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RESUMEN

La hipétesis en cuestion afirma que, dado el contexto tedrico (i.e., definiciones matematicas
consideradas apropiadas para describir los fendmenos que se pretende estudiar) descrito
en el articulo, existe una relacién entre diversidad global y precisibon de un ensamble
de clasificadores. Por lo tanto, el propdésito de esta investigacion es estudiar la relacion entre
la precision de ensambles y su diversidad dentro de un contexto geométrico y de
informacién. Para lograrlo, interpretamos el problema como uno geométrico
introduciendo un espacio métrico, donde los puntos son predicciones de clasificadores;
la funcién de distancia, la métrica Variacion de Informacion Normalizada (NVI, por sus
siglas en inglés); y la construccidon de un ensamble diverso es reducida a un problema de
criba y novedosamente transformado a uno de programacion cuadratica. La significancia
estadistica es asegurada haciendo uso de métodos Monte Carlo sobre 53 conjuntos de
datos apropiados. El resultado es un algoritmo basado en una métrica usada en el contexto
de teoria de la informacién, ideal para estudiar conjuntos de datos de alta dimensionalidad e
inherentemente ruidosos. Por tanto, es relevante cuando el costo de adquirir muestras es
muy alto; y la cantidad de variables, enorme. El marco teérico incluye las definiciones (e.g.,
definiciones relacionadas al concepto de diversidad o al espacio métrico utilizado), los
teoremas (e.g., propiedades de espacios métricos) y algoritmos base (i.e., programacion
cuadrédtica) usados para conseguir los resultados. Los resultados muestran que, en
promedio, el exceso de precision de un ensemble diverso respecto de su contraparte
aleatoria es funcién del valor de la diversidad global del mismo. Esto confirma la hipétesis
inicial. Ademas, la metodologia introducida para modelar el algoritmo introduce un marco
que permite esclarecer la relacion entre diversidad y precision, ya que la representa en
términos geométricos.
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Abstract

Ensemble models for classification are a Machine Learning approach that
have frequently proven useful in generating results with higher performance
and robustness than mono-classifier models. Common advantages include
tolerance for input data noise, decreased variance, and bias in predictions.
Many studies justify the fact that the diversity of an ensemble is related to
accuracy in some way. However, the correct definition of diversity and the
conditions needed for those statements to hold true remain unclear. The
present work addresses this issue from a geometrical perspective presenting
a method to build diverse ensembles based on the Normalized Variation of
Information and explore which conditions correlate to the variability in its
accuracy. The knowledge generated from this analysis will make it possible
to clarify and bring insight into how ensemble diversity is related to ensemble
accuracy.

Keywords: ensemble learning, high dimensional datasets, bioinformatics,
diversity, metric space, machine learning

1. Introduction

Ensemble methods are useful for classification tasks because of their ability
to reduce noise, variance and bias. For this reason, they are frequently used
when the dataset’s dimensionality is elevated, such as in the Bioinformatics
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context [1, 2, 3]. In such cases it is often difficult to learn the true decision
frontier with a single learner. Experimental and theoretical results suggest
that a single learner can be enough to classify correctly a fraction of the
samples; but an ensemble of learners that err, with the correct amount of
overlap in different samples, can increase the accuracy significantly [4, 5].

There are several ways in which the individual classifications can be
combined [6]. One of the most popular combination strategies is the majority
voting scheme, because of its simplicity, effectiveness and intuitive nature.
This kind of strategy has been thoroughly studied for more than 20 years.
For example, it has been shown that an ensemble of better than random
independent classifiers (i.e., probability of success greater than 0.5) are bound
to perform better than any individual base component [7]. Works like [8, 7,
9, 10, 11, 12] have shown that when dependence between classifiers exists, it
is possible to increase the accuracy of the ensemble further still. In [7], L. L.
Kuncheva calculates an upper limit for accuracy improvement in her famous
pattern of success, given a set of classifiers and a majority voting combiner
function.

An important concept associated with ensemble learning is that of diversity,
which has to do with the degree of disagreement among base learners. Several
measures have been proposed to quantify diversity [13]. Many researchers
believe that this concept is key in ensemble construction. The thought process
can be outlined as follows [14, 7, 15]:

1. There exists a property called diversity that is linked to the ensemble
accuracy;
2. Such a property can be used to build an effective ensemble of classifiers.

Despite the acceptance of the importance of diversity, until now there is
no measure of it that is widely accepted [16, 14]. There are many candidates
[13, 17, 18, 19, 20] each of which gives good results in a different context or
as part of different kinds of algorithms [21, 22].

Diversity measures are mainly used as: i) descriptive statistics of ensembles,
ii) criteria to build ensembles procedurally [20], or iii) criteria for reducing an
existing ensemble of learners, such that the resulting reduced set is diverse
according to the chosen definition of diversity (task known as ensemble
pruning) [23].

Ensemble pruning can be formulated as a Quadratic Programming problem.
This formulation possesses attractive properties, such as its well-founded



theoretical base [24] and its wide availability of solvers (e.g. [25, 26, 27]).
Previous studies defined an objective function (i.e., function to be optimized)
and reformulated it in such a way to be optimized as quadratic programming
problem [28, 29] (i.e., risk or margin optimization). But neither of those
works use explicitly the concept of diversity for pruning. Y. Zhang et al. [30]
defined a symmetric objective matrix called ensemble error as a function of
the overall strength of ensemble classifiers and an ad hoc diversity. They
arranged the objective matrix in a quadratic form to model it as a quadratic
integer programming problem. In the present study we follow the quadratic
programming formulation. However, differently from previous studies, we use
an information based metric to directly build a positive definite dissimilarity
matrix to fit in a quadratic form. By applying convex relaxation to the
optimizing vector, limiting its range to [0,1] and normalizing it, the problem
can be changed to a continuous optimization one. With this well-known
technique, the relation between ensemble accuracy and diversity is empirically
investigated in a comprehensive set of high dimensional datasets with an
intensive simulation approach.

In Section 2, the mathematical framework, tools, and notation will be
presented; as well as the specific problem to be studied. In Section 3, the
materials will be introduced; the experimental setup, described; the results,
shown; and their analysis, explained. Finally, Section 4 will conclude with
some remarks and future directions this study could take.

2. Theory and Definitions

2.1. On the Majority Voting Combiner

Let F' = {f;}L, be a set, called ensemble, of T multi-class classifiers defined
over some discrete domain X = {zy,...,2;,...}, where z; is called a data
point; and C, a vector of labels. Each element of F(X) = {fi(X)}L, is called
a prediction and take values in CXl. Now, let h;.(z) € {0,1} be an indicator
function that returns 1 if the ith classifier takes the value c € C' for data point

z; and 0, otherwise. Then, the majority vote combiner function on  can be
defined as [31]:

V(z) = argcerélax(i hic(a:)) (1)

i=1
where V() gives us the most voted class ¢ € C'; among the T' classifiers,
for element z.



2.2. On Diversity Statistics

According to L.I. Kuncheva [13], diversity statistics can be considered to
fall under two categories: pairwise and global (i.e., non-pairwise). Pairwise
statistics assess diversity between two predictions. Global diversity statistics
are set functions which assign a number to F'(X') to represent its diversity. For
simplicity, f; and f; are said to be diverse on X if their respective predictions
fi(X) and f;(X) are diverse. It is also assumed that if datasets X and Y
comes from the same distribution, f;(Y") and f;(Y") are diverse too.

2.2.1. Normalized Variation of Information

There are many statistics used as definition for diversity in the literature
[18] [13]. Nevertheless, this study adopts a pairwise metric called Normalized
Variation of Information (NVI), proposed by Marina Meila [32],

NVI(fi,fj)zl—% @)

OCH(fi|fj)+H(fj|fi)

where H is the entropy and [ is the Mutual Information, defined for two
classifiers f;, f; as:

I(fi 15) = H(f)) = H(fi | £3)

x?
= 2 p($7y)109—p( y)
zefi(x),yef;(x) p(z)p(y)

The function NVI was chosen because of its interpretation, which will
be explained in section 2.3.2, and definition as a proper metric. That is, it
satisfies the non-negativity, symmetry and triangle inequality axioms. These
properties are ideal for geometrical interpretation [32], which this paper will
fully exploit. However, since the dimension of X is finite, any distance be-
tween f;(X) and f;(X) will be an approximation of their true distance (i.e.,
the distance between predictions of two classifiers on an infinite dimensional
dataset point ). Yijun Bian et al. [33] also used NVT for ensemble pruning
and interpreted it as a measure of redundancy between predictions, since
when two classifiers are maximally diverse (i.e., distance equal to 1), they



are minimally redundant. And the other way around; if they are maximally
redundant, they will be minimally diverse (i.e., distance 0). In this work,
however, NVI will be treated directly as a diversity metric. From (2), it
follows that the diversity between two predictions f;(X) and f;(X) is pro-
portional to the sum of the uncertainty in f;(X) that is left after considering
the information gained by f;(X), and the uncertainty that is left in f;(X)
that is left after considering the information gained by f;(X). In other words,
NVI measures the sum of uncertainties of f;(X) and f;(X) after subtracting
the information that flows from one to the other.

2.2.2. NVI Global Diversity

Skalak [34] defined global diversity as the average of all pairwise disagree-
ment measures [35] of an ensemble base classifiers. But in this study, we
define global diversity using the pairwise metric instead,

2 T T
G=mz Z N—]V(fi»fj) (3)

i=1 j=i+1

where NVT is given by (2); and T, the number of classifiers in the ensemble.

2.3. On Diverse Ensemble Building

The problem of diverse ensemble building will be solved by pruning and
modeled into quadratic programming. So, given a set F' of T classifiers
defined on some domain X, consider their predictions F'(X) € F as points in
a metric space (F, div, X') with distance div. Now, let div(f;, f;) = d;; be the
pair-wise distances between any two points f;(X) and f;(X) and D = (d;;)
a dissimilarity matrix. To build a diverse ensemble a subset from F of
maximally diverse points is selected. This problem can be initially formulated
as that of a combinatorial optimization problem. Let w = (w1, ...,wr) be a
binary valued vector, were its ith element takes the value of 1 if f; is selected;
and 0, otherwise. Then, the problem would be to maximize

M (w) = w'Dw (4)

subject to Y, w; = n, where n is the number of points to be selected.
This is the classical optimization problem known to be NP hard. However,
convex relaxation can be applied to reduce the combinatorial problem into a
continuous optimization one [36]. This can be done by allowing the vector w;



take values in the interval [0,1]. Additionally, 3, w; = 1 to prevent unlimited
growth of the norm during the optimization process. In this way, the problem
is solved by

Wpnae = argmax M (w) (5)

Since D is a positive definite symmetric matrix, M (w) is convex, and thus
a global optimum can be found [37]. There are many quadratic programming
solvers and some of them have polynomial runtimes [25, 26, 27, 38]. With this
formulation, the initial problem of selecting the k maximally distant points is
not solved directly. However, now this result can be interpreted geometrically.
Each ith component in w can be thought as a weight w; that measures how
diverse (i.e., far from every other point) is f;(X) in F. This can be seen by
expanding (4) into

Mw) = ) wiwidy; (6)
i<g<T

Each point f;(X) is associated with one and only one w;. Since all terms
in (6) are non negative, a point f;(X) will be assigned a larger weight than
some fi(X) if the sum of distances between f;(X) and the rest of the points
is greater than that of f;(X). In other words, if w; is found consistently in
terms with larger distances than wy, then w; will be larger that wy. In this
study, the weights will be arbitrarily rounded to two decimal places in order
to drop any sufficiently redundant classifier (i.e., when it’s prediction weight

is approximately zero).

2.3.1. A Proof of concept with probability of disagreement metric

As a first proof of concept, the Probability of Disagreement will be used as
the definition of diversity. Given a dataset X = (z1,...,Zx), the probability
of disagreement is defined for two predictions f;(X) and f;(X) as [39]:

dij = P(fi(X) # [;(X))
= %;(1 = Of ()t (o)) (7)

_1 N
=1- N géfi(xk)fj(l‘k)



where 0 is the Kronecker delta. This diversity statistic ensures a metric
space where the triangular inequality, symmetry and non-negativity holds.
However, since f(X) < oo, (7) is only an approximation. Just as (2), (7) can
be used as a distance in a geometrical space. Also, from its definition, it is
easy to prove that if the classifiers map into a set of |C| classes, then there
could only simultaneously exist |C| maximally distant predictions. That is,
|C| predictions that are at distance 1 from each other. This fact will be used

to model an appropriate example.

Consider six classifiers {f;}%, and a set of labels C' = {1,2,3}. Their
respective predictions are shown in (8). Note that classifier’s fy, fs, f6 pre-
dictions are maximally diverse. Also, assume an hypothetical ground truth

c=1(2,2,2,2,2,2,2,2,2,2,2 2 3) (i.e., the true labeling of X).

fi(X)=(,1,1,1,1,1,1,1,1,1,3,1,3)
fo(X)=(1,1,1,1,1,1,1,2,2,1,3,3,1)
f3(X)=(,1,1,1,1,1,1,1,1,2,3,1,1)
f(X)=(,1,1,1,1,1,1,1,1,1,1,1,1)
f5(X)=1(2,2,2,2,2,2,2,2,2,2,2,2,2)
fe(X)=1(3,3,3,3,3,3,3,3,3,3,3,3,3)

By the use of (7) the distance matrix, defined as D = (d;;), is

[0.00
0.31
0.15
0.15
1.00

0.85

0.31
0.00
0.31
0.31
0.85
0.85

0.15
0.31
0.00
0.15
0.92
0.92

0.15
0.31
0.15
0.00
1.00
1.00

1.00
0.85
0.92
1.00
0.00
1.00

0.85 |

0.85
0.92
1.00
1.00

0.00|

(9)

After maximizing the corresponding quadratic form (5), the resulting

vector of weights is

Wmaz = (0.00,0.01,0.00,0.33,0.33,0.33)

(10)

In order to gain some intuition from these results, a classic multidimen-
sional scaling method (i.e., principal coordinates analysis) [40] was used to
find an embedding that represents the classifiers predictions as points in a



two-dimensional space. This method tries to preserve the distance between
points as much as possible.

Figure 1: Two dimensional representation of the distance matrix (9) by principal coordinates
analysis. This plot includes an hypothetical ground truth.

The resulting embedding (Figure 1), shows that the algorithm assigns
a greater weight to the predictions that are more distant from each other,
as expected. f;, f5 and fg had been assigned a weight of 0.33. f; and f3
are really close to f; (i.e., redundant with respect to f4), so they have been
assigned a weight 0. f5, although close to f;, is far enough to have been
assigned a non-zero weight of 0.01.

2.3.2. A Proof of concept with Normalized Variation of Information metric
As in the previous case, six classifiers were considered. This time, the
classifiers were obtained from training a random forest ensemble of 6 decision
trees on the Iris dataset [41]. The resulting distance matrix is shown in (11).
Unfortunately, in this case, no pairs of classifiers have maximum distance.



[0.00 0.27 0.10 0.18 0.18 0.24]
0.27 0.00 0.21 0.15 0.20 0.27
0.10 0.21 0.00 0.10 0.13 0.24
0.18 0.15 0.10 0.00 0.18 0.18
0.18 0.20 0.13 0.18 0.00 0.25
024 027 024 0.18 0.25 0.00

Solving the quadratic programming problem (5) gives:
Wpae = (0.25,0.29,0.00,0.00,0.16, 0.30) (12)

Although, the classifier predictions are not shown explicitly as in 2.3.1, it
is important to note that a vector representation of those is not appropriate
when using information based measures, such as NVI. Because of the way
those are defined [32], each prediction must be seen as a vector of sets
of distinguishable elements. That is, a prediction is now modeled as a
vector of a particular partition f(X) = ({a1,as,as,a4},{as,as}), instead of
f(X) = (a1,az,as,a4,as,ag). This is precisely the reason why NV was chosen
as the definition of diversity in this study. For example, consider a pair of
hypothetical predictions f1(X) =(1,1,1,2,2) and fo(X) =(2,2,2,1,1). The
probability of disagreement distance would be d; 2 = 1. On the other hand,
NVI(f1, f2) =0. Moreover, consider

fi=({a,a,0a3},{a4,a5})
fo = ({as, a5}, {a1,as,a3}) (13)
f3 = ({a17a27a5}v {CL3,CL4})

Then, NVI(f1, f2) =0, but NVI(f1, f3) =0.9896. The diversity captured
by NVI is about the underlying patterns in the dataset that leads a model
to establish a particular partition. For a more concrete exemplification, think
about persons as classifiers. Consider a situation where a person f; must judge
(i.e., classify) a set of phenomena X = (21, ...,25) into two different categories
Cy and Cy. That is, fr,(X) = (C1,Cs), where C; represents the subset of elements
in fr(X) judged as right; and Cy, as wrong. In particular, f; could have
judged Cy = {a1,a2,a3},Cy = {ay,as}; and fy, C1 = {as,a5},Co = {a1,a2,a3}.
Although both have an equivalent partition, they are morally opposites. Since
the partitions were the same, it can be said their knowledge (i.e., information)

9



allowed them to form the same categories, although named differently. Any
discussion between them would solely be about the naming of those categories.

This changes the way of thinking about closeness in the metric space
defined by NVI. Now two classifiers being far away from each other means
that they group the elements of the dataset into very different partitions.
That is, the partition of one does not reduce the uncertainty (i.e., cannot be
used as a reference) about the partition of the other. Even if the labels are
'wrongly' assigned, the information given by f>(X) completely determines
f1(X), and vice versa.

In Figure 2 that w3 = wy = 0. This is because f3(X) is surrounded by
fi(X) and f5(X); and f4(X), by fo(X), f5(X) and fs(X). In other words,
by knowing the information provided by f3(X), for example, more is known
about the partition of f5(X) and f1(X). Thus, f3(X) is redundant and can
be discarded for the sake of diversity.

Figure 2: Two dimensional representation of the distance matrix (11) by principal coordi-
nates analysis. This is the representation of a space where the NVI represents the distance
between two classifiers.

2.4. On Controlling Bias

To account for the ground truth in the pruning process, a class relevance
term is added to (4). Classifiers near the ground truth will be given more
weight (i.e., less penalized during optimization). The new quadratic program-
ming formulation is reflected in Equation 14 where the second term accounts

10



for the ground truth:

M(w, k) =w'Dw - Cy(k)"w (14)

The vector Cy(k) has T components, one for each classifier, in which
its ith component represents the distance between prediction f;(X) and the
ground truth ¢ elevated to the power of k. In this way, the optimization
procedure will avoid giving too much weight to those classifiers that are far
from c¢. Also, classifiers that are farther from ¢ are penalized more than those
that are closer. It is important to consider that function (14) can be reduced
to (4) when k — oo.

As before, we first use the probability of disagreement as a proof of
concept. The maximization will be done on (14) with £ = 1. Assuming
c=1(2,2,2,2,2,2,2,2,2,2,2,2 3) is the ground truth and by solving (5), the
resulting vector of weights is

Wmas = (0.00,0.00,0.00,0.18,0.63,0.19) (15)

Figure 3: Two dimensional representation of the distance matrix (9) by principal coordinates
analysis. This plot includes an hypothetical ground truth.

Figure 3 shows the resulting 2D embedding. The weight assigned to fs is
now 0, since it has been penalized because its distance from the ground truth
c is large enough. The remaining weight has been redistributed in such a way
that f5 now has 0.63, f; has 0.18 and fz has 0.19 weight.

11



3. Experimentation and Results

3.1. Materials

In this study 49 microarray and 4 RNASeq high dimensional datasets were
used. 39 out of the 49 microarray datasets are described in A. Espichan and E.
Villanueva 2018 study [2]. They have two classes, positive or negative cancer
prognostic status, and at most 2000 variables each. The average, minimal
and maximal number of samples is 87, 40 and 286, respectively. As for the
rest of the microarray datasets, they were fetched from the Gene Expression
Omnibus (GEO).

Regarding the 4 RNAseq, because of computational power limitations,
we only select the first 2000 variables from each. All of them (see Table 1)
are imbalanced and contain two classes, pathological tissue (PT) and normal
tissue (NT).

Table 1: RNASeq datasets
Dataset Class Samples

BLCA PT 408
NT 19
HNSC PT 920
NT 44
KIRC PT 233
NT 72
PRAD PT 497
NT 52

3.2. Experimental Setup

In this section, a metric space (F, NVI, X) is defined. F represents a
set of points; NVI, the distance; and X, the dataset (domain) used by an
algorithm to generate the points in F. As for the algorithm, Random Forest
[42] is used to build an ensemble of 100 decision trees on a training set (i.e.,
subset of X') comprised by 75% of the data points in X. Solving (5) together
with (14), and rounding w to three decimal places, a subset of classifiers
is selected. This subset will be called a diverse ensemble. Additionally, a

12



random subset, the same size as the diverse ensemble, is selected from F
and is called baseline ensemble. To compare the performance of the diverse
ensemble against the baseline ensemble, the accuracy of both is computed on
a test set, comprised by the remaining 25% data points in X, with respect
to the ground truth. That is, the accuracy of the former is divided against
the latter, and the result is subtracted by 1. The result is the increment® of
accuracy of the diverse ensemble with respect to the baseline. An increment
of 0 would mean that both ensembles result in the same accuracy.

To account for uncertainty, a Monte Carlo approach is taken. Thus, this
procedure is repeated 1500 times for each one of the 53 datasets considered
in this study, resulting in as many distributions of increments (i.e., increment
of the accuracy of the diverse ensemble with respect to the baseline). During
this process, other distributions were computed for each dataset. Those were:
the percentage of the classifiers that were pruned, the global diversity of the
baseline ensemble and the global diversity of the diverse ensemble.

Since some distributions included few, but extreme, outliers, the trimmed
mean at 5% is used as the central value statistic in this study. Nevertheless,
plots shown in section 3.3 can be found in the supplementary material for
trimmed means at 0%, 10%, 15%, 20% and 25%.

3.3. Results and discussion

Using the results from the simulations outlined in 3.2, it can be seen
in Figure 4 that the hypothesised trade-off between the mean of the mean
accuracy of the ensemble’s base classifiers and the global diversity is confirmed
[30].

'In this study, the increment of any statistic will always be with respect to the baseline
ensemble.

13



Figure 4: For the case in which k& — oo, the vertical axis in each plot represents the mean
accuracy of the base classifiers within each ensemble. The horizontal axis represents the
mean global diversity of their respective ensembles. The p-values for both, the intercept
and coefficient, for the baseline and diverse ensembles were at most 1.86e — 05.

The relation between the distributions of mean diversities for each hyper-
parameter k were compared using histograms (see Figure 5).
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Figure 5: The vertical axis represents the count of diverse ensembles build from their
respective datasets, each one associated with a distribution of diversity increments. The
horizontal axis represents the mean of the distribution of diversity increments.

As expected, every dataset from the case in which k — oo is more diverse
than the baseline, as it was also expected to exist a trade off between diversity
and class relevance. Nevertheless, it was also the case that 68.63% and 26.42%
of the ensembles for k£ =1.0 and k = 1.5, respectively, were more diverse than
the baseline, while for k£ = 2.0, 32.08. Meaning that it is not necessarily the
case that the more influence from the ground truth is considered, using the
class relevance term in 14, the less diverse the resulting ensembles will be.

Similarly, in Figure 6, the performance, across datasets, of the diverse
ensembles tend to perform better when k = 2 rather than when k£ < 2, even
if in the latter case the ensembles were built with a stronger class relevance
influence. The mean and median for k£ =1.0 is 0.00510 and 0.00178; k£ =1.5
is 0.02140 and 0.00673; for k = 2.0, 0.02589 and 0.00868; and for k — oo,
—-0.01461 and —0.00953, respectively.

15



Figure 6: Each black point represent a dataset. The vertical axis represent the mean of the
distribution of accuracy increments with respect to its baseline ensemble. The horizontal
axis represent the values for the k& hyperparameter. The greater the value of k, the less
impact will have the class relevance term. Each red dot represent the mean accuracy of all
datasets for each k.

Figure 6 shows that diversity alone does not guarantee good accuracy,
since the worst results were obtained when k — oo (no influence of ground
truth). It also suggests that a bigger influence of class relevance does not
necessarily improve results either.

Figure 7?7 depicts in more detail the relationship between diversity and
the distribution of accuracy increments. This plot is consistent with 6 in that

16



diversity alone does not give good results. It also suggests that for k = 2.0,
the diverse ensembles perform better than for k£ = 1.5. Additionally, the more
diverse the baseline ensemble, the more difference does it make to build a
diverse ensemble using (14). The standard deviation increases with diversity,
which can be worrying at first, but then ones notice that the skewness becomes
increasingly positive too, giving a heavy tail on the positive side.

To understand this results, each concept used in the experimental setup
must be inspected carefully. Random forest fits weak learners on subsets of
the dataset (i.e., datasets formed by randomly selecting subset of variables
and samples). Because the baseline ensemble is built by randomly choosing
classifiers from the random forest ensemble, their diversity is approximately
the same (see Figure 8). A low diversity of the resulting baseline ensemble,
implies that most base learners are redundant. That is, it does not matter
which subset is learned, the base learner will give similar predictions. Hence,
we can say the dataset is redundant. This can also be interpreted as the
decision boundary is easy to learn. On the other side, if the baseline ensemble
shows high diversity, the dataset is non redundant, as well as its base learners.

Figure 8: This figure compare the histograms of mean diversities, across datasets, of random
forest ensembles against baseline ensembles. The overlap is clear, even if the number of
counts of the baseline is less than the number of counts from the random forest.

Now, since the random forest is a supervised learning algorithm and if
the dataset is easy to learn, we can expect ensembles with high accuracy (see
Figure ?7) and with predictions relatively close to each other, and closely
clustered symmetrically around the ground truth. Figure 9 shows a two
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dimensional projection of one particular simulation of the distribution of
classifications. This distribution results from fitting a random forest to the
KIRC RNASeq dataset and building a diverse and baseline ensembles (k — oo).
The average of the distances between every base classifier from the random
forest, baseline and diverse ensemble to the ground truth is 0.5212, 0.5090
and 0.6071. These results are consistent with Figure 9, in view of the fact
that the predicted values from the random forest and baseline ensemble are
placed in the same position. The skewness of those same distances for the
random forest, baseline and diverse ensemble is —0.0683, 0.1578, —0.3541,
respectively. This shows that the classifications are fairly symmetrical with
respect to the ground truth.

Figure 9: This figure shows an embedded two dimensional spacial distribution of the
classifiers fitted on the low diversity KIRC RNASeq dataset. The embedding was done
with principal coordinates analysis. The hyperparameter, k - oo was used to build the
diverse ensemble.. The random forest, baseline and diverse ensemble’s diversity is 0.5868,
0.5669354 and 0.7072188. The the accuracy of all three ensembles is 0.9868.

If the diversity is high (i.e., the dataset is hard to learn), we expect a
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lower accuracy (see Figure ?77), and the base classifiers to not be clustered
around the ground truth, but skewed (because of systematic error). Figure 10
corroborates this hypothesis, which corresponds to the results on the pancreas
Ishikawa microarray dataset. In this case, the average of the distances between
every base classifier from the random forest, baseline and diverse ensemble to
the ground truth is 0.9577, 0.9537 and 0.9653. All of them are similar and
much higher than the previous example, suggesting that they are farther from
the ground truth. Also, after the random forest ensemble was pruned, the
resulting diverse and baseline ensemble distributions of predictions around
the ground truth remained similar. But, at the same time, the accuracy
from the random forest, baseline and diverse ensemble was 0.8462, 0.8462
and 0.6154. The diverse ensemble performs much lower than the other ones.
A possible explanation would be that, since subsets of the dataset tend to
be non redundant (i.e., contain different information), classifier’s predictions
do not tend to share information among themselves. As a result, removing
some of them disregarding the amount of information they contain about
the true classification (k - oo) will probably reduce the accuracy. Finally,
and contrary to the previous example, the skewness of the distribution of
distances to the ground truth of each ensemble is much larger (i.e., —2.0074,
-1.7344 and -2.1701 for the random forest, baseline and diverse ensemble,
respectively). This skewness can be seen in Figure 10.

For statistical significance, the previous examples will be repeated 500
times to show that the tendencies illustrated by Figures 9 and 10 are the norm
rather than the exception. For the high diversity example, the mean and
the standard deviation of the skewness in the random forest, baseline, and
diverse ensemble are —2.9457 and 1.0507, —2.6039 and 0.9719, and -2.3009
and 0.8167, respectively. For the low diversity example, the mean and the
standard deviation of the random forest, baseline and diverse ensemble are
—-0.3575 and 0.2197, —0.2831 and 0.3920, and —0.3861 and 0.4617, respectively.
Hence, we can be confident that the examples shown in Figures 9 and 10 are
representative.

4. Conclusion

This paper introduced an easy to use and intuitive new ensemble pruning
method based on an entropy-based metric to study how diversity and class
relevance might affect accuracy in decision trees ensembles. The results
show, under the experimental context outlined in section (3.2), that diversity,
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Figure 10: This figure shows an embedded two dimensional spacial distribution of the
classifiers fitted on the high diversity Pancreas Ishikawa microarray dataset. The embedding
was done with principal coordinates analysis. The hyperparameter, k — oo was used to
build the diverse ensemble. The random forest, baseline and diverse ensemble’s diversity
is 0.9569, 0.9550 and 0.9565. The accuracy of the random forest, baseline and diverse
ensemble is 0.8462, 0.8462 and 0.6154, respectively.

as defined in section 2.2.1, alone is not enough to improve the ensemble
performance when compared to its baseline (i.e., random forest ensemble of
the same size). But it also shows that the accuracy of a diverse ensemble
tends not to be in direct relation to the influence of the class relevance
term (hyperparameter k), but it suggests there might be optima. A diverse
ensemble, without the influence of the class relevance term (i.e., k - o0),
tends to perform worst than its baseline when the diversity of F, which is
nearly equal to the diversity of the baseline, is high (i.e., near to 1). On
the other side, if the diversity of F is low (i.e., the dataset is easy to learn),
the baseline and diverse ensembles have a very similar performance. This
study also shed some light on how the distribution of predictions around
the ground truth is affected by diversity and how high diversity tends to
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generate a systematic error, which tends to be accentuated in the k£ - oo
diverse ensemble case, in the predictions of the classifiers generated by F.
Futures work could use different types of base classifiers (e.g. SVM, NN or
Naive Bayes). The use of strong learners would complement this paper’s
findings , since their properties are not the same.
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