.
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3 Observability of Nonlinear
Systems

There are various reasons why an observer in the control engineering is useful. As
stated in [Bes07a], in general three topics are concerned: control, monitoring and fault
detection.

Firstly, the more information there is about the states, the more efficient the control
of a system can be. Due to missing or expensive sensors or non-measurable states, the
states have to be estimated by an observer. With the estimated values, the control
signal can be determined and applied to the system in order to control the behavior of
the plant. The aim is to stay in the stable part of the closed-loop control system. In
the case of the RO plant, the control of the concentration of the permeate stream is
required in order to achieve drinkable water.

Secondly, it is useful to monitor the process variables, e.g. in order to prevent the
clogging of the membrane. If a certain threshold is reached, the process should be
stopped. The requirements of supervision contain a precise estimation of the states in
order to achieve the smallest observer error.

The third necessity of an observer belongs to fault detection. Failures as leaks, breaks
or sensor errors must be detected before they lead to an irreversible damage. There are
distinct methods of fault detection, e.g. applying structural analysis [Pér17; Göp21],
using signal models [Ise06] or via state and parameter estimation by an observer with
the knowledge of the considered system.

Before implementing an observer, it is important to investigate whether the system
is observable. Observability inquires the theoretical, mathematical possibility of the
reconstruction of the states x(t) from the input u and the output y of a system in a
time interval. Therefore, several observability concepts are introduced in the following
section 3.1. Afterwards, these methods are applied symbolically in section 3.2.1 and
numerically in section 3.2.2 to the RO plant.
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3.1 Observability Definitions

Consider a continuous-time nonlinear dynamical Single-Input Single-Output (SISO)
system:

Σ :=
 ẋ(t) = f(x(t), u(t)), x(t0) = x0

y(t) = h(x(t)) where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R.
(3.1)

It is assumed that the functions f and h are known and the input u(t) and the output
y(t) are measurable. The solution of the non-homogenous differential equation (3.1)
is expressed as ψ(t;x0, u(·)). If it is possible to uniquely determine x(t0) from the
knowledge of y(t) and u(t) at any time interval in I = [t0, tf ] with 0 ≤ t0 ≤ tf and t ∈ I,
the system Σ (3.1) is called observable. To assure an explicit solution in the nonlinear
case, it is important to introduce the definition of indistinguishability (Definition 3.1.1)
in order to be able to differentiate between distinct initial states.

Definition 3.1.1 (Indistinguishability [HK77]). A pair of initial states (x0, x
′
0) ∈ Rn×

Rn is indistinguishable for a system Σ (3.1) if:

∀u ∈ U ,∀t ≥ 0, h(ψ(t;x0, u)) = h(ψ(t;x′0, u)). (3.2)

A state x is indistinguishable from x0 if the pair (x0, x
′
0) is indistinguishable.

This property is used to define the observability:

Definition 3.1.2 (Observability (resp. at x0) [Bes07a]). A system Σ (3.1) is observable
(resp. at x0) if it does not admit any indistinguishable pair (resp. any state indistin-
guishable from x0).

It results that there exists an observer if the system is observable. As this definition
3.1.2 is too general for the practical use, more verifiable concepts of the observability are
necessary that are considered in local neighborhoods. In order to distinguish between
cases where, for example, certain input signals give rise to such indistinguishable regions,
an even more specific definition 3.1.3 is introduced:

Definition 3.1.3 (Weak observability (resp. at x0) [Bes07a]). A system Σ (3.1) is
weakly observable (resp. at x0) if there exists a neighborhood U of any x (resp. at x0)
such that there is no indistinguishable state from x (resp. x0) in U.

This definition does not hold cases when a trajectory has to go far from U before
it is distinguishable between two different states of U . Therefore, a more particular
definition is required:
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Definition 3.1.4 (Local weak observability (LWO) [ resp. at x0] [Bes07a]). A system
Σ (3.1) is Locally Weakly Observable (LWO) (resp. at x0) if there exists a neighborhood
U of any x (resp. of x0) such that for any neighborhood V of x (resp. x0) contained
in U, there is no indistinguishable state from x (resp. x0) in V when considering time
intervals for which trajectories remain in V.

In summary, the trajectories in h cannot leave the neighborhood V and every state
is distinguishable from its neighbors without ’going too far’. In other words, one can
distinguish between any two initial conditions which are close to each other, although
there could be other initial conditions which far from each other are indistinguishable.

As a geometrical characterization the observability space is introduced here, which is
a subset of the state space.

Definition 3.1.5 (Observation space [Bes07a]). The observation space for a system
Σ (3.1) is defined as the smallest real vector space (denoted by o(h)) of C∞ functions
containing the components of h and closed under Lie derivative along fu := f(·, u)
for any constant u ∈ Rm (namely such that for any ψ ∈ o(h),Lkfu

ψ ∈ o(h), where
Lkfu

ψ(x) = ∂ψ
∂x
f(x, u)).

With definition 3.1.5 and considering constant input values, the observability map
includes the output and its derivatives:

Definition 3.1.6 (Observability map [Noa+16b]). According to definition 3.1.5, the
related observability map ok(x) : Rn → Rk of the system class Σ (3.1) w.r.t. fu is
defined as:

ok(x) :=


y

ẏ
...
y(k)

 =


h(x)
Lfuh(x)

...
Lkfu

h(x)

 = Z with Z =


z0

z1
...

zk−1

 (3.3)

where Lkfu
h(x) describes the k-th Lie derivative w.r.t. fu and k ∈ N.

The observability matrix can be calculated by differentiating the observability map
(3.3) w.r.t. the states, i.e. the observability matrix is the Jacobian of the observability
map:

Definition 3.1.7 (Observability matrix [Noa+16b]). The observability matrix Ok(x) ∈
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Rk×n can be calculated as:

Ok(x) := ∂ok(x)
∂x

=



∂
∂x
h(x)

∂
∂x
Lfuh(x)

...
∂
∂x
Lkfu

h(x)

 (3.4)

where ∂
∂x

(·) stands for the gradient (row vector).

The observability matrix for a Linear Time-Invariant (LTI) system is equal to the
observability matrix according to Kalman. In consideration of the Implicit Function
Theorem, the observability matrix can be used to determine local solvability of the
nonlinear system for the state x. Therefore, the following theorem 3.1.1 is introduced:

Theorem 3.1.1 (Observability rank condition (resp. at x0) [Noa+16b]). The system
Σ (3.1) is LWO at x0 ∈ Rn if ∃k ∈ N such that for all constant u ∈ Rp:

Ok(x0) ∈ Rk×n and rk(Ok(x0)) = n. (3.5)

If this holds for all x0 ∈ Rn, the system is globally weakly observable.

The nonlinear system is locally observable at x0 if for some value of k the observability
matrix is at least injective. From the Cayley-Hamilton theorem it is sufficient to check
k = n−1 where n stands for the order of the system Σ. Practically, one has to calculate
the determinant of the observability matrix in order to evaluate the observability rank
condition (theorem 3.1.1). In the LTI case, a fulfilled rank condition of the observability
matrix according to Kalman implies that the pair (A,C) is called observable.
Until now only constant inputs have been considered although the influence of some

inputs can harm the observability of a system. Therefore, analytic conditions for observ-
ability have to be introduced in order to involve the impact of the input on a nonlinear
system.

Definition 3.1.8 (Universal inputs (resp. on [0, t]) [Bes07a]). An input u is universal
(resp. on [0, t]) for system Σ (3.1) if ∀x0 6= x′0,∃τ ≥ 0 (resp. ∃τ ∈ [0, t]) so that
h(ψ(τ ;x0, u)) 6= h(ψ(τ ;x′0, u)).
An input u is a singular input if it is not universal.

In order to simplify the observability of a nonlinear system, singular inputs which are
difficult to handle should be avoided.
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Definition 3.1.9 (Uniformly observable systems (resp. locally) [Bes07a]). A system is
Uniformly Observable (UO) if every input is universal (resp. on [0, t]).

The property of UO can be checked with any pair of distinct states. Hence, the
universality is assured over time, the observability is independent of its inputs.

In general, systems are input dependent. Therefore, it is always important to inves-
tigate whether this creates unobservable spaces. The most practice oriented criterion
belongs to the theorem 3.1.1 which is easier verifiable than the UO concepts and is suf-
ficient in the most cases, e.g. for non-uniformly observers as typically corresponding to
the case of Kalman observers for Linear Time-Variant (LTV) systems [KB61; Bes07a].
Based on this, there exist various approaches on the observability of nonlinear systems,
e.g. stronger concepts of the observability in [Bes07a] or the concept of the infinitesimal
observability in [GK01], but these are not considered here due to the application.

If the system is stated as observable, there exists an asymptotic observer. The aim
of an asymptotic observer is the convergence of the observer error e(t) := x̂(t)−x(t) to
the equilibrium e = 0. Therefore, the definition of [Bes07a] is modified:

Definition 3.1.10 (Asymptotic observer). Considering a system Σ (3.1), an observer
is given by an auxiliary system:

Ẋ(t) = F (X(t), u(t), y(t), t) (3.6)
x̂(t) = H(X(t), u(t), y(t), t) (3.7)

such that with the observer error e(t) := x̂(t)− x(t):

(i) e(0) = 0⇒ e(t) = 0, ∀t ≥ 0; (3.8)
(ii) lim

t→∞
‖e(t)‖ = 0. (3.9)

If (ii) holds for any x(0), x̂(0), the observer is global. Moreover, if (ii) is valid with an
exponential convergence, the observer is exponential. If (ii) holds with a convergence
rate which can be tuned, the observer is tunable.

In this thesis, the EKF is applied as an asymptotic observer (see section 4) based on
the definition 3.1.10. Comparatively, MFs are used to create a non-asymptotic observer
in section 5.
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3.2 Observability Analysis of the Reverse Osmosis
Plant

As a basis, the nonlinear state-space representation (2.24-2.27) of the RO system of
the section 2.3 is used. The observability of the linear state-space representation can
be derived from the observability analysis of the nonlinear system. The observability
evaluation is divided into the symbolic and the numerical analysis which are outlined
in the following two subsections.

3.2.1 Symbolic Analysis

The calculation of the observabiliy matrix O(x) (cf. definition 3.1.7) of the considered
system corresponds to the derivatives of the observability map o(x) (cf. definition 3.1.6)
w.r.t. the states x = [x1, x2, x3]>:

O(x) =


1.0 0 0
−Qp

Vp
0.25Am ks

Vp
− 0.125Am ks σ3

Vp σ2
0

Qp2

Vp2 ∗ 2.3873Am Vd ks σ1
Vb Vp bf,0

− 1.1937Am Vd ks σ3 σ1
Vb Vp bf,0 σ2

 (3.10)

with

σ1 =γf − γ∗f + bf,1 (pH− pH∗) + C∗f bf,0 (3.11)

σ2 =

√√√√(C∗f + x2 + σ1

bf,0
+ 2α

)2

+ 4β2∆P 2 − 8β∆P
(

0.5C∗f + 0.5x2 + 0.5σ1

bf,0
− α

)
(3.12)

σ3 =2C∗f + 2x2 + 2σ1

bf,0
− 4 β∆P + 4α (3.13)

α = ks

km
β (3.14)

β =Mm

RT
. (3.15)

Since the resulting matrix (3.10) is a lower triangular matrix, it is only necessary
to verify that the elements on the diagonal are different from zero in order to ensure
that the determinant of the matrix is non-zero. Since the input u occurs only in the
last state x3, which in turn appears only linearly in state x2, the observability map and
matrix are independent of the input and thus autonomous.

Obviously, the rank criterion (see theorem 3.1.1) for this observability matrix is not
fulfilled if one of the parameters ks, Vd or Am is equal to zero. The volume of the pump
displacement is assumed to be constant and thus will never be zero apart from the
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situation when the pump is broken. This scenario is excluded in this thesis. However,
the parameters of the membrane ks and Am can reach zero if the membrane is clogged
due to membrane fouling or CP (see section 2.1.3.2). That means that a clogged
membrane must be avoided in order to keep the system observable.

3.2.2 Numerical Analysis

Inserting the values of the parameter table 2.1, the observability matrix only depends
on the measurements γf , pH and ∆P , the time-variant parameter Am and the state
x2 (see formula (A.1) in the appendix). Based on this evaluated observability matrix
(A.1), plots with possible unobservable spaces are generated which are shown in figure
3.1. Since the values of γf and pH do not change highly in the considered system, they
are assumed to be a constant measurement of γf = 0.1 S m−1 and pH = 7.

The remaining three variables are considered in the range of a lower and upper limit
which are set in table 3.1. The maximum limit of Am belongs to the nominal value A∗m

Variable Minimum Maximum Unit
Am 0 16 [m2]
∆P 0 20 [bar]
x2 0 5 [kg m−3]

Table 3.1: Simulation area for observability study

that stands for the completely particle free membrane surface taken from [TOR19].
The generated pressure difference and the concentration of the brine stream depend on
whether brackish or seawater is desalinated. A higher salt concentration of the feed
stream requires a greater value of the pressure difference in order to produce the same
amount of desalinated water. Since the feed stream of the considered pilot-scale plant
is brackish water produced by adding NaCl manually, the upper limit of ∆P and Cb

have been chosen to ∆Pmax = 20 bar and x2 = Cb,max = 5 kg m−3.
Physically, the minimum limit of the membrane surface Am and the brine concentration
Cb are equal to zero. The lower limit of the pressure difference is also set to zero since
it is assumed to operate the plant in RO mode.

The figure 3.1a proves the symbolic evaluation of section 3.2.1 that Am = 0 will lead
to an unobservable RO system. In this plot, the value of Cb is fixed to x2 = 0.6kg m−3.
Furthermore, ∆P = 0 leads to a determinant of the observability matrix equal to zero.
This is confirmed by the figure 3.1b which demonstrates the relation of the variable
∆P and the second state Cb. In this plot, the surface of the membrane is assumed
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(a) (b)

Figure 3.1: Determinant of the observability matrix evaluated with ∆P , x2 and Am

to be equal to the nominal value A∗m = 16m2. Moreover, it becomes obvious that the
values of the second state x2 do not harm the observability of the system as no value
in the range of [0, 5] leads to an observability matrix with a rank smaller than n = 3.
Noticeable are the generally small values for the determinant which lead to a condition
number of the observability matrix κ(O) ≈ 7.85× 105. This can be explained by the
small inserted variables (cf. table 2.1) and the dimension of the chosen units. Therefore,
the invertibility as well as its error susceptibility are within a tolerable range and only
zero-valued determinants create a non observable space.

Summarized, if the RO plant is in running mode, the rank criterion (theorem 3.1.1) is
fulfilled, and thus, the system is LWO. Since the observability map is autonomous of the
input u, the map has an unique solution for the states for any given input. Therefore,
there are no singular inputs and the RO system is even UO. [Bes07a]

If the system is observable w.r.t. to theorem 3.1.1, the system can be converted by a
state transformation into a more manageable form, i.e. there exists a normal observable
form of the system which is useful in the design of nonlinear observers. Analogous to
the exact input-state linearization for the controller design, an exact estimation error
linearization can be performed for the observer design, as shown in [KR85]. Thereby, a
diffeomorphism for state and output transformation have to be found which, on the one
hand, can only be done for a very restrictive class of systems. On the other hand, this
leads to a solution problem of partial differential equations and thus is very complex.
Another concept of a normal observable form is depicted in [GB81] and comprises a
partial linearization of the system and the transformed state can be built from the
observability map (3.3). If the input affine normal observable form is not given, the
state transformation can still be performed with similar statements, i.e. it is possible
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to reconstruct the state x in a locally weakly sense from the output y which will be
used in section 5.4.1 to build an I/O relation of the system. This relation is essential
for the construction of the observer with MFs.
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4 Extended Kalman-Bucy Filter

The EKF belongs to the asymptotic observers (cf. definition 3.1.10) and is a stochastic
approach. This thus provides a basis of comparison to the non-asymptotic MF observer
approach proposed in chapter 5. In the following chapter, the EKF is explained and
the local convergence proof is given in 4.3.

In 1960 Kalman published his paper [Kal60] about a recursive solution to the dis-
crete time linear filtering and prediction problem. This original theory of the Kalman
Filter (KF) is based on a discrete dynamic system with additive white noise which
models unpredictable disturbances. One year later in 1961 Kalman and Bucy re-
leased together their "New Results in Linear Filtering and Prediction Theory" [KB61]
describing the Kalman-Bucy Filter as the continuous time version of the KF.

The proposed KF has the same structure of a Luenberger observer [Bes07a]. Both
are asymptotic observers based on definition 3.1.10. In contrast to the fixed matrix gain
of the Luenberger observer due to the choice of the eigenvalues of the estimation error
dynamics, the KF determines the matrix gain in such a way that the influence of the
noise is minimal. The KF is a predictor-corrector type estimator, which means it is a
recursive procedure consisting of a time update (’predict’) and a measurement update
(’correct’) that is optimal in the sense of minimizing the estimated error covariance.
This optimization problem has a closed-form solution, namely in the form of the solution
of the Riccati Differential Equation (RDE).

When the considered system is nonlinear, an extension of the KF is necessary which
was first published by Gelb in 1979 [Gel+01]. This extension includes the linearization
via a first order approximation of the Taylor series along the trajectory in each time
step and the observer gain is determined by the optimization of a cost function. Ad-
vantageously, normally distributed stochastic disturbances can be taken into account,
and thus, a certain robustness can be achieved. Therefore, an explicit description of
this EKF follows in this chapter and is applied to the nonlinear RO plant in chapter 6.

Julier and Uhlmann proposed a further improvement of the EKF in [JU04] called
the Unscented KF. This approach propagates the mean and covariance information
through nonlinear transformation in order to avoid the linearization step of the EKF.
Hence, their method is presented to be easier to implement and more accurate since
the estimation of the considered systems is reliable even if the system is far from linear.
Due to the nearly linear behavior of the RO plant (cf. section 2.3.2), the EKF provides
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good results, and thus, the Unscented KF is not further considered in this thesis.

4.1 Definition

The general nonlinear system (3.1) is extended to:

Σ :=
 ẋ(t) = f(x(t), u(t)) + w(t), x(t0) = x0

y(t) = h(x(t)) + v(t)
(4.1)

with the process noise w(t) and the measurement noise v(t). This measurement noise
v(t) comprises the simulation of disturbances of the sensor system which manipulates
the system output y. The process noise w(t) is an additive or multiplicative perturbation
of the system model that includes external influences or parameter uncertainties. Both
noises are assumed to be a Gaussian white noise with the following characteristics
[Bes07a]:

• The expectation of the white noise has zero mean and is unbiased:

E(w(t)) = 0, E(v(t)) = 0. (4.2)

• The stochastic processes w.r.t. process and measurement noise are uncorrelated:

E(w(t1) v>(t2)) = 0, E(v(t1)w>(t2)) = 0 ∀t1, t2. (4.3)

• The process noise is itself uncorrelated in time and has the covariance matrix Q:

E(w(t1)w>(t2)) = Qδ(t1 − t2), Q> = Q ≥ 0. (4.4)

• The measurement noise is itself uncorrelated in time and has the covariance matrix
R:

E(v(t1) v>(t2)) = Rδ(t1 − t2), R> = R ≥ 0. (4.5)

• Both noise variables have a normal probability distribution.

The covariance matrices Q and R serve as setting parameters of the observer and
can be determined with the power density spectrum, i.e. with the Fourier transform of
the autocorrelation function of the respective processes. The design of these matrices
R and Q require experience since they are normally unknown in practice. Hence, they
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are often estimated as a positive semi-definite diagonal matrix based on the amplitude
of the noise. In the simplest case, they are assumed to be unitary matrices.

The estimation equation of the KF can formally be applied to this nonlinear situation,
thus the EKF is defined as follows.

Definition 4.1.1 (EKF [Bes07a]). Considering a system Σ (3.1), the corresponding
EKF with covariances Q = Q> ≥ 0, R = R> > 0 and the forgetting factor λ ≥ 0 is
given by

˙̂x = f(x̂(t), u(t))−K
(
h(x̂(t))− y(t)

)
with K = P (t)C(t)>R−1 (4.6)

Ṗ (t) = A(t)P (t) + P (t)A(t)> − P (t)C(t)>R−1C(t)P (t) +Q+ λP (t) (4.7)

where the linearization

A(t) := ∂f

∂x

∣∣∣∣
(x̂(t),u(t))

, C(t) := ∂h

∂x

∣∣∣∣
(x̂(t))

(4.8)

is applied.

The worse the measurement quality of the respective sensor is, the larger the values
of the measurement noise variance matrix R should be made. However, bigger entry
values of R lead to a smaller Kalman gain K, i.e. the adaption to process changes
occurs more slowly. Nevertheless, the gain K is very sensitive to the measurement
noise variance matrix R, especially when R has small entries.
The diagonal entries of the process noise covariance matrix Q should be the larger, the
more transient or the worse modeled the dynamics of the respective state is expected
to be. It is recommended to tune the covariance matrices during tests and simulations.

The error covariance P (t) is the only positive semi-definite solution (P> = P ≥ 0) of
the RDE Ṗ (t) (cf. equation (4.7)). The RDE is solvable depending on Q, i.e. Q should
be well known. Additionally, it holds P (0) = P>(0) > 0. Next to P (t), the EKF has a
second solution x̂(t).

The EKF is a predictor-corrector procedure that depends only on the previous esti-
mation state following the Markov Property. It is a great advantage of the KF that, in
addition to the estimation of a state, it also provides deviation information in the form
of the stochastic variance. This contributes a kind of quality measure of one’s estimate.

The Jacobian matrices A(t) and C(t) (4.8) result from a first-order Taylor approxima-
tion, i.e. the nonlinear trajectory is linearized at each sampling time point around the
current reference point x̂(t) and the current input signal u(t). If the system includes
discontinuities, e.g. root function, this might lead to problems since these functions
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reach infinite slopes and thus are non Lipschitz continuous. Furthermore, since the
Taylor expansion is a linear process, the estimation with the EKF only gets relatively
close to the true value as long as the system equations are nearly linear and continuous.

Another disadvantageous aspect covers the performance of the EKF which relies on
the state and observation noise. If the two noise covariance matrices R and Q are not
accurately enough estimated, errors would be accumulated and as a result, the EKF
would diverge. These phenomena could be avoided by using the Unscented KF, which
has the same computation complexity as the EKF.

Another problem regards to the assumption that the filter is bounded to Gaussian
white noise with zero mean. This can vary from reality, because the ideal coincidence
does not occur but mostly a systematic deviation of it, thus a correlation is always
present.

Nevertheless, the EKF shows sufficient results on the considered RO plant in order
to compare it with the proposed Extended Modulation Filter (EMF) in chapter 6. In
total, the general system is built by a differential equation of the order 1

2n
2 + 3

2n due
to the RDE and the EKF differential equation, which should be solved simultaneously
since A(t) and C(t) depend on x̂(t) and u(t). The order of the general system grows
very strongly with the order of the system n. Thereby, the complexity of the solution
of the RDE rises by in the case of higher dimensional systems. [Mor14]

4.2 Structure

The figure 4.1 gives an overview about the prediction-correction procedure of the EKF.
Due to simplicity, the time dependency is neglected in this figure.

As first step of the EKF recursion, the covariance matrices R and Q and the initial
values of x̂0 and P0 have to be chosen. Using the measurements of the input u of the
nonlinear system and the estimated x̂, the actual state dynamic ˙̂x and the output ŷ can
be predicted.

The values of the Jacobian matrices A(t) and C(t) are updated with the estimated
x̂ and the measured u since they change continuously due to the new linearization in
each time step. Therefore, the RDE Ṗ (t) is resolved online in order to determine the
stationary value of P (t). This numerical solution of the RDE is given by means of an
integration process, e.g. the Runge-Kutta method. The Kalman gain K(t) is computed
with the fixed process noise covariance matrix R, the error covariance matrix P (t)
estimated in the previous time step and the newly calculated Jacobian C(t) w.r.t. the
output y(t).
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ẋ = f(x, u) + w
y = h(x) + v

K

K = PC>R−1

Ṗ = AP + PA> +Q
−PC>R−1CP + λP

˙̂x = f(x̂, u) +m
ŷ = h(x̂)

C = ∂h
∂x

∣∣∣
x̂,u

A = ∂f
∂x

∣∣∣
x̂,u

System

u

u

m

K

x̂

x̂

C

A

P

ŷ

−

y − ŷ

y

Observer

Figure 4.1: Structure of the EKF

In the last step of the correction phase, the new value for the state dynamics ˙̂x(t) is
computed by adding the predicted value of the state dynamics to the correction factor
m(t) = K(t) ey(t) consisting of the product of the Kalman gain K(t) and the output
error ey(t) = y(t) − ŷ(t). Also the RDE Ṗ (t) is calculated in order to compute a new
P (t) for the next time step.

4.3 Convergence Analysis

In [Kre03] the convergence analysis of the EKF is subject to the assumption that the
considered system (4.1) is UO for any input and the system equations f, h satisfy the
Lipschitz condition. In general, the convergence can be assured only locally and is based
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on the Lyapunov theorem of stability [Kha02]. The forgetting factor λ is set to zero in
order to analyze the classical Kalman observer. The dynamics of the estimation error
e(t) = x̂(t)− x(t) is given by

ė(t) = f(x̂(t), u(t))− f(x(t), u(t)) +K(h(x(t))− h(x̂(t))) + ξ(t) , e(t0) = e0 (4.9)

with the perturbation
ξ(t) = K(t) v(t)− w(t). (4.10)

Furthermore, it is assumed that x(t), u(t), K(t), v(t), w(t) are bounded and that the
system is C2. Using a Taylor series around the equilibrium e = 0, it follows:

ė(t) = [A(t)−K(t)C(t)]e(t) + η(e, t) + ξ(t) (4.11)
η(e, t) = f(x̂(t), u(t))− f(x(t), u(t))

+K(h(x(t))− h(x̂(t)))− [A(t)−K(t)C(t)]e(t) (4.12)
η(0, t) = 0. (4.13)

By the mean value theorem, η and ξ are bounded:

||η(e, t)|| ≤ k1 ||e(t)||2 , ||ξ(t)|| ≤ k2. (4.14)

It is considered a quadratic Lyapunov function candidate for the observer error equation

V (t, e) = e>(t)P−1(t)e(t) (4.15)

which is positive definite and decrescent. This condition is fulfilled if the pair (A(t), C(t))
is uniformly completely observable such that the following holds

l1||e(t)||2 ≤ V (t, e) ≤ l2||e(t)||2. (4.16)

Moreover, the candidate satisfies the condition V (t, 0) = 0. According to the Lya-
punov’s stability theorem (see [Kha02]), the derivative of the Lyapunov candidate V̇
must be negative definite which is shown as follows under consideration that

d

dt
P−1(t) = −P−1(t)dP (t)

dt
P−1(t) : (4.17)
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V̇ = ė>(t)P−1(t)e(t) + e>(t)P−1ė(t) + e>(t) d
dt
P−1(t)e(t)

= e>(t)(A(t)−K(t)C(t))>P−1(t)e(t) + e>(t)P−1(t)(A(t)−K(t)C(t))e(t)

− e>(t)P−1(t)dP (t)
dt

P−1(t)e(t) + 2e>(t)P−1(t)(η(e, t) + ξ(t))

= e>(t)P−1(t)
P (t)A>(t) + A(t)P (t)− P (t)C>(t)R−1C(t)P (t)

− P (t)C>(t)R−1C(t)P (t)− dP

dt

P−1(t)e(t) + 2e>(t)P−1(t)ξ(t)

= − e>(t)P−1(t)QP−1(t)e(t)− e>(t)C>(t)R−1C(t)e(t) + 2e>(t)P−1(t)η(e, t)
+ 2e>(t)P−1(t)ξ(t)

≤− c1||e(t)||22 + c2||e(t)||32 + c3||e(t)||2||ξ(t)||2. (4.18)

Hence, the estimation error dynamics is Input-to-State-Stable (ISS) of small gain w.r.t.
ξ(t) [Kha02]. For small initial conditions and small perturbations ξ, the error e = 0 is
a locally exponentially stable equilibrium if ξ = 0. Furthermore, if ξ → 0, then e → 0
and if ξ is bounded, e remains bounded. [Mor14]
Therefore, it is obvious that the EKF is an asymptotic observer. The EKF fulfills

the optimal state estimator problem which determines the state x as an estimated
value x̂ dynamically from the knowledge of u and the measured values of y so that
the error expectation is minimized and the estimation error dynamics is asymptoti-
cally stable. However, this local convergence underlies the assumptions of UO and
a Lipschitz-continuous system description. If the considered system is only LWO or
has definition gaps in the system equations, the asymptotic convergence of the estima-
tion error could be disturbed. Moreover, the derivative of the Lyapunov candidate V̇
(4.18) can be influenced by a great perturbation ξ(t) and thus can imperil the local
convergence.
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5 Adaptive Observer with
Modulating Functions

Originally, the MFM was proposed by Shinbrot [Shi54] as a method of moment func-
tionals in order to estimate parameters of linear differential equation models. A histor-
ical background of the years 1954 - 1990 w.r.t. the MFs can be found in [PR93].
In [RU06] Rao and Unbehauen reviewed state and parameter estimation methods
using MFs for LTI systems in continuous-time in comparison to discrete-time such as
Kalman filtering. The advantage of retaining in the continuous-time formalism belongs
to using physical laws in which the system is originally modeled. Moreover, the dis-
cretization and the associated mapping problems such as non-minimum-phase sampling
zeros are omitted. However, time-derivatives still have to be considered for estimating
parameters and states.

If the explicit time-derivatives of the measured signals are subject to noise, this will
lead to errors of the observation process. In order to avoid the derivation of mea-
surements, the repeated integration method [MF72] or the Poisson moment functional
approach [RU06] can be used. Another opportunity consists in using MFs whose hori-
zon of integration is fixed or receding. In contrast, the repeated integration method and
the Poisson moment functional method have an expanding integration horizon and dis-
advantageously require all initial conditions of the signal which the MFM does not due
to the elimination of the initial conditions by the convolution with the known MF. This
integration process can be seen as a Finite Impulse Response (FIR)-filter which obtains
a non-asymptotic solution of the estimation problem in finite-time. On the contrary,
common differential observers, e.g. Luenberger or Kalman observers (cf. chapter 4), are
based on the definition 3.1.10 of asymptotic observers. These observers provide the con-
vergence of an estimated state to the real state when time goes to infinity. Nevertheless,
in some applications it is necessary that the algorithm may converge in finite-time for a
fast estimation in on-line applications which is provided by a non-asymptotic approach
like the estimation method based on MFs [Gha+20].

In [Liu+14] the MFM is extended to estimate the state and the unknown input of
a LTV system. One year later in 2015, the extension of the MFM to jointly estimate
the states and parameters of a nonlinear system was published in [JR15]. This paper
is based on the regressor form of the system and the least-squares observer concept.
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The proposition in this thesis for a simultaneous parameter and state estimation of
a nonlinear system is a real-time capable approach which uses a hierarchical structure.
Firstly, the unknown parameters are estimated, and subsequently, the state observer
uses the parameter estimation in order to observe the system states. The idea of the
parameter estimator is based on [Noa+16a], namely avoiding the inversion of matrices
and receiving a stable estimation. Instead of using a nonlinear gradient algorithm as
in [Noa+16a], the modulation is combined with the EKF. The state observer has a
closed-loop design and uses the Taylor series to obtain a regressor form of the nonlinear
system on which the MFM is applied.

Due to the linearization of the nonlinear system, the approach is generally applicable
unless discontinuities occur. This represents the same restriction as with the EKF. In
general, the use of the MFM in the observer design comprises several advantages. The
approach is robust against measurement noise, real-time capable and non-asymptotic.
Thus, it provides an accurate estimation in an arbitrarily fast manner. Additionally,
it is efficient to implement and the MFs provide tuning possibilities, e.g. the function
shape or the moving horizon length.

In the first section 5.1 of this chapter, the MF and its characteristics are defined.
Subsequently, the MFM is explained in section 5.2. These basics are used in section
5.3 for the parameter estimation approach and in section 5.4 for the closed-loop design
of the state observer EMF. In section 5.5, the combination of the proposed parameter
estimator and the state observer EMF is introduced in order to receive a nonlinear
adaptive observer.

5.1 Definition of Modulating Functions

Jouffroy and Reger defined in [JR15] the MF referring to the characteristic bound-
ary conditions as follows:

Definition 5.1.1 (Modulating Function). For a fixed time horizon length T > 0, the
function ϕ ∈ Cn([0, T ],R) is called Modulating Function (MF) of order n ∈ N if

ϕ(i)(0) · ϕ(i)(T ) = 0 ∀i ∈ {0, 1, · · · , n− 1}. (5.1)

Furthermore, it is called

1. Total Modulating Function (TMF) if

ϕ(i)(0) = ϕ(i)(T ) = 0 ∀i ∈ {0, 1, · · · , n− 1}, (5.2)
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2. Left Modulating Function (LMF) if

ϕ(i)(0) = 0, ϕ(i)(T ) 6= 0 ∀i ∈ {0, 1, · · · , n− 1}. (5.3)

The related modulation operator Li : Lloc2 → R is applied to a function f ∈ Lloc2 in the
following manner:

Li[f ](t) = (−1)i〈ϕ(i), f〉 = (−1)i
∫ t

t−T
ϕ(i)(τ − t+ T ) f(τ) dτ (5.4)

where a receding horizon can be realized by using the short form notation Li[f ] =
Li[f ](τ) ∀τ ≤ 0.

Summarized, the MF is a constructed, state-independent, sufficiently smooth func-
tion. In general, TMFs are applied for estimating parameters and LMFs are employed
to observe states since the right boundary values ϕ(i)(T ) are used for the actual state
estimation. The application of the MFM with both functions TMF and LMF requires
a regressor form (5.12) of the differential equation which is explained in the following
section 5.2.

5.2 Modulating Function Method

The states of a system can sufficiently be described by the output y as well as its
derivatives and is also dependent on the system input u. One way to determine the
states, when they are not measurable, is by directly differentiating the output. However,
small perturbations in the system output lead to noisy derivatives, which complicate
the estimation. Therefore, it is useful to estimate the states and parameters with the
MFM in order to avoid differentiating noisy signals. The procedure of the MFM is
described in [BK20] and is applied in the combination with the EKF in section 5.3 and
with the EMF in section 5.4.

For the application of the MFM to linear systems, the differential equation of the
system should have the following form of a linear I/O equation:

n∑
i=0

ai y
(i)(t) =

m∑
j=0

bj u
(j)(t) ,m ≤ n. (5.5)

In the case of nonlinear systems, it becomes more difficult to state an adequate struc-
ture. If the nonlinear system is composed of integrable, convolvable or e-convolvable
signals (see definition 5.2.1), the MFM is applied by a skillful transformation of the
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nonlinearities or a time-variant modulation with a projection approach (cf. [CTR14;
Web17]).

Definition 5.2.1. For a given function q ∈ Ci([0, T ],Rp) and parameter a ∈ R define:

• Linear signal with p = 1: ξ(t) = a q(i)(t)

• Integrable signal: ξ(t) = a g(i)(q(t))

• Convolvable signal: ξ(t) = a h(q(t)) g(i)(q(t))

• E-convolvable signal: ξ(t) = a h(i)(q(t)) g(i)(q(t))

with g, h ∈ Ci(Rp,R) arbitrary functions [CTR14].

In order to omit the exhausting characterization of the nonlinearities in the I/O
relation, the MFM should be applied directly to the system. This is one of the objectives
of the proposed approaches.

The MFM uses MFs to transform a signal over a certain time interval [t − T, t] and
finally receives an algebraic system of equations. The transformation of a signal f with
a MF ϕ comprises the multiplication of the signal with the predefined modulation kernel
and the integration over a fixed-time moving horizon interval:

〈ϕ, f (i)〉 :=
∫ t

t−T
ϕ(τ − t+ T ) f (i)(τ)dτ

= (−1)i
∫ t

t−T
ϕ(i)(τ − t+ T ) f(τ)dτ =: (−1)i〈ϕ(i), f〉. (5.6)

This equation shows the central property of the modulation, namely transferring deriva-
tives from a measured signal to the known MF in order to avoid the noise differentiation.
Another result of the MFM is the loss of the unknown initial and final conditions due
to the inclusion of the boundary conditions of the MFs and the application of the
integrations by parts formula. [JR15]

Examining the homogeneous boundary value conditions of a TMF (5.2), the boundary
values vanish and the modulation operator (5.4) can be applied for the parameter
estimation. For the state estimation, a LMF is necessary which leads to a modified
modulation operator (cf. lemma 5.2.1) since the difference between a TMF and a LMF
lies in the boundary value condition of the function at the right boundary T . There, the
function must be different from zero as stated in the condition (5.3). Thus, the partial
integration preserves the boundary values that ultimately provide the state estimate.
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Lemma 5.2.1. For a signal f ∈ Ci, the modulation operator (5.4) of order n ∈ N
fulfills ∀i ≤ k:

L0[f (i)] =
 Li[f ] : TMF
Li[f ] +∑i

n=1(−1)n−1 ϕ(n−1)(T ) f (i−n)(t) : LMF.
(5.7)

The proof of lemma 5.2.1 is outlined in [Web17]. Exemplified, the modulation oper-
ator for a LMF and n ∈ {0, 1, 2, 3} is calculated as follows:

L0[f ] =
∫ t

t−T
ϕ(τ − t+ T ) f(τ)dτ (5.8)

L1[f ] = −
∫ t

t−T
ϕ̇(τ − t+ T ) f(τ)dτ + y(t)ϕ(T ) (5.9)

L2[f ] =
∫ t

t−T
ϕ̈(τ − t+ T ) f(τ)dτ + ḟ(t)ϕ(T )− f(t) ϕ̇(T ) (5.10)

L3[f ] = −
∫ t

t−T

...
ϕ(τ − t+ T ) f(τ)dτ + f̈(t)ϕ(T )− ḟ(t) ϕ̇(T ) + f(t) ϕ̈(T ). (5.11)

With the modulation operator L, the differential equation (5.5) can be converted into
an algebraic system of equations. This can be solved for either the desired parameters
or the estimated states.

5.3 Parameter Estimation

Common approaches to estimate parameters with MFs comprise a least-squares algo-
rithm (see e.g. [DU96]), a Gramian approach (see e.g. [JR15]) or a gradient descent
(see e.g. [RM15; Noa+16a]). All mentioned estimators require a regression structure
involving time-derivatives w.r.t. the input and the output as follows:

ζ(t) := η(t)>θ0, (5.12)

where θ0 ∈ Rn are the parameters, η(t) ∈ Rn is the regressor and ζ(t) ∈ R is the
measured signal [RM15].

Due to the parameter nonlinearity of the nonlinear I/O relation of the RO plant
(B.1), the classification as integrable or (e-)convolvable signals (cf. definition 5.2.1)
and the handling with the MFM is not obvious. The reformulation of the nonlinear
I/O equation (B.1) into a polynomial form in θ with a factorization method would
require a quadratic operation which leads to numerical inequalities. Hence, the I/O
relation (B.3) built from the linearized state-space representation (see section 2.3.2) is
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used which is state linear and only nonlinear in the parameters.
The proposed input-output parameter estimator consists of the modulation of the sys-

tem I/O relation with a TMF in order to obtain the time-derivatives of the measured
signals. The modulated signals are the input of the EKF that estimates the param-
eter state. Therefore, the proposed parameter estimator is called State - Decoupled
Parameter Estimation via Modulated Regression (DMR).

5.3.1 Persistence of Excitation

A major factor of estimating parameters belongs to the persistence of excitation w.r.t.
the input signal which is defined as follows:

Definition 5.3.1 (Persistent Excitation [Bes07b]). A signal ς : R+ → Rr satisfies the
property of persistent excitation if there exists T, k1, k2 > 0 such that ∀t ≥ 0:

k1 Ir ≥
∫ t+T

t
ς(τ)>ς(τ) dτ ≥ k2 Ir. (5.13)

In other words, the input signal has to be sufficiently rich in order to receive an
observed response which comprises the necessary information to execute the estimation
process. If the input signal is universal (cf. definition 3.1.8) and thus not singular, the
input is considered to be persistent, e.g. a signal consisting of filtered white noise. The
aim of such a sufficiently rich input signal is the approach of the estimated parameters
to the true values. [Lju99]

5.3.2 Structure of the Parameter Estimator

y(n) = g(y(i), u, θ)

Nonlinear System

θ̇ = fθ = 0
Ln[y] = hθ

Parameter System

(ϕ)(i)

Modulation

˙̂
θ = P C>R−1·

(Ln[y]− hθ(θ̂))

EKF

yu

u

y
Li[y], L[u] fθ, hθ θ̂

Parameter Estimator

Figure 5.1: Structure of the parameter estimator with i ∈ {0, 1, · · · , n− 1}
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The proposed DMR employs the measured signals of the nonlinear system and is
a combination of the MFM and the EKF used as linearization-based recursive least
squares algorithm (see figure 5.1). The design of this parameter estimator is based on a
linearized state-space representation with a possible parameter depending offset (5.14-
5.15) in order to apply the MF. The modulation depicted in figure 5.1 is explained more
precisely in section 5.4.7. The parameter system is constructed of the internal model
fθ (5.19) and the output equation hθ (5.18) which in turn ared used for the dynamic
regression of the EKF (5.21-5.23).

In general, the output dynamics of the EKF uses the dynamics of the system which
are represented by the n-th derivative of the output. The linearized representation of
the considered RO system (2.31-2.34) can be put in a general linear SISO system form
with the offset E(θ):

ẋ(t, θ) = A(θ)x(t) +B(θ)u(t) + E(θ) (5.14)
y(t, θ) = C(θ)x(t) +D(θ)u(t). (5.15)

with the states x ∈ Rn, input u ∈ R, output y ∈ R, matrices A ∈ Rn×n, C ∈ Rn×n and
vectors B ∈ Rn, D ∈ Rn. Differentiating the output n-times:



y

ẏ
...

y(n−1)

y(n)


︸ ︷︷ ︸ Z

y(n)



=



C

CA
...

CAn−1

CAn


︸ ︷︷ ︸ O
CAn



x+



D 0 · · · 0
CB D

. . . 0
CAB

. . . . . .
... D

CAn−1B · · · CAB CB


︸ ︷︷ ︸Γ

γ




u

u̇
...

u(n−1)


︸ ︷︷ ︸

U

+



0
CE

CAE
...

CAn−1E


︸ ︷︷ ︸Υ

υ



,

(5.16)

Z can be used to express the states x only with the output y, its derivatives ẏ, · · · , y(n−1),
the input u and the unknown parameter θ in order to obtain a differential parameteri-
zation. This underlies the assumption of a non-singular observability matrix O that is
fulfilled if the system (5.14-5.15) is observable which has been investigated in section
3.2. The n-th order dynamics of the output constitutes the I/O relation:

y(n) = C An O−1 (Z − Γ · U −Υ)︸ ︷︷ ︸
=x(y,··· ,y(n−1),u,θ)

+γ · U + υ. (5.17)
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Since the I/O dynamics (5.17) is only nonlinear in the parameters, this form is suitable
to modulate the equation with a MF. By this, the derivatives of the unknown output
derivatives are shifted to the known MF and the parameter θ is separated from the
modulation operator under the assumption that the parameters are constant. For the
modulation, a TMF ϕ is considered and the nonlinear output equation for the parameter
θ is given as follows:

hθ(t, θ) = Ln[y] = C AnO−1 (Li[y]− Γ · Li[u]− ϕ(t) ·Υ) + γ · Li[u] + ϕ(t) · υ (5.18)

with i = 0, · · · , n− 1. This modulated output hθ(t, θ) is without signal derivatives and
the nonlinear parameters θ can be extracted from the modulation integrals.

The number of the used TMFs depends on the number of parameters that have to be
estimated. Thereby, the minimum number of MFs is equal to the number of unknowns.
Using a greater number of MFs than unknowns can improve the estimations, e.g. in
consideration of noise. [BK20]

The constant parameters imply that the dynamics of the parameter state is assumed
to be zero. Therefore, the internal model is stated as follows:

fθ(t, θ) = θ̇(t) = 0. (5.19)

In chapter 4, the procedure of the EKF is explained which is applied to the parameter
system consisting of the internal model (5.19) and the nonlinear parameter output
equation (5.18). Due to

A(t) = ∂fθ(t, θ)
∂θ

∣∣∣∣
θ=θ̂

= 0, (5.20)

the dynamic regression with the EKF of the parameter system fθ, hθ declines to:

C(t) = ∂hθ(t, θ)
∂θ

∣∣∣∣
θ=θ̂

(5.21)

Ṗ (t) = Q− P (t)C(t)>R−1C(t)P (t) + λP (t) (5.22)
˙̂
θ = P (t)C(t)>R−1 (Ln[y]− hθ(t, θ̂)). (5.23)

In summary, the proposed parameter estimation for θ only requires the measurements
of the output y and the input u with persistent excitation and thus can be used stand-
alone. Moreover, the DMR is real-time capable and is used in section 5.5 to build an
adaptive observer architecture.
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5.4 Extended Modulation Filter

The fundamental idea of the EMF is based on the EKF. However, instead of linearizing
the state-space representation of the system at each time step and doing a one step
prediction using the RDE, the I/O relation of the system (5.24) is linearized and the
MFM is applied. The advantages of the MFM comprise a certain robustness against
noise and numerical stability due to the algebraic approach through integral transfor-
mation [Noa+16a]. With each new measurement, the linearization is adopted using the
measured signals and the observed states because of the information processing over
a moving horizon. The new states are estimated with the MFM using a Generalized
Modulating Function (GMF) defined in section 5.4.3. The proposed structure of the
real-time capable EMF has a closed-loop design (see section 5.4.4). Furthermore, an
improvement of the EMF w.r.t. the linearization step is proposed in section 5.4.6. Also
the numerical implementation of the approach is explained (see section 5.4.7) and an
error analysis of the EMF is provided in section 5.4.5.

5.4.1 Input-Output Relation

If the considered system does not yet have the form of an I/O equation, the state-space
representation of the SISO system (3.1) has to be transferred in the requested form
of a linear I/O relation. To achieve this, a diffeomorphism of the observability map
(definition 3.1.6) can be used. If there exists an inverse function of the observability
map o, the states x can be determined with the knowledge of the output y and its
derivatives. Thus, the I/O equation is calculated as follows:

y(n) = Lnfh(o−1(Z)) (5.24)

with the Lie derivatives Lfh(x) := ∂h(x)
∂x

f(x) and successively Lkfh(x) := Lf (Lk−1
f h(x)).

Thus, a nonlinear system is globally observable when the mapping Z = o(x) has an
unique solution for all x. Unfortunately, for most cases of nonlinear systems this inverse
function is difficult to calculate or even sometimes impossible to compute because of
singularities or high computational costs. Nevertheless, it is possible to check the
local properties considering the implicit function theorem. Therefore, an approximation
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around a working point x̄ with the first-order Taylor series is applied [Kha02]:

x = o−1(Z) ≈ x̄+
[
∂ok(x)
∂x

]−1
∣∣∣∣∣∣
x=x̄

· (Z − Z̄) = xapprox (5.25)

y(n)
approx ≈ Lnfh

x̄+
[
∂o(x)
∂x

]−1
∣∣∣∣∣∣
x=x̄

· (Z − Z̄)
 = g(y, ẏ, ÿ, · · · , y(n−1), u). (5.26)

It is obvious that only the inverse of the observability matrix (definition 3.1.7) is re-
quired, which is easier to compute due to its quadratic form. The achieved I/O equation
(5.26) is still nonlinear and represents the dynamics of the system. In addition, the form
examined in this thesis is restricted to the measurable output y as well as its deriva-
tives and the measurable input u. On the contrary, the derivatives of the input are not
included in the I/O equation (5.26). When considering errors, the transformation error
due to the approximation of the states xapprox (5.25) must be taken into account which
is analyzed in section 5.4.5.

To be able to handle all nonlinearities that occur in the I/O relation (5.26), these
have to be linearized around the working points of Z̄ = [z̄1, · · · , z̄n−1]> and ū. The
working point of the input ū is the actual input measurement of the nonlinear system,
whereas for the working points of the output and its derivative Z̄, the estimated state
values of the previous time step are used. Again a first-order Taylor series is applied
for the linearization [Kha02]:

y
(n)
lin = g(Z̄, ū)−

n−1∑
i=0

∂g(Z, u)
∂y(i)

∣∣∣∣∣∣
Z̄,ū︸ ︷︷ ︸

ai+1

·(z̄i − y(i))− ∂g(Z, u)
∂u

∣∣∣∣∣∣
Z̄,ū︸ ︷︷ ︸

b

(ū− u) + ξ(t)

= a(t)>Z + b(t)>u+ g(Z̄, ū)− a(t)>Z̄ − b(t)>ū︸ ︷︷ ︸
=:ε(t)

+ ξ(t)︸︷︷︸
H.O.T.

. (5.27)

The result is the required system form of a linear I/O equation (5.27) which corresponds
to the required form (5.5). The advantage of this form is the convenient application
of the MFM due to the regressor form. The Jacobians a(t), b(t) and the summands
including the operating points ε(t) build the time-variant linearization parameters which
need to be updated in each modulation horizon. The linearization error ε(t) and the
H.O.T. error ξ(t) are outlined in section 5.4.5. The difference between the two errors is
that the linearization error ε is determinable and used for the estimation, whereas the
H.O.T. error is not known.
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5.4.2 State Estimation

Applying the MFM with a LMF (see section 5.2) to the linearized I/O relation (5.27)
of a nonlinear system, the algebraic system of equation is created as follows:

Ln[y]−
n−1∑
i=0

ai+1(t)Li[y] = b(t)L0[u] + L0[ε]. (5.28)

In the case of the RO plant, the used modulation operators are derived w.r.t. to
lemma 5.2.1 by means of the integration by parts with LMFs as outlined in the ex-
emplified formulas (5.8-5.11). These operators with the fixed right boundary values
of the MF unequal to zero have to be inserted in the algebraic system of equations
(5.28) in order to solve the system for the output and the unknown output derivatives.
Exemplarily, the modulated equation for the RO system is stated as follows:

− 〈
...
ϕ, y〉+ ÿ(t)ϕ(T )− ẏ(t) ϕ̇(T ) + y(t) ϕ̈(T ) + a3(t) (〈ϕ̈, y〉+ ẏ(t)ϕ(T )− y(t) ϕ̇(T ))

+ a2(t) (−〈ϕ̇, y〉+ y(t)ϕ(T )) + a1(t)〈ϕ, y〉 = −b(t)〈ϕ, u〉+ 〈ϕ, ε〉. (5.29)

In order to obtain the unknown variables Z, the algebraic system (5.28) is restruc-
tured to:

(〈...ϕ, y〉 − a3(t) 〈ϕ̈, y〉+ a2(t) 〈ϕ̇, y〉 − a1(t)〈ϕ, y〉 − b(t)〈ϕ, u〉+ 〈ϕ, ε〉)︸ ︷︷ ︸
q(y,ϕ,a,b,ε)

=

(ϕ̈(T )− a3(t) ϕ̇(T ) + a2(t)ϕ(T ) a3(t)ϕ(T )− ϕ̇(T ) ϕ(T ))︸ ︷︷ ︸
δ(ϕ,a)


y(t)
ẏ(t)
ÿ(t)


︸ ︷︷ ︸

Z

. (5.30)

On the one hand, the summands independent of the estimates form the scalar q. Hence,
q only includes the modulated signals and the linearization parameters a(t) and b(t).
On the other hand, the δ-vector consists of the right boundary values of the MF and
its derivatives and also the linearization parameters a(t) which are the Jacobians of the
I/O equation (5.26) w.r.t. the output and its derivatives.

As postulated in [JR15], the number of MFs is at least equal or higher than the
number of unknowns in the system. The number of estimated variables in (5.29) cor-
responds to the order of the system. In the case of the considered RO plant, three
variables, namely the output and its first and second derivatives, will be estimated
using the MFM. Thus, q is extended to a vector Q ∈ Rn and δ to a squared matrix
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∆ ∈ Rn×n. In the example of the RO system, the algebraic system of equations solved
for the unknowns is formulated as:

ŷ(t)
˙̂y(t)
¨̂y(t)


︸ ︷︷ ︸

Ẑ

=


ϕ̈1(T )− a3(t)ϕ̇1(T ) + a2(t)ϕ1(T ) a3(t)ϕ1(T )− ϕ̇1(T ) ϕ1(T )
ϕ̈2(T )− a3(t)ϕ̇2(T ) + a2(t)ϕ2(T ) a3(t)ϕ2(T )− ϕ̇2(T ) ϕ2(T )
ϕ̈3(T )− a3(t)ϕ̇3(T ) + a2(t)ϕ3(T ) a3(t)ϕ3(T )− ϕ̇3(T ) ϕ3(T )


−1

︸ ︷︷ ︸
∆−1(ϕ,a)

·


〈
...
ϕ1, y〉 − a3(t)〈ϕ̈1, y〉+ a2(t)〈ϕ̇1, y〉 − a1(t)〈ϕ1, y〉 − b(t)〈ϕ1, u〉+ 〈ϕ1, ε〉
〈
...
ϕ2, y〉 − a3(t)〈ϕ̈2, y〉+ a2(t)〈ϕ̇2, y〉 − a1(t)〈ϕ2, y〉 − b(t)〈ϕ2, u〉+ 〈ϕ2, ε〉
〈
...
ϕ3, y〉 − a3(t)〈ϕ̈3, y〉+ a2(t)〈ϕ̇3, y〉 − a1(t)〈ϕ3, y〉 − b(t)〈ϕ3, u〉+ 〈ϕ3, ε〉


︸ ︷︷ ︸

Q(y,ϕ,a,b,ε)

.

(5.31)

The solution for the output and its derivatives requires the inverse of the ∆-matrix.
During the online procedure, this could lead to singularities of the matrix due to the
insertion of the newly calculated linearization parameters in each time step. A possible
solution, outlined in the following section 5.4.3, includes the use of GMFs instead of
LMFs in order to obtain mixed boundary conditions such that the invertability of the
∆-matrix is guaranteed.

5.4.3 Mixed Boundary Conditions

Originally, the GMF has been used to design fractional order differentiators (cf. [LL15;
WLB17]). In [Tia+19] the MFM is extended with the GMF in order to provide algebraic
integral formulas by eliminating unknown boundary values. In the context of the EMF,
the GMFs should be applied to build the system of equations more skillfully for a
better conditioning of the ∆-matrix. It also ensures that the Gaussian-algorithm used
to numerically solve the algebraic equation always finds a symbolic inverse.

The definition of a GMF in [Tia+19] is extended to a set of GMFs as follows:

Definition 5.4.1 (Generalized Modulating Function). For a fixed time horizon length
T > 0, the function ϕ ∈ Cn([0, T ],R) is called MF of order n ∈ N if

ϕ(i)(0) · ϕ(i)(T ) = 0 ∀i ∈ {0, 1, · · · , n− 1}. (5.32)
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Furthermore, it is called a set of k GMFs if additionally ∀k ≤ n, k ∈ N:

ϕ
(i)
k (T ) = 1, if i = n− k, (5.33)

ϕ
(i)
k (T ) = 0, else. (5.34)

The observation of states, while using GMFs instead of LMFs, is guaranteed due to
the one right boundary value equal to one (5.33) of each GMF in a set of GMFs.

For instance, the conditioning constraints of the set of three GMFs for the RO system
comprise, on the one hand, the left boundary values of the GMF:

ϕi(0) = ϕ̇i(0) = ϕ̈i(0) = 0 with i = 1, 2, 3. (5.35)

On the other hand, the right boundary values differ w.r.t. to the number of the GMF
in the set:

ϕ1(T ) = ϕ̇1(T ) = 0
ϕ̈1(T ) = 1

ϕ2(T ) = ϕ̈2(T ) = 0
ϕ̇2(T ) = 1

ϕ̇3(T ) = ϕ̈3(T ) = 0
ϕ3(T ) = 1

This leads to a lower triangular ∆-matrix:

∆(a) =


1 0 0
−a3(t) −1 0
a2(t) a3(t) 1

 (5.36)

which fulfills a determinant det(∆) = −1. The determinant is independent of the
linearization parameter a(t), i.e. the inversion of ∆ is guaranteed during the online
simulation. The matrix only relies on the parameter a(t) which is obtained by linearizing
the nonlinear I/O w.r.t. the output and its derivatives.

5.4.4 Structure of the EMF

In figure 5.2, the concept of the EMF is shown. The first step consists in linearizing
the nonlinear I/O relation (5.26) of the considered system in order to receive the target
structure of the EMF which is a linear I/O equation (5.27) (cf. section 5.4.1). This
linear equation provides a straightforward application of the MFM. The linearization
parameters a(t), b(t) are the Jacobians of the nonlinear I/O relation (5.26) w.r.t. to
the output, its derivative and the input, respectively. The parameter ε(t) consists of
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y(n) = g(y(i), u)

System

Q(L[y], L[u],
L[ε], a, b)(ϕ)(i)

Modulation

Ẑ
= ∆−1 Q

Estimated y(i)

x̂ =
o−1(Ẑ)

Estimated states

a = ∂g
∂Z

∣∣∣
Z=Ẑ

; b = ∂g
∂u

∣∣∣
u=ū

ε = g(Ẑ, ū)− aT Ẑ − b ū

Linearization

∆−1(a)

yu

u

u

y

Li[y], L[u]

L[ε]
Q Ẑ x̂

Ẑ

a, b

a

∆−1

ε

Observer

Figure 5.2: Structure of the EMF with i ∈ {0, 1, · · · , n− 1}

the summands of the Taylor series that include the operating point around which the
I/O equation has been linearized. These parameters have to be recalculated in each
time interval. However, it is assumed that the linearization parameters a(t), b(t), ε(t)
are constant over the modulation interval [t − T, t]. This assumption of constancy is
considered in more detail in the following section 5.4.5.

Subsequently, the measured signals of the input u(t) and the output y(t) of the
nonlinear system and the linearization parameter ε(t) are modulated over a moving
horizon which produces the modulation operators L[u], L[ε], Li[y] with i = 0, 1, · · · , n−
1. These are required to calculate the matrix Q (cf. example equation (5.31)) together
with the linearization parameters a(t) and b(t).
In order to obtain the whole algebraic system of equations, the inverse of the ∆-

matrix with the calculated a(t) has to be determined. Using GMFs, the lower triangular
∆-matrix can be easily inverted offline also for higher orders n and the linearization
parameters a(t) must be only inserted during the online procedure. Moreover, if the
system is of order n = 2, the ∆-matrix is equal to its inverse.

The estimation of the output and its derivatives Ẑ = [ŷ, ˙̂y, · · · , ŷ(n−1)]> is obtained
by the product of the inverse of ∆ with Q:

Ẑ = ∆−1(a) ·Q(L[y], L[u], L[ε], a, b). (5.37)
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These estimates constitute the new working points which are used in the next time step
to be linearized around in order to determine a(t), b(t) and ε(t).

In the last step, the estimated values of Ẑ can be used to compute the estimated
states x̂. This can be done by inserting Ẑ into the inverse function of the observability
map (3.3). If this might not be possible due to the nonlinearities as explained in section
5.4.1, the proposed approximation (5.25) can be used.

5.4.5 Error Analysis

EMF

Nonlinear I/O
relation

Transformation
Error

Linear I/O
relation

Linearization
Error

H.O.T.
Error

Constancy
Error

Implementation

Integration
Error

Figure 5.3: Error analysis of the EMF

The errors concerning the EMF are summarized in figure 5.3. If the system is not
yet available in I/O form, it must be transformed from its state-space representation.
If additionally the inverse function of the observability map is difficult to calculate, the
proposed local solution in section 5.4.1 has to be applied, i.e. the approximation of the
states (5.25) is determined with the Taylor series around the working point x̄. This
working point x̄ is chosen in the beginning of the calculations and cannot be changed
afterwards. Otherwise, the offline calculations must be repeated. Therefore, a proper
selection of this value x̄ is important. However, the working point x̄ cannot be chosen
perfectly, and thus, this transformation error is present during the entire observation
procedure.

In addition to the transformation error due to the unique choice of the working point
x̄, the linearization error ε(t) from the linearized I/O relation (5.27) has to be examined:

ε(t) = g(Z̄, ū)− a(t)>Z̄ − b(t)>ū. (5.38)

This error can be improved by using the Iterated Extended Modulation Filter (IEMF)
which is proposed in the following section 5.4.6. The iteration belongs to the lineariza-
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tion step in order to improve the estimated value Ẑ.
Moreover, the linearization (cf. formula (5.27)) includes the H.O.T. error which can

be analyzed with:
ξ(t) = g(Z, u)− a(t)>Z − b(t)>u− ε(t). (5.39)

Nevertheless, the H.O.T. error cannot be minimized by using a higher order of the
Taylor series since this would lead to new nonlinearities due to mixed terms with the
output, its derivatives and the input.

As outlined in section 5.4.4, the moving horizon window of the MFM is slided over
the trajectories of the measured input and output signals in order to apply the MFM.
During an estimation step, it is assumed that the linearization parameters a, b, ε are
constant. This leads to the constancy error which could be improved in further work
with a projection approach in order to obtain a time-variant parameter influence in the
moving horizon.

Furthermore, the implemented EMF generates a numerical integration error while
using the trapezoidal rule (cf. section 5.4.7). An improvement represents the change
of the Newton-Cotes formula, e.g. to the use of the Simpson’s rule. Another more
precise method represents the Gaussian integration method. [SB80] The test of different
integration methods can also be part of further work.

5.4.6 Iterated EMF

In order to minimize the linearization error by applying the first-order Taylor series to
the nonlinear I/O system equation, an improvement of the EMF is proposed in this
section. The idea is to recursively modify the center point of the Taylor expansion and
to achieve an ’one-step-convergence’ of the estimation error within one time step. This
is possible due to the non-asymptotic approach.

The IEMF is an extension to the structure of the EMF explained in section 5.4.4.
The iterated steps can be seen in figure 5.4 and consist in repeating the linearization
with the estimated Ẑ in order to minimize the estimation error eZ = Z − Ẑ. This is
accomplished by recalculating the linearization parameters which are assumed constant
in the considered horizon interval. Subsequently, the revised linearization parameters
lead to an improved estimation Ẑ.

The most computational part of the online estimation by the EMF, namely the mod-
ulation of the measured signals u and y, is executed only once in the modulation horizon
[t − T, t]. Nevertheless, the iteration loop includes the modulation of the linearization
parameter ε, but due to the constancy assumption, the convolution of the ε with the
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Figure 5.4: Structure of the IEMF

MF is a low cost calculation.
The iteration number K must be chosen beforehand and can only be adapted offline.

The higher the number K is, the more increase the computational requirements but
at the same time the linearization error ε declines. Therefore, the iteration number K
must be adjusted to the system under this consideration.

5.4.7 Numerical Implementation

The numerical implementation of the proposed state observer is divided into the offline
calculations and the online procedure. Primarily, the required nonlinear I/O equa-
tion (5.26) for the state observation is determined. Also the Jacobians a(Z, u, θ) and

52



5 Adaptive Observer with Modulating Functions

b(Z, u, θ) of the system equation (5.27) can be pre-calculated such that only an online
insertion of the estimated values Ẑ, the measured input signal u and the estimated
parameter value θ is required.

Furthermore, the used MFs are chosen w.r.t. the tuning parameters that include the
modulating sampling time TMF, the length of the moving horizon window T and the
kernel shape. In particular, the construction of the GMF is stated in the proposition
5.4.1.

Proposition 5.4.1 (Construction of GMF [Tia+19]). Let T ∈ R+, K ∈ N \ {0}, n ∈ N
with n ≤ K − 1. For i = 0, · · · , K − 1, let ϕi be a left Kth order modulation function
on [0, T ]. Then, let us consider the following function: ∀τ ∈ [0, t],

ϕ(τ) =
K−1∑
i=0

λi ϕi(τ). (5.40)

If the coefficient vector λ = (λ0, · · · , λK−1)T is the unique solution of the following
linear system:

Bλ = bn (5.41)

where B ∈ RK×K assumed to be invertible, and bn ∈ RK are defined as follows:
for k, i = 0, · · · , K − 1,

B(k, i) = ϕ
(k)
i (T ) (5.42)

and for k = 0, · · · , K − 1,

bn(k) =
 1, if k = n

0, else
(5.43)

then ϕ is a (K,n)th order generalized modulating function on [0, T ].

Beside the definition, the proof of the construction of the GMF can also be found in
[Tia+19].

The kernel of the MF consists of an orthonormal basis Φ = {Φ1, · · · , ΦN} ⊂ Lloc2 ([0, T ],R)
with an unweighted inner product space:

〈Φi, Φj〉 =
∫ T

0
Φi(τ)Φj(τ)dτ =

1 : i = j

0 : i 6= j
. (5.44)

The GMF is built w.r.t. the Gram-Schmidt process that is described in detail in [Lyc20].
The modulation of a signal is numerically implemented by an integral function ap-
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proximation. Hence, the realization of the receding horizon MF operator as an FIR
filter by a discrete-time integral approximation for a signal y : R+

0 → R is given as
follows:

Li[y] = (−1)i
∫ t

t−T
ϕ(i)(τ − t+ T ) y(τ) dτ

≈ (−1)i Ts
N∑
k=0

Wk ϕ
(i)(k Ts) y((l −N + k)Ts)

= (K0
MF · · ·KN

MF)


y(l −N)

...
y(l)

 =: KMF Y (5.45)

with

• current time t = l Ts where l ∈ N,

• number of approximation steps N ∈ N and

• step size Ts with T = N Ts.

The modulation vector KMF consists of N time samples as the filter coefficients. The
numerical approximation of the filter coefficients is performed in this thesis by a forward
integration rule, namely the trapezoidal rule which is one of the Newton–Cotes formulas
[SB80]. The vector Y contains the memory of the saved measured values over the moving
horizon. The implementation of the modulation of the signal y can be summarized as
depicted in figure 5.5. The filtering characteristics of a zero-order modulation operator
correspond to a low-pass filter, whereas a MF is generating measures of the derivatives
of a signal equal to a band-pass filter [PR93].

Sample Memory KMF y
y ydiscrete Y L[y]

Figure 5.5: Numerical implementation of the modulation operator

5.5 Joint Parameter and State Estimation

The design of the proposed nonlinear adaptive observer combines the input-output
based parameter identification DMR (see section 5.3) with the time-variant state ob-
server called EMF (see section 5.4). By using MFs and a closed-loop design of the EMF,
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a real-time capable adaptive observer architecture is achieved which is illustrated in fig-
ure 5.6. Both, the parameter estimator and the state observer, can act autonomously.

Nonlinear
Process Dynamics

Parameter
Estimator

State
Observer

u

u

x0

y θ̂ x̂

Adaptive Observer

Figure 5.6: Structure of the adaptive observer

However, the state observer requires a parameter value. An extension of the system
with a parameter state is not recommended since this would increase the order of the
required output derivatives and thus, unnecessarily rise the complexity and the com-
putational burden. Therefore, the proposed structure of the approach is advantageous
since the parameter estimation does not depend on the result of the state observation
like the coupled EKF.

The performance of the adaptive non-asymptotic observer is tested in the following
chapter 6 where it is additionally compared to the well-known asymptotic observer EKF.
For state and parameter estimation, all measurements of the last integration horizon T
are needed, i.e. only from the time T the results is reliable. Thus, the system has to be
pre-initialized and it is recommended to choose the horizon for the DMR smaller than
for the state observer: TDMR < TEMF sucht that the state observer can directly use the
parameter estimation.

In general, the moving horizon length T must be large enough to contain sufficient
information. However, if the system has a fast dynamics, the horizon must be adapted
to a smaller T to be able to react to the dynamics. This compromise is part of the
tuning procedure w.r.t. the MFM in order to obtain a robust implementation. Also
the kernel function of the MF can be varied, e.g. polynomial, Fourier, etc. In contrast
to the EKF, this approach does not need to solve a RDE in each time step. Instead of
that, an algebraic system of equations with an efficient implementation of the numerical
integrals has to be solved.
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6 Comparative Simulations

6 Comparative Simulations

In order to validate the properties of the proposed adaptive observer, the approach of
the decoupled parameter and state estimator using MFs is compared to the industrial
standard observer EKF. The programming, the graphical representation as well as the
evaluation are done in Matlab R© and Simulink R©.

Firstly, the preliminaries for the simulations are provided in section 6.1. Secondly, in
section 6.2 the observers are used in several simulation scenarios with distinct parameter
behavior and noise influence in order to show their characteristics.

6.1 Preliminaries

Beside the constant parameters of the plant set in table 2.1, it is assumed that the
measured signals m1 −m6 are constant during the simulations. They are listed in the
following table 6.1:

Description Variable Value Unit
pH-value pH 7

Permeate Flow Rate Qp 0.00681 m3/min
Brine Flow Rate Qb 0.1 m3/min

Pressure Difference ∆P 20 bar
Conductivity of Feed Stream γf 0.1 S m−1

Table 6.1: Measured signals for the simulation

Furthermore, the initial values of the states x0 are chosen in advance to receive the
approximated nonlinear I/O relation (5.26) in the offline calculations. They are set to
x0 = [0.5, 0.5, 0.5]> to form a basis for a comparison of both adaptive observers. This
leads to a transformation error (cf. section 5.4.5) w.r.t. the considered input signals
u1 and u2 (see figures 6.3) that influences the estimation by the EMF. In figure 6.1a,
the transformation w.r.t. the operating point input u1 produces an error of etrans,x3 ≈
−0.001, whereas in figure 6.1b the impact of the moving input can be seen in the
transformation errors.
Also the initial values of the output and its derivatives are selected for the first run of the
EMF. In this case, Z0 = [0, 0, 0]> is used to linearize the nonlinear I/O equation of the
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(a) u1 (b) u2

Figure 6.1: Transformation error by developing the nonlinear I/O relation (5.26) from
the state-space representation (2.24-2.26)

system (5.26) in order to obtain the linear I/O relation (5.27). Hence, the linearization
parameters a, b, ε, which are assumed constant in each moving horizon window of the
MFM, imply an incorrect estimation of the output value y and its first and second
derivatives ẏ, ÿ (cf. section 5.4.4). That is the reason why in the first interval with the
moving horizon length T the estimation is peaking and only for t > T the estimation
is reliable.
Moreover, the initial value of the parameter is set to Am,0 = 0.5 · A∗m.
The modulation related sampling time of the TMF is chosen to TTMF = 1× 10−2 s.

Due to the dynamics of the state, the modulation related sampling time of the GMF
is adopted smaller to TGMF = 1× 10−3 s. Both MFs are based on polynomials with an
orthonormal basis and exemplified functions can be seen in figure 6.2 which are used in
the following simulations. The moving horizon with the length T of the MFs is adjusted
during the simulations in order to receive the best possible results of the MFM.

The EKF used for the parameter estimation by the DMR in the proposed adaptive
observer employs the values of the covariances matrices QDMR = 10, RDMR = 0.05 and
the forgetting factor is set to λDMR = 5. In this case, the matrices are single valued
since only one parameter is estimated.

The chosen time-variant parameter of the plant is the changing surface area of the
membrane Am due to the CP and the membrane fouling as explained in section 2.1.3.2.
The nominal value, which corresponds to the particle clean surface membrane area, is
set to A∗m= 16 m2. During the operation, this parameter declines because more and
more particles accumulate on the membrane surface. In the following section, three
parameter scenarios are considered. Firstly, the parameter Am is fixed to its nominal
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(a) GMFs (b) TMF

Figure 6.2: Set of three GMFs for the state observation with the EMF and one TMF
for parameter estimation with the DMR

(a) Operating Point Input (b) Excitation Mode Input

Figure 6.3: Input signals for the operating point and the excitation mode scenarios

value A∗m and thus represents the optimal case. Secondly, there is a sudden decrease in
the parameter value from A∗m to Am = 15 m2. Thirdly, the parameter reduces steadily
comparable to a ramp. This comes closest to the physical degradation.

In each scenario two distinct input cases are executed. These include the operation
around the operating point with the input u1 = 3

20 −
3 e−t

200 and in a dynamical mode
with an alternating input u2 = 1

10 −
cos(t)

25 −
sin(4 t)

100 (see figures 6.3).
In figure 6.3a the exponential rise of the input is shown which is directly applied to the
rotational speed of the pump ωp. After the exponential rise of the signal, it reaches the
set point and remains at this operating point.
The excitation mode in figure 6.3b shows the increase and decrease of the input which
directly affects the pump speed ωp by the changing input u. Thereby, the system gets
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dynamical and the entire operating spectrum of the pump is reproduced.
Additionally, in each scenario the measured signals are exposed to noise. The applied

noise is a zero-mean white Gaussian noise which is low-pass filtered. The low-pass filter
is of first order (transfer function G(s) = 1

1 + s
) and is applied in order to receive

similar noise as in [Riv+19] which has used real-time data of the considered RO plant
of the PUCP.

6.2 Scenarios

In the following part, the coupled EKF (cf. chapter 4) is contrasted with the proposed
adaptive observer of chapter 5. Different scenarios concerning the RO plant are simu-
lated. These comprise the constant parameter scenario in section 6.2.1, the step (see
section 6.2.2) and the gradual decrease of the parameter value which is outlined in sec-
tion 6.2.3. Both inputs of figure 6.3 are simulated each time. Moreover, the observers
are analyzed under noise affection in section 6.2.4.

6.2.1 Constant Parameter

In this section, the general behavior of the RO plant is considered as well as the charac-
teristics of the observers in an optimal environment without the CP and the membrane
fouling.

Operating Point Input The coupled EKF estimates both states and parameter due
to the extension by the parameter as fourth state with the parameter dynamics equals
zero. The covariances REKF and QEKF are unitary matrices and the forgetting factor is
chosen to λEKF = 3.5. The smaller the forgetting factor, the slower the convergence of
the estimation error, which has been proven during the tuning of the coupled EKF.

Physically, the behavior of the RO plant can be analyzed in figure 6.4a. Due to
the rise of the rotational speed of the pump x3 = ωp, the RO process starts. In the
operating point of the plant, two streams with a constant concentration are produced.
The first state x1 represents the concentration of the permeate stream Cp which is lower
as the brine stream concentration x2 = Cb. Hence, the brine stream carries the salt
particles out of the membrane. In this simulation, the product of the process y = x1 is
drinkable fresh water with a concentration Cp < 0.5 kg m−3.
In figure 6.4a the observation of the states x̂1 − x̂3 and the parameter θ̂ is shown in

comparison to their real trajectories. The estimation error converges to zero at t ≈ 8 s
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(a) State estimation (b) Zoom in the state estimation error

Figure 6.4: State and parameter estimation by the coupled EKF with u1, λEKF = 3.5
and constant parameter

which is depicted in figure 6.4b.

Figure 6.5: Parameter estimation by the DMR with u1 and constant parameter

In contrast, the parameter estimator of the proposed adaptive observer DMR shows a
direct convergence to the optimal value after the moving horizon length of T = 1.5 s (see
figure 6.5). Thereafter, the value of the parameter can be used for the state estimation
shown in figure 6.6.
The state observation in figure 6.6 is based on the estimated values of Ẑ which represents
the output and its derivatives. The error of the calculated Ẑ is shown in figure 6.7a.
Noticeable is the peak at t = 0.74 s which implies a great state estimation error of
ex3 ≈ 15.3× 106 (in figure 6.6a) due to the transformation (cf. formula (5.25)). Hence,
these estimations in the first interval should not be used for further applications, for
instance in the control or the fault detection.
In the first interval of the sliding window, the peaking of the estimation is obvious.
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(a) Comparison of the real and estimated states (b) State estimation error

Figure 6.6: State estimation by the EMF with u1 and constant parameter

(a) Estimation error by the EMF (b) Comparison of the Z estimation error by the
IEMF and the EMF

Figure 6.7: Estimation error of the output and its derivatives by the EMF and IEMF
with u1 and constant parameter

After the DMR delivers a reliable estimation, the state observer error of the first and
second states x̂1, x̂2 also tend to zero (see figure 6.6b). The larger the derivative of
the signal, the more difficult is the estimation. Therefore, the second derivative has an
offset of eÿ ≈ 1.8× 10−4 (cf. figure 6.7) which becomes larger by the transformation to
the states ex3 ≈ 0.031 (see figure 6.6b).
However, the estimation process with the proposed adaptive observer is faster than the
observation with the coupled EKF and shows good results for t > 4 s.

The improvement using the IEMF instead of the EMF with an iteration number of
K = 5 is shown in the figure 6.7b. Due to the ’one-step convergence’ by means of the
iteration of the linearization step, the estimation error tends even faster to zero. The
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choice of the iteration number is a tradeoff between the rise of the computational costs
and the exactness of the ’one-step convergence’. Therefore, only the IEMF will be used
in the following since the performance exceeds that of the EMF.

(a) State estimation (b) Zoom in the state estimation error

Figure 6.8: State and parameter estimation by the coupled EKF with u2, λEKF = 3.5
and constant parameter

Excitation Mode Input The coupled EKF shows similar results as with the input
of exponential rise up to the set point but needs longer (t ≈ 9 s) to converge in all four
states (cf. figure 6.8).

Examining the proposed adaptive observer with MFs, the parameter estimation is
equal to the one in the case of the operating point input. Thus, figure 6.5 represents
the same result as with the excitation input and it can be stated that the DMR is less
sensitive to the input.
The estimation of the output and its derivatives using the IEMF shows a convergence
of the estimation error after the first moving horizon window t > T = 1.6 s (cf. figure
6.9a). Examing the zoom figure 6.9b, the varying input is displayed in the estimation
especially of the second derivative ¨̂y. Transforming the output estimates into the state
observations by using formula (5.25), the estimation error increases (see figure 6.10b).
In percentage terms, the estimate of x̂3 is off by approximately 0.18 − 0.7 % from the
real value x3. Due to the change in the rotational speed of the pump ωp, the first and
second states, which are the concentrations of the permeate and the brine stream Cp

and Cb, are also changing.
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(a) Error convergence after t > T (b) Zoom in the figure 6.9a

Figure 6.9: Estimation of the output and its derivatives by the IEMF with u2 and
constant parameter

(a) Comparison of real and estimated states (b) Zoom in state estimation error

Figure 6.10: State estimation by the IEMF with u2 and constant parameter

6.2.2 Step Decline in Parameter

In each simulation, a parameter step from A∗m= 16 m2 to Am= 15 m2 at t = 10 s is
executed in order to rebuild a sudden deposit on the membrane surface. Physically,
the reduction of the membrane surface Am leads to a decrease of the permeate volume
stream Qp, whereas the volumetric flow rate of the brine stream Qb will rise. Therefore,
the ratio of Qb

Qp
will increase and with it the pressure difference across the membrane

∆P . At the end of this effect chain, the output of the system y = x1 = Cp will decline
and at the same time less fresh water is produced.
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Operating Point Input In the direct comparison of the DMR with the coupled EKF
in the figure 6.11, it is noticeable that the proposed parameter observer DMR overswings
the optimal value more than the coupled EKF estimation. Especially, in the beginning

(a) Parameter Estimation (b) Zoom in the figure 6.11a

Figure 6.11: Comparison of the parameter estimation with u1 and step decline of the
parameter at t = 10 s

of the observation t < T the peak of θ̂ is seven times higher than the optimal value, but
after the first moving horizon interval of the MFM the estimated value converges faster
than the estimation of the coupled EKF. After the step at t = 10 s, both estimations
tend to the new value of the surface area with the same speed but the parameter value
θ̂ of the DMR overswings more (see figure 6.11b). If the parameter step increases, the
peaks of the overshoots will also rise.

(a) State estimation error (b) Zoom in the figure 6.12a at the parameter
step

Figure 6.12: Comparison of the IEMF and the coupled EKF with u1 and step decline
of the parameter at t = 10 s
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6 Comparative Simulations

The direct contrasting of both considered state observers in figure 6.12 demonstrates
similar results as the parameter comparison: the EMF shows bigger overshoots until
the new value of the parameter is used for the solution of the system of equations (5.31).
Figure 6.12b visualizes the zoom in figure 6.12a at t = 10 s where the convergence of
the states after the step is visible. Again the state observations of the EMF is faster
than of the coupled EKF. However, there is still the offset of the estimated value x̂3 by
the EMF as detected in section 6.2.1.

Excitation Mode Input Similar results are obtained while using the dynamic input
which can be seen in the figures C.4 in the appendix. The only difference to the
plots in the previous paragraph (see figures 6.12) with the static input is the moving
estimates x̂ of the EMF due to the ups and downs of the input, whereas the coupled
EKF observation is not influenced.

6.2.3 Gradual Decrease in Parameter

The proposed gradual decline in the parameter Am is simulated by a ramp function
and represents the real case of the CP and the fouling of the membrane. This process
does not occur suddenly but gradually, i.e. the deposit takes place evenly. Thus, the
membrane surface becomes less with increasing time by a decline rate of θ̇ = −0.1.
This will show the adaptability of the observer approaches.

Operating Point Input The forgetting factor of the coupled EKF is adjusted to
λEKF = 1.2. Figure 6.13a illustrates that the parameter state can follow the gradual
decline of the parameter Am. In the zoomed figure 6.13b, the state estimation error of
the coupled EKF shows the convergence of the states x̂1− x̂3. However, the parameter
state has a constant offset of eθ = −0.09. If the forgetting factor is chosen λEKF > 1.2,
the second and third states will diverge slightly. Therefore, λEKF = 1.2 is chosen, but
this results in a slower convergence of the states than in the previous scenarios with the
constant parameter or the step decline in the parameter.

Also the proposed adaptive observer requires an adaption of its tuning parameters.
Using the moving horizon window length TTMF = 1.5 s of the DMR applied in the
previous plots, a clear deviation from the desired parameter value is recognizable in
figure 6.14a. This generates a falling state estimation error of x̂3 (see figure 6.14b).
One possible solution includes the tuning of the MF horizon length in order to receive
more information for the parameter estimator DMR. The use of a length of TTMF = 3.3 s
leads to a more exact estimation of the parameter decline θ̂ (cf. figure 6.15a), also in
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6 Comparative Simulations

(a) State estimation (b) Zoom in the state estimation error

Figure 6.13: State and parameter estimation by the coupled EKF with u1, λEKF = 1.2
and gradually decreasing parameter

(a) Parameter estimation offset (b) State Estimation error with diverging ex3

Figure 6.14: Parameter estimation and state error by the proposed adaptive observer
with u1, TTMF = 1.5 s and gradually decreasing parameter

comparison with the coupled EKF estimate θ̂EKF . However, after the transformation
of the estimated output and its derivatives to the states, there is a constant offset of
the third state outlined in figure 6.15b. Nevertheless, the non-asymptotic estimation is
still faster than the asymptotic estimation by the coupled EKF (cf. figures 6.15).

Excitation Mode Input When the rotational speed of the pump ωp= x3 turns up
and down (see figure 6.16a), the parameter estimation with the coupled EKF shows a
dynamic parameter state estimation error in figure 6.16b.

In comparison, the parameter value by the DMR θ̂ is faster and closer to the gradually
decreasing optimal value θ∗ as the coupled EKF estimate θ̂EKF (see figure 6.17a). The
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6 Comparative Simulations

(a) Parameter Estimation (b) Comparison of the State Estimation Error

Figure 6.15: Comparison of the IEMF and the coupled EKF with u1, TTMF = 3.3 s and
gradually decreasing parameter

(a) State estimation (b) State estimation error

Figure 6.16: State and parameter estimation by the coupled EKF with u2, λEKF = 1.2
and gradually decreasing parameter

figure 6.17b displays the state estimation error by the EMF which is bigger than in
figure 6.10b due to the additional inaccuracy in the parameter estimation with the
unknown decline rate.

6.2.4 Noise Impact

In order to investigate the properties of the observers under noise impact, the variance
of the considered noise is chosen to Var = 5× 10−4. The bigger the variance of the
noise is, the bigger is the noise-ratio level. Furthermore, the noise signal is also low-pass
filtered. This scenario represents a good feasibility study of the observers in a practical
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6 Comparative Simulations

(a) Parameter estimation (b) State Estimation Error

Figure 6.17: Comparison of both observers with u2, TTMF = 3.3 s and gradually de-
creasing parameter

environment of the considered RO plant (cf. [Riv+19]). The noise analysis is restricted
to the impingement of noise on the output y since it is assumed that the input signal
u is well known.

Operating Point Input The output signal with noise yn is displayed in the figure
6.18b. In comparison with the noise-free output signal y, a signal-to-noise-ratio can
be calculated and in the case of the operating point input u1 the ratio amounts to
SRN ≈ 43 dB. The estimated parameters using the measured output, which is subject

(a) Parameter Estimation (b) Output signal

Figure 6.18: Comparison of parameter and output estimation with u1, TTMF = 3.3 s,
λEKF = 2, constant parameter and noise impact

to noise, are displayed in figure 6.18a. The amplitude of the estimated value with
the coupled EKF θ̂EKF is less influenced by the noise than with the DMR although
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6 Comparative Simulations

the impact depends on the chosen forgetting factor λEKF of the coupled EKF. Since
the EMF uses the estimated parameter value θ̂, the estimations of the output and its
derivatives are also affected next to the output with noise. Thus, the estimation errors

(a) Output Estimation Error by the IEMF (b) Comparison of the State Estimation Error

Figure 6.19: Comparison of the IEMF and the coupled EKF with u1, TTMF = 3.3 s,
λEKF = 2, constant parameter and noise impact

of y(i) are noisy as well (see figure 6.19a). The greater the degree of derivation is, the
bigger is the noise influence. Hence, the third state is very noisy which can be seen in
figure 6.19b.

Examining the figure 6.18b closely, a time lag between the output with noise (in blue)
and the estimated value (in yellow) is noticeable. However, the noise effect on the state
estimates with the coupled EKF are minor, since the idea of the EKF is based on the
occurrence of Gaussian white noise. In order to affect the estimation of the EKF with
noise, the variance has to be increased or a distinct type of noise has to be used.

Excitation Mode Input Applying the dynamical input u2, the parameter and state
estimates do not show significant differences to the scenario with the operating point
input (cf. figures C.5).

Step Decline in Parameter Including the parameter step at t = 10 s, the peak of
the DMR in the following sliding window increases but the estimate adapts to the step
(cf. figures 6.20). In the figure 6.20a, the influence of the noise to the coupled EKF is
shown which overlaps the estimate of the DMR. Adapting the forgetting factor of the
coupled EKF to λEKF = 1.2, the impact by means of the noise is lowered (cf. figure
6.20b). It follows that the moving of the estimated parameter θ̂EKF around the new

69



6 Comparative Simulations

(a) λEKF = 3.5 (b) λEKF = 1.2

Figure 6.20: Comparison of the parameter estimation by the IEMF and the coupled
EKF with u1, TTMF = 3.3 s, step decrease and noise impact

nominal value Am = 15 m2 is smaller than the overshoots of the parameter value θ̂DMR

of the combined modulation filter and the EKF approach.

(a) λEKF = 3.5 (b) λEKF = 1.2

Figure 6.21: Comparison of the state estimation error by the IEMF and the coupled
EKF wit u1, TTMF = 3.3 s, step decrease and noise impact

Beside the noise influenced parameter estimation due to λEKF = 3.5 (see figure 6.20a),
the coupled EKF shows an increased state estimation error in figure 6.21a. The adjust-
ment of the forgetting factor lowers the noise influence on the state estimations which
is shown in figure 6.21b. Thus, the estimation error of the IEMF is bigger than the one
of the coupled EKF.

Gradual Decrease in Parameter A similar behavior is determined during the grad-
ual decline of the parameter θ = Am by a ramp function in figure C.6. The estimated
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6 Comparative Simulations

parameters θ̂EKF and θ̂DMR can follow the slow decline of the membrane surface value
(cf. C.6a) but the amplitude of the state estimation error of the EMF increases which
is displayed in figure C.6b. The state estimation errors ex1 , ex2 and ex3 of the coupled
EKF are less influenced since this state observer does not depend on the estimated
parameter value.

71



7 Conclusion and Outlook

7 Conclusion and Outlook

The proposed nonlinear adaptive observer (cf. chapter 5) shows a sufficiently satisfying
observation behavior w.r.t. the considered RO plant which is mathematically modeled
in chapter 2. The results of the observability analysis (cf. chapter 3) are used to apply
the common EKF to the desalination plant as a basis for comparison.

The MF based adaptive observer consists of a hierarchical structure of the joint
parameter and state estimation as described in section 5.5. The parameter estimator
DMR applies the MFM to a system in regressor form and estimates the parameter
values with an EKF. In the case of the RO plant, the linearized I/O relation (B.3) is
linear in the output, its derivatives y(i) and the input u but nonlinear in the parameter θ.
However, the state observer approach EMF can be generally applied to a nonlinear SISO
system of the form y(n) = g(y(i), u, θ) with i = 0, 1, · · · , n − 1 due to the linearization
with the Taylor series (cf. equation (5.27)). Nevertheless, the linearization can also
lead to definition gaps when the system has non-Lipschitz points in state-space. The
EKF has the same disadvantage, but with the MFM there is no need to differentiate
noisy signals. Also the estimation result of the EKF depends on the noise, since it
is a stochastic approach. If the noise is unknown, the estimate can even diverge. In
comparison, the proposed observer is based on integration, and thus, provides in theory
a perfect suppression for non-autocorrelated noise. However in the RO example, the
measured output signal y with the applied noise has a greater impact on the estimates
by the MF observer approach than on the EKF due to the use of a Gaussian white
noise (cf. figure 6.18a and figure 6.19b).

Moreover, the simulations show a moving estimation by the EMF due to the excitation
input (see figures 6.9b and 6.10b). The peaks in the first interval of the MFM occur due
to the initial error in the algebraic equation (5.31). This error disappears when the first
reliable estimate is used for the linearization of the nonlinear I/O equation (5.27). A
possible improvement of the proposed estimation scheme could include the estimation
of the initial values in order to enhance the estimate of the first interval. Another
possibility constitutes the use of a receding moving horizon interval in the beginning.

The major advantage of the proposed nonlinear adaptive observer consists in the fast
estimation. The first reliable estimates are obtained after the moving horizon window
at t > T . In comparison, the coupled EKF needs more time to estimate the parameter
state θ. However, both observers struggle with the ramp decline in the parameter and
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create an offset in the parameter and state estimates (cf. section 6.2.3). The reason
lies in the assumption of the constant parameter.

An additional advantage of the proposed state observer structure (see section 5.4.4)
is related to the computational costs since no RDE has to be solved at each iteration
like the EKF does. The computationally costly parts of the MFM can be done offline.
For instance, the preliminaries to receive the nonlinear I/O relation (5.26) is computed
only once. Furthermore, the selection of the initial values and the parameters of the
MF, which includes the tuning possibilities, e.g. the kernel function, the horizon length
T and the modulation sampling time TMF , are calculated offline. Thereby, the well
conditioned ∆-matrix by means of GMFs (cf. section 5.4.3) can be inverted beforehand
and only the calculated linearization parameter a has to be inserted online.
The proposed state observer EMF shows no direct convergence of the state estimation

error in contrast to an asymptotic observer like the EKF, e.g. in figure 6.6b. These
inaccuracies occur due to the transformation error, the assumption of constancy of
the linearization parameters a, b, ε within a horizon window [0, T ], the linearization
and H.O.T. error by the Taylor series, and the integration error by the numerical
implementation (cf. section 5.4.5). Therefore, the IEMF, an improvement of the EMF,
is proposed in order to obtain a ’one-step convergence’ by means of an iteration over
the linearization and estimation calculations (cf. section 5.4.6).

With the achieved observation accuracy of the rotational pump speed ωp, it is possible
to improve the proposed fault detection in [Göp21] by isolating all occurring faults.
Moreover, the clogging of the membrane can be monitored with the parameter estimator
DMR, which is investigated by a simulative step decrease and a declining ramp for a
gradual particle deposition. This could be improved by estimating the decline rate of the
membrane surface due to the CP and the membrane fouling and using it for the internal
model (5.19) of the DMR. Also additional parameters as the membrane permeability
coefficients ks and km could be included in the parameter estimation process in order
to differ between the CP and the membrane fouling.

Further works could consider an improvement of the EMF by means of a time-variant
approach of the linearization parameters by projection and the change of the integra-
tion method. If the system has faster dynamics, the appeared error could increase. A
countermeasure would be the separation of the moving horizon window T into smaller
intervals and the estimation of the new values in each interval. This idea could also im-
prove the constancy error due to the assumption of the piecewise constant linearization
parameters over each modulation interval.
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A Determinant of the Observability Matrix

A Determinant of the Observability
Matrix

Evaluated determinant of observability matrix (A.2) of the RO system with inserted
parameters of the table 2.1:

det(O) =
(

2.2677× 10−6 Am
2
(
− 0.258 + 0.05 pH + γf

) (
1.4026× 10−6 ∆P

− 2.9733× 10−6 γf − 1.4866× 10−7 pH− 2.9733× 10−7 x2 + 2.9733× 10−7·√
4.4448− 2.1083 pH + 0.25 pH2 − 42.165 γf + 10.0 γf pH + 100.0 γf 2 + 28.792 ∆P
−4.7173 ∆P pH− 94.345 ∆P γf + 22.252 ∆P 2 − 4.2165x2 + 1.0 pHx2

+20.0 γf x2 − 9.4345 ∆P x2 + x22 + 6.2684× 10−7
)2
)
·(

3.9293× 10−13 − 1.8638× 10−13 pH + 2.2101× 10−14 pH2 − 3.7275× 10−12 γf

+ 8.8402× 10−13 γf pH + 8.8402× 10−12 γf
2 + 2.5452× 10−12 ∆P

− 4.1702× 10−13 ∆P pH− 8.3403× 10−12 ∆P γf + 1.9672× 10−12 ∆P 2

− 3.7275× 10−13 x2 + 8.8402× 10−14 pHx2 + 1.768× 10−12 γf x2

− 8.3403× 10−13 ∆P x2 + 8.8402× 10−14 x2
2
)−1

(A.1)

75



A
D

eterm
inant

ofthe
O

bservability
M

atrix

General determinant of the observability matrix (3.10) of the RO system:

det(O) = 1
Vb Vp

2 bf,0(
σ2

1 γf,st
2 km

2 − 2.0σ2
1 γf γf,st km

2 + σ2
1 γf

2 km
2 + 2.0σ2

1 bf,1 γf,st km
2 pHst

− 2.0σ2
1 bf,1 γf,st km

2 pH− 2.0σ2
1 bf,1 γf km

2 pHst + 2.0σ2
1 bf,1 γf km

2 pH + σ2
1 bf,1

2 km
2 pHst

2 − 2.0σ2
1 bf,1

2 km
2 pH pHst

+ σ2
1 bf,1

2 km
2 pH2 − 2.0Cf,st σ

2
1 bf,0 γf,st km

2 − 4.0Mm σ1 bf,0 γf,st km ks + 2.0Cf,st σ
2
1 bf,0 γf km

2 + 4.0Mm σ1 bf,0 γf km ks + 4.0Mm σ1 bf,0 ∆P γf,st km
2

− 4.0Mm σ1 bf,0 ∆P γf km
2 − 2.0Cf,st σ

2
1 bf,0 bf,1 km

2 pHst + 2.0Cf,st σ
2
1 bf,0 bf,1 km

2 pH− 4.0Mm σ1 bf,0 bf,1 km ks pHst

+ 4.0Mm σ1 bf,0 bf,1 km ks pH + 4.0Mm σ1 bf,0 bf,1 ∆P km
2 pHst − 4.0Mm σ1 bf,0 bf,1 ∆P km

2 pH + Cf,st
2 σ2

1 bf,0
2 km

2 + 4.0Cf,st Mm σ1 bf,0
2 km ks

+ 4.0Mm
2 bf,0

2 ks
2 − 4.0Cf,stMm σ1 bf,0

2 ∆P km
2 + 8.0Mm

2 bf,0
2 ∆P km ks + 4.0Mm

2 bf,0
2 ∆P 2 km

2 − 2.0σ2
1 bf,0 γf,st km

2 x2 + 2.0σ2
1 bf,0 γf km

2 x2

− 2.0σ2
1 bf,0 bf,1 km

2 pHst x2 + 2.0σ2
1 bf,0 bf,1 km

2 pHx2 + 2.0Cf,st σ
2
1 bf,0

2 km
2 x2 + 4.0Mm σ1 bf,0

2 km ks x2

− 4.0Mm σ1 bf,0
2 ∆P km

2 x2 + σ2
1 bf,0

2 km
2 x2

2
)−1

0.5968Am
2 Vd ks

2 (−1.0 γf,st + γf − 1.0 bf,1 pHst + bf,1 pH + Cf,st bf,0)(
2.0Mm bf,0 ks + σ1 γf km − 1.0σ1 γf,st km − 2.0Mm bf,0 ∆P km − 1.0σ1 bf,0 km√√√√2.0Cf,st x2 + Cf,st

2 + x22 + γf 2

bf,0
2 + γf,st2

bf,0
2 + 2.0 γf x2

bf,0
− 2.0 γf,st x2

bf,0
+ bf,1

2 pH2

bf,0
2 + bf,1

2 pHst
2

bf,0
2 + 2.0Cf,st γf

bf,0
− 2.0Cf,st γf,st

bf,0
− 2.0 γf γf,st

bf,0
2 + 4.0Mm

2 ∆P 2

σ2
1

+2.0Cf,st bf,1 pH
bf,0

− 2.0Cf,st bf,1 pHst
bf,0

+ 2.0 bf,1 γf pH
bf,0

2 − 2.0 bf,1 γf,st pH
bf,0

2 − 2.0 bf,1 γf pHst
bf,0

2 + 2.0 bf,1 γf,st pHst
bf,0

2 + 2.0 bf,1 pHx2

bf,0
− 2.0 bf,1 pHst x2

bf,0
− 2.0 bf,1

2 pH pHst
bf,0

2

+4.0Mm
2 ks

2

σ2
1 km

2 − 4.0Cf,stMm ∆P
σ1

− 4.0Mm ∆P x2

σ1
+ 8.0Mm

2 ∆P ks

σ2
1 km

+ 4.0Cf,st Mm ks

σ1 km
− 4.0Mm ∆P γf

σ1 bf,0
+ 4.0Mm ∆P γf,st

σ1 bf,0
+ 4.0Mm ks x2

σ1 km

−4.0Mm bf,1 ∆P pH
σ1 bf,0

+ 4.0Mm bf,1 ∆P pHst
σ1 bf,0

+ 4.0Mm γf ks

σ1 bf,0 km
− 4.0Mm γf,st ks

σ1 bf,0 km
+ 4.0Mm bf,1 ks pH

σ1 bf,0 km
− 4.0Mm bf,1 ks pHst

σ1 bf,0 km

+ Cf,st σ1 bf,0 km + σ1 bf,1 km pH− 1.0σ1 bf,1 km pHst + σ1 bf,0 km x2
)2

(A.2)

σ1 = RT (A.3)
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B State-space Representation

B.1 Nonlinear State-space Representation

Nonlinear I/O relation of RO system (2.24-2.27):

...
y = 1

σ3/2

− 840 y
(
σ
)3/2
− 10.4 ẏ

(
σ
)3/2
− 6.8 ÿ

(
σ
)3/2
− 7.6× 10−7

(
σ
)3/2

− Am

(
6× 1065 y2√σ − 7.6× 10111 y2 ẏ2 − 21.2× 1068 y3√σ + 4.4× 1063 ẏ2√σ + 4.4× 1071 ẏ3√σ + 34.8× 10106 y ẏ + 34.4× 10112 u y3

+ 20.8× 10109 u ẏ3 − 31.6× 10−3 u
(
σ
)3/2
− 27.2× 10114 y ẏ2 − 5.2× 10116 y2 ẏ − 6× 10110 y ẏ3 + 18.4× 10114 y2 ÿ

− 34.4× 10111 y3 ẏ − 22× 10110 y3 ÿ + 13.2× 10112 ẏ2 ÿ − 13.2× 10107 ẏ3 ÿ + 22.4× 10−4 y
(
σ
)3/2

+ 14× 10−4 ẏ
(
σ
)3/2

+ 10× 10−5 ÿ
(
σ
)3/2

+ 20.8× 10107 y2 − 29.6× 10116 y3 + 14.8× 10105 ẏ2 − 24.4× 10111 y4 − 25.2× 10112 ẏ3 − 17.2× 10108 ẏ4 − 68
(
σ
)3/2

+ 7.2× 10111 u y ẏ2 + 8.8× 10112 u y2 ẏ − 4.8× 10109 y ẏ2 ÿ − 5.6× 10110 y2 ẏ ÿ + 10.4× 1064 y ẏ
√
σ + 10× 1072 y ẏ2√σ

+ 10× 1073 y2 ẏ
√
σ + 4.8× 1072 y2 ÿ

√
σ + 35.6× 1069 ẏ2 ÿ

√
σ + 30.8× 10113 y ẏ ÿ + 8.4× 1071 y ẏ ÿ

√
σ
)

− A2
m

(
15.2× 10102 ÿ − 14.4× 10105 ẏ − 17.2× 10106 y + 24.8× 10104 y2 ẏ2 + 35.6× 1067 y2√σ + 11.6× 1069 y3√σ − 8× 1071 ẏ2√σ

+ 7.2× 1066 ẏ3√σ + 4.4× 10115 y ẏ − 15.2× 10113 y ÿ − 12.8× 10112 ẏ ÿ − 8.4× 10112 u y2 − 6× 10110 u ẏ2 + 12× 10110 y ẏ2

+ 8× 10111 y2 ẏ + 14× 10103 y ẏ3 + 5.6× 10110 y2 ÿ + 19.6× 10105 y3 ẏ + 38.8× 10107 ẏ2 ÿ − 10× 1064 y
√
σ − 8.4× 1063 ẏ

√
σ

− 24.4× 10−8 y
(
σ
)3/2
− 20.8× 10−9 ẏ

(
σ
)3/2

+ 36.8× 10115 y2 + 6× 10111 y3 + 11.2× 10113 ẏ2 + 5.6× 10106 y4 + 4.8× 10109 ẏ3

+ 6.4× 10109 ÿ2 + 29.6× 10101 ẏ4 − 12.4× 10−6
(
σ
)3/2
− 9.6× 1072 y ẏ

√
σ − 8× 1071 y ÿ

√
σ − 6.8× 1070 ẏ ÿ

√
σ + 25.2× 1067 y ẏ2√σ

+ 29.6× 1068 y2 ẏ
√
σ − 14.4× 10111 u y ẏ + 9.2× 10109 y ẏ ÿ + 9.2× 1095

)
+ A3

m

(
20.4× 10114 y + 12.4× 10113 ẏ − 4× 10112 ÿ + 29.2× 1069 y2√σ + 20.8× 1066 ẏ2√σ − 7.2× 10111 u y − 6× 10110 u ẏ

+ 6× 10110 y ẏ + 4.4× 10109 y ÿ + 38× 10107 ẏ ÿ + 21.2× 10103 y ẏ2 + 25.2× 10104 y2 ẏ

+ 15.6× 1066 y
√
σ − 4× 1071 ẏ

√
σ − 35.2× 1096 ÿ

√
σ

+ 5.2× 10110 y2 + 10× 10105 y3 + 4.8× 10109 ẏ2 + 6× 10102 ẏ3 − 4.4× 1063√σ − 19.6× 10−9
(
σ
)3/2

+ 4.8× 1068 y ẏ
√
σ − 4.8× 10105

)
− A4

m

(
12.8× 10108 y − 19.6× 10109 u+ 15.6× 10108 ẏ + 12.4× 10107 ÿ + 20× 10103 y ẏ + 24.4× 1067 y

√
σ + 20.8× 1066 ẏ

√
σ

+ 12× 10104 y2 + 8.4× 10102 ẏ2 + 31.6× 1063√σ + 4.4× 10113
)

+ A5
m

(
12× 10103 y + 10.4× 10102 ẏ + 6.8× 1066√σ − 7.6× 10106

)
− 4.8× 10102A6

m

+ 18× 10106 y ẏ2 + 21.2× 10107 y2 ẏ − 30.4× 10113 y ẏ3 − 21.6× 10116 y3 ẏ + 7.2× 10115 y3 ÿ + 4.4× 10112 ẏ3 ÿ + 8.4× 10108 y3

− 8.8× 10117 y4 + 5.2× 10105 ẏ3 + 6.8× 10112 ẏ4 + 16× 10113 y ẏ2 ÿ + 18.8× 10114 y2 ẏ ÿ − 16.4× 10115 y2 ẏ2

 (B.1)

σ = 3.4× 1074A2
m − 6.8× 1074Am ẏ + 14× 1074 ẏ2 − 8.1× 1075Am y + 8.3× 1075 y ẏ + 4.9× 1076 y2 (B.2)
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B.2 Linearized State-space Representation

Linearized I/O relation of RO system (2.31-2.34):

...
y = 0.0099426Am − 5.5428× 10−22Am

2 + 2.1407× 10−41Am
3 + 0.062699Am u

− 13.504 ÿ − 0.00040057Am ÿ − 20.554 ẏ − 0.0051405Am ẏ

+ 3.232× 10−41Am
2 ẏ − 8.0139 y − 0.0047833Am y + 3.8212× 10−40Am

2 y (B.3)

B.3 Comparison of the Nonlinear and Linearized
State-space Representation

For the following plots, the measured signals of the table 6.1 are taken:

(a) (b)

Figure B.1: Evaluated ẋ1
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B State-space Representation

(a) (b)

Figure B.2: Evaluated ẋ2

(a) (b)

Figure B.3: Evaluated ẋ3
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C Simulation Plots

C Simulation Plots

C.1 Step Decrease

Parameter step at t = 10 s from A∗m to Am = 15 m2:

Operating Point Input

(a) State estimation (b) Zoom in the state estimation error

Figure C.1: State and parameter estimation by the coupled EKF with u1, λEKF = 3.5
and step decrease at t = 10 s

(a) Parameter estimation (b) Output error estimation

Figure C.2: Estimation results by the IEMF with u1 and step decrease at t = 10 s
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C Simulation Plots

(a) Comparison of the real and estimated states
by the IEMF

(b) Zoom in the state estimation error at the
parameter step

Figure C.3: State estimation by the IEMF with u1 and step decrease at t = 10 s

Excitation Mode Input

(a) Zoom of the parameter estimation (b) Zoom of the state estimation error

Figure C.4: Comparison of the IEMF and the coupled EKF with u2 and step decrease
at t = 10 s
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C Simulation Plots

C.2 Noise Impact

Constant Parameter

(a) Parameter estimation (b) State estimation error

Figure C.5: Comparison of the IEMF and the coupled EKF with u2, TTMF = 3.3 s,
λEKF = 2, constant parameter and noise impact

Gradual Decrease in Parameter

(a) Parameter estimation (b) State estimation error

Figure C.6: Comparison of the IEMF and the coupled EKF with u1, TTMF = 3.3 s,
gradually decreasing parameter and noise impact
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B.3 Evaluated ẋ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.1 State and parameter estimation by the coupled EKF with u1, λEKF = 3.5
and step decrease at t = 10 s . . . . . . . . . . . . . . . . . . . . . . . . 80

C.2 Estimation results by the IEMF with u1 and step decrease at t = 10 s . 80
C.3 State estimation by the IEMF with u1 and step decrease at t = 10 s . . 81
C.4 Comparison of the IEMF and the coupled EKF with u2 and step decrease

at t = 10 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

90



List of Figures

C.5 Comparison of the IEMF and the coupled EKF with u2, TTMF = 3.3 s,
λEKF = 2, constant parameter and noise impact . . . . . . . . . . . . . 82

C.6 Comparison of the IEMF and the coupled EKF with u1, TTMF = 3.3 s,
gradually decreasing parameter and noise impact . . . . . . . . . . . . 82

91



List of Tables

List of Tables

2.1 Parameter values taken for simulation . . . . . . . . . . . . . . . . . . . 5

3.1 Simulation area for observability study . . . . . . . . . . . . . . . . . . 26

6.1 Measured signals for the simulation . . . . . . . . . . . . . . . . . . . . 56

92



Statutory Declaration

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.
This work has not been published and submitted, either in part or whole, for obtaining
a degree at this or any other university.

Ilmenau, August 13, 2021

Kristina Korder

93


	Acronyms
	Symbols
	Introduction
	Motivation
	Objective of Research
	Limitations and Structure of the Thesis

	System Modeling of the Reverse Osmosis Plant
	Structure
	Pre-treatment
	High Pressure Pump Module
	Membrane Module
	Reverse Osmosis
	Membrane Fouling and Concentration Polarization
	Membrane Type and Material


	Sensor Configuration
	State-space Representation
	Nonlinear Representation
	Linearized Representation


	Observability of Nonlinear Systems
	Observability Definitions
	Observability Analysis of the Reverse Osmosis Plant
	Symbolic Analysis
	Numerical Analysis


	Extended Kalman-Bucy Filter
	Definition
	Structure
	Convergence Analysis

	Adaptive Observer with Modulating Functions
	Definition of Modulating Functions
	Modulating Function Method
	Parameter Estimation
	Persistence of Excitation
	Structure of the Parameter Estimator

	Extended Modulation Filter
	Input-Output Relation
	State Estimation
	Mixed Boundary Conditions
	Structure of the EMF
	Error Analysis
	Iterated EMF
	Numerical Implementation

	Joint Parameter and State Estimation

	Comparative Simulations
	Preliminaries
	Scenarios
	Constant Parameter
	Step Decline in Parameter
	Gradual Decrease in Parameter
	Noise Impact


	Conclusion and Outlook
	Determinant of the Observability Matrix
	State-space Representation
	Nonlinear State-space Representation
	Linearized State-space Representation
	Comparison of the Nonlinear and Linearized State-space Representation

	Simulation Plots
	Step Decrease
	Noise Impact

	Bibliography
	List of Figures
	List of Tables
	Statutory Declaration



