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Abstract 

 
The field of autonomous driving has been evolving rapidly within the last few years and 

a lot of research has been dedicated towards the control of autonomous vehicles, espe- 

cially car-like ones. Due to the recent successes of artificial intelligence techniques, even 

more complex problems can be solved, such as the control of autonomous multibody vehi- 

cles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way 

compared to multiple individual mobile vehicles or robots. 

But even for a human, driving a truck-trailer is a challenging task. This is because of the 

complex structure of the vehicle and the maneuvers that it has to perform, such as reverse 

parking to a loading dock. In addition, the detailed technical solution for an autonomous 

truck is challenging and even though many single-domain solutions are available, e.g. for 

pathplanning, no holistic framework exists. Also, from the control point of view, designing 

such a controller is a high complexity problem, which makes it a widely used benchmark. 

In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the exist- 

ing literature, a holistic approach is developed which combines many stand-alone systems 

to one entire framework. The framework consists of a plurality of modules, such as model- 

ing, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction 

switching, simulation, visualization and testing. There are model-based and model-free 

control approaches and the system comprises various pathplanning methods and target 

types. It also accounts for noisy sensors and the simulation of whole environments. 

To achieve superior performance, several modules had to be developed, redesigned and 

interlinked with each other. A pathplanning module with multiple available methods opti- 

mizes the desired position by also providing an efficient implementation for trajectory fol- 

lowing. Classical approaches, such as optimal control (LQR) and model predictive control 

(MPC) can safely control a truck with a given model. Machine learning based approaches, 

such as deep reinforcement learning, are designed, implemented, trained and tested suc- 

cessfully. Furthermore, the switching of the driving direction is enabled by continuous 

analysis of a cost function to avoid collisions and improve driving behavior. 

This thesis introduces a working system of all integrated modules. The system proposed 

can complete complex scenarios, including situations with buildings and partial trajecto- 

ries. In thousands of simulations, the system using the LQR controller or the reinforcement 

learning agent had a success rate of >95 % in steering a truck with one trailer, even with 

added noise. For the development of autonomous vehicles, the implementation of AI at 

scale is important. This is why a digital twin of the truck-trailer is used to simulate the full 

system at a much higher speed than one can collect data in real life. 
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ż, z’ Time and location derivative of x 

mt Timestep [s] 

U (a, b) Uniform distribution with values between a and b 

N (a, b2 ) Normal distribution with mean a and variance b 

 
> State 

>∗ Desired state 

r Reference, e.g. target state 

u Input, e.g. steering angle 

δ Steering angle 

θ Angle 

v Velocity 

S Cost value to reach target 

M Model 

Oi, B Objects, such as truck or buildings 

P Parameters 

Et Environment at time t 

 
Ω Neural Network 

η learnrate 

ξ Parameter of neural network, e.g. weights 

µ Policy 

β, κ, ε Design parameter for the reward of the RL agent 

γ, τ Parameter for the training of the RL agent 



 



1  

Masterthesis Benedikt Roder 

 
 
 
 
 
 

1 Introduction 

 
In the past few years, artificial intelligence technology has evolved in an exponential man- 

ner, resulting in lots of new developments whereby more complex problems that are being 

tackled today. The level of human involvement in various processes is declining and is be- 

ing replaced or assisted by technology. This is either to reduce the execution time of a task 

or to handle the difficulty of controlling a system, that would enable an otherwise infea- 

sible task to be performed. Because of this phenomenon, newly developed technologies 

have been introduced to many industries and to the daily life of many people. 

In the field of engineering, these technological changes can be seen in almost every dis- 

cipline. Since the beginning of the last century, systems have been implemented which 

exclusively relied on the management of human beings. Over time, these systems became 

more intelligent, i.e., they can function on their own without or very little human interven- 

tion. Finally, the concept of artificial intelligence (AI) was introduced, allowing systems to 

learn on their own, resulting in behavior not explicitly determined by the developer. 

Systems using AI are able to make decisions to reach some goal. They can also take into 

account the environment and additional constraints. With such capabilities, autonomous 

robots can be created. Autonomous vehicles have been used in various fields. In unknown 

areas, the control system must be capable of the sensing, processing and decision-making 

in real-time, considering the characteristics of the system itself, the existing constraints 

and physical resources. 
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1.1 Overview 

 
Vehicles can be classified based on their level of automation. Therefore, a set of automa- 

tion levels have been defined [1]: 

• Level 0 describes a vehicle without automation. All tasks are executed by the driver. 

• Level 1 vehicles use driver assistance systems (DAS), monitored by the driver. 

• Level 2 describes partial automation. The system can execute steering and acceler- 

ating, but the human is still responsible and has to monitor the system at all times. 

• Level 3 allows the human to stop monitoring the environment. With conditional 

automation, the driver is only the fallback level in emergency cases. 

• Level 4 describes a vehicle that can drive on its own under certain conditions. 

• Level 5 is full automation. The system can handle all driving modes in all environ- 

ments and situations. These vehicles are also called autonomous vehicles. 

An ambitious goal is being pursued in the development of automated driving functions. As 

shown in Figure 1.1, the development can be divided into several tasks. The tasks shown 

in orange will be addressed in this thesis. Those tasks are not only for car-like vehicles, 

but also for autonomous trucks. Trucks are bigger, consist of more than one moving body 

and have to execute different activities, such as backing up to a loading dock. This is why 

there are even more development steps to consider. 
 

Figure 1.1: Development of autonomous vehicles 
 

It all begins with the sensors, that map the environment by measuring quantities, like dis- 

tance to objects, yaw-rates or velocities. Taken all together, those measurements make 

up the perception of the environment. Next step is to understand the current situation. 

This includes distinguishing moving objects from buildings and the detection of false mea- 

surements. After that, a high level or maneuver planner determines which action to take 

next. This could be a lane change, a parking maneuver or an emergency brake. At this 

point, a decision is made about how the vehicle should move. After the top-level decision, 

the exact options, points and angles are computed by the low level or trajectory planner. 

Finally, controllers compute the desired steering and acceleration and execute the actions 

using the actuators of the vehicle. 

This work deals with the low-level planning and control of autonomous multibody vehi- 

cles. Sometime high-level and low-level planning are interlinked and cannot be separated 

perfectly. However, it is assumed that a target position or a target trajectory is already 

available, and a reliable perception of the environment exists. It will be focused on the 

planning of desired states >∗ and the determination of associated control signals u∗. 
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1.2 Motivation and Objective 

 
The field of autonomous driving provides many advantages in cost, efficiency and safety. 

A lot of research has been dedicated to the control of autonomous vehicles, especially 

car-like ones. Due to recent successes of artificial intelligence techniques, even more 

complex problems can be solved, such as the control of autonomous multibody vehicles. 

To enable safe and effective movement in critical situations, such as backward driving 

without human driver, those systems have to be controlled autonomously. 
 

Figure 1.2: Applications of multibody vehicles [2–4] 

 

Multibody vehicles, such as trucks with trailers or mobile robots, are used in a wide range 

of industries, such as warehouses, mining companies and logistics for delivery and trans- 

portation of goods, see Figure 1.2. They can accomplish transportation tasks faster and 

cheaper compared to multiple individual robots. The transportation capacity increases 

when one or more trailers are used. 

Even for a human, driving a truck-trailer is challenging because of the complex structure 

of the vehicle and the maneuvers that it has to perform, like reverse parking to a loading 

dock. From the control point of view, designing a controller for truck-trailers is a problem 

of high complexity, which makes it a widely used benchmark. 

On the one hand, there is a need for autonomous vehicles to realize the possible benefits. 

On the other hand, there are still many challenges to overcome until fully autonomous 

trucks and robots can be realized. The plurality of those challenges and approaches, such 

as 

• Driving forward and backward and changing the driving direction automatically, 

• Avoiding static and dynamic obstacles safely, 

• Planning and following a path, 

• Being robust against sensor failure and external influences 

and the combination of those, all while avoiding the jack-knife state, sparks the need for 

a unified system with a more generic way of control. 

In real life, in contrast to many path planning approaches, it can be useful to drive really 

close to objects and change the driving direction just before reaching it. This can be 

seen in many situations, when human drivers want to navigate or park in narrow spaces. 

Therefore, a way to move close to objects, but make sure there are no collisions is needed. 
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Objective 

The objective of this work is the development and evaluation of a framework 

for the control autonomous multibody vehicles using artificial intelligence. The 

framework is required to simulate an environment, implement several control 

approaches and provide a plurality of scenarios for testing. 

 

The overall objective of this work is to improve the capabilities of multibody vehicles for the 

application of autonomous driving. The goal is to develop a framework for the intelligent 

control of multibody vehicles, especially truck-trailer systems, using different approaches 

such as machine learning and neuro-control, enabling a generic approach to a plurality of 

scenarios. Finally, the optimization of the control behavior and design of cost functions is 

aspired. 

With simulations in MATLAB, intelligent control strategies can be developed. Different 

scenarios were investigated and tested with simulations. To improve the capabilities of 

multibody vehicles, the following topics will be deeply examined in this work: 

• Obtain an exact, but simple mathematical model for truck with one or two trailers, 

• Design a software that can simulate and execute environment, controller and model, 

• Propose a framework for trajectory planning and controlling with strategies for differ- 

ent driving modes, such as 

– Evaluate positions, 

– Switch directions and 

– Avoid obstacles, 

• Design, train and improve neural networks capable of controlling the vehicle, 

• Acquire, analyze and interpret data obtained from simulations and 

• Analyze the impact and improvement of the designed framework as well as its per- 

formance in designed scenarios and draw conclusions. 

Several systems have been proposed to solve specific problems, such as reverse parking 

truck-trailer vehicles or object avoidance of car-like vehicles. But in general, there are 

many factors to consider when building a framework for the control of autonomous multi- 

body vehicles. Such a framework, consisting of several controllers, has to be tested in a 

plurality of scenarios with different trajectories that can evaluate the concept. Possible 

scenarios are path following, e.g. for lane change on highway or parking in narrow spaces. 

Methods can be compared with performance measures, such as success rate, needed time 

to complete a task and collision free movement. 
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How to read this document 

 

Grey boxes include additional knowledge to understand the given information. In general, 

many implementation details and remarks are given throughout the document, such that 

the reader could actually rebuild the system. In some cases, readability and understand- 

ability is chosen over mathematical rigorousness. Notes and warnings are placed inside 

boxes as follows. 

 
The methods used are mathematical modeling and analysis of the system, 

controller design and training of neural networks. In addition, statistical 
evaluation will be done by running simulations. 
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1.3 Content and Outline 

 
The content of this thesis will cover the development of a framework. It will range from 

literature review to modeling of the system and from controller design to testing. 

First, established methods for the control of truck-trailer vehicles are presented and an- 

alyzed. This includes, but is not limited to, path planning and following and obstacle 

avoidance. Different approaches for the modeling of multibody vehicles will be derived 

and investigated. 

Second, a concept for the standardization of the presented control methods as well as for 

the integration into the framework is designed. Different situations will be evaluated to 

determine optimal points to change the driving direction and to avoid collisions. Therefore, 

a cost function for the current state, as well as high level decision processes have to 

be designed. After all, the best path and control strategy can be selected for a given 

environment. Furthermore, new control methods, such as controller based on artificial 

intelligence are analyzed. 

Finally, a software prototype will be used to demonstrate the concept with a control al- 

gorithm in several environments. It should be noted that the concept is not limited to a 

certain control algorithm, but can make use of any process to determine optimal inputs. 

This work is organized as follows. Chapter 2 presents the state of the art in terms of the 

development of autonomous vehicles, especially models and control strategies for multi- 

body vehicles. In Chapter 3, the behavior of multibody vehicles is investigated to obtain a 

mathematical model. This model is then used to simulate the dynamical system. In chap- 

ter 4, components for control, path planning and the switching of the driving direction 

are developed. Chapter 5 contains the training and evaluation of neural networks used 

to control the system. Chapter 6 presents the software that implements the concept and 

evaluates the resulting framework using test scenarios. Chapter 7 gives a summary and 

an outlook for possible improvements in future research. 
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2 State of the Art 

 
To get an overview of the latest techniques, this chapter introduces the state of the art of 

the modeling of multibody vehicles, pathplanning and the control of autonomous vehicles. 

This will support the focus of the further chapters, especially truck-trailer models (Chapter 

3) and control strategies (Chapter 4), which are based on the presented models. 

 
 

2.1 Modeling of Multibody Vehicles 

 
To appropriately deal with a truck-trailer system, a model, in form of mathematical equa- 

tions, is required. In reality, a plurality of different truck-trailer combinations are present, 

see Figure 2.1. As the model should not only cover the trailer configuration, but also the 

actuation, there are even more possible scenarios, as e.g. [5] proposed a driver assistance 

system with active trailer steering. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Visualization of different trailer configurations [6] 

 
A truck with one trailer will be the focus in the following chapters, even 

though the principles can be applied to more than one trailer. The modeling 

is presented for an arbitrary number of trailers. 
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Mathematical Models 

 
A model for a standard N-trailer vehicle is presented in [7]. This standard model consists 

of passive trailers (no active steering and no traction) and a truck with front axle steering 

and rear axle traction for forward and backward movements. In addition, it has all hitching 

points located on the preceding wheel axle, which simplifies the model. A model for 

arbitrary hitching can be found in [8].   [9] presents a generalized model with hitching 

as well as front and rear wheel drive. 

Single-track models are the most popular ones, as they lead to a simple, but precise 

model at low speeds [10]. [11] models the backward movement of a truck as inverted 

horizontal pendulum, which already has a wide range of known control approaches. Those 

models can be used to design controllers for the steering angle and the velocity. A proof 

of controllability of multibody robots is given in [12]. Geometrical relationships of the 

rectangles and other shapes, used to represent the truck, the trailers and the environment, 

can be used to detect collisions, see [13]. 

As most of the simulations do not deal with possible noise in measurements or control 

signals, real implementations can test approaches in the real word. In many cases, a 

miniaturized version, e.g. 1:14, is equipped with a microcontroller, sensors and actuators. 

For the perception of the environment, sensors such as laser scanners [14], ultrasonic 

sensors and RF receivers [15] are used. For the control, electrical power steering, an 

electric brake system and electric engines are required. 

 
Pathplanning 

 
The control of mobile robots can be classified into three objectives, which are stabilization, 

setpoint tracking and path following [16]. So paths have to be planned for controllers to 

follow them [17]. A pathplanning strategy for a truck with trailers is presented in [18]. To 

plan the next steps in a closed-loop form, instead of the open loop approaches, such as A* 

or the ant colony algorithm [19], special coordinates and a controller can be used. 

In [20], a trajectory is generated by segmentation into smaller elements, such as lines and 

curves. [21] proposes an approach with several segments for reverse parking of car-like 

vehicles. Minimum length pathplanning is proposed in [22], which is also used in [23] for 

trajectory planning and target tracking with two circle segments and a straight line. 

Two methods using perpendicularity and the line of sight are described in [24], which 

are used to compute desired states to follow a given trajectory. In [25], a nonholonomic 

model is used to find kinematically feasible paths for trucks with several trailers, even in 

the presence of obstacles or other constraints. In [26], a controller is used for pathplanning 

for collision free movement of a truck with two trailers. 

The presence of obstacles requires the planned paths to avoid those [27]. Force fields for 

collision avoidance in combination with particle swarm optimization and variable velocity 

are used in [28]. [29] proposes a path planner with direction changes and obstacle avoid- 

ance using a repelling spring. Pathplanning for obstacle avoidance is done in [30] with 

multiple stages, such as initial pathplanning, obstacle avoidance, smoothing and tracking. 
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2.2 Control of Autonomous Vehicles 

 
In the following, some model-based and model-free controllers will be presented. Aside 

of the approach itself, it is important to ensure the stability of the controller in the closed 

loop. [31] proves stability for one type of controller, based on a Lyapunov approach. In 

[32], the stability region for certain initial conditions in the state-space is determined. In 

[33], the robot is controlled from last trailers perspective, to ensure its desired behavior. 

 
Model-based Controllers 

 

Classical approaches can be used to control the steering angle and the velocity of multi- 

body robots. The design is based on the mathematical model, which can be analyzed to 

find suitable parameters as well. [34] uses pole placement for two different controllers, 

steering a truck-trailer backwards. Other classical methods, as presented in [35], can be 

used to compute control parameters by optimization. The linear-quadratic regulator (LQR) 

approach computes optimal parameters for a linear system with a quadratic cost function. 

This approach is used e.g. in [24] to determine gains for the steering angle control. A 

controller cascade is developed in [36] for backing up with two trailers. A sliding mode 

control for automatic steering of a car-like vehicle is proposed in [37]. 

An extended input-output linearization is applied in [10] to control the angle between truck 

and trailer and trailer and trailer, respectively. [8] proposes to use an input-state lineariza- 

tion in case the input-output linearization does not work, because of a more complicated 

model. A switching controller, based on the sign of the trucks velocity, for forward and 

backward motion is presented in [38], enabling the system to change the controller, based 

on the current state. [39] designes a nonlinear H∞-control scheme with the longitudinal 

velocity and the angular velocity as control input. 

For similar problems, Model Predictive Control (MPC) is a robust and reliable advanced 

control strategy that can handle dynamic Multiple Inputs Multiple Outputs (MIMO) systems, 

that has been applied successfully [40]. It is widely used, as more effective than classical 

control methods, for the cost of higher computational effort. One of the main features of 

MPC is that the desired behavior as well as constraints on the system can be specified in 

the problem formulation [41]. A MPC implementation for the control of a mobile robot is 

presented in [42]. Obstacle avoidance is introduced as nonlinear constraint as part of the 

optimization problem. 

Preview control, as introduced in [43], can be used to improve working controllers with 

information about future reference inputs. [44] and [45] implement preview control to 

extend the control for a car-like vehicle and truck-trailer, respectively. 

 

Models are not perfect, this is why extensive testing with noisy or real world 

data is required to test the performance of model-based controllers. 
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Model-free Controllers 
 

Another way to design a controller is to gather knowledge from other sources than a 

mathematical model. Fuzzy controllers are based on rules, e.g. obtained by experience of 

a human operator. In [46] a fuzzy controller for a truck with two trailers is shown. Based 

on the set of rules, it can also avoid obstacles while driving forward. A Variable Universe 

Based Fuzzy Controller (VUBFC), that has a variable membership function is presented in 

[47]. It has a better performance than common fuzzy controllers. 

Fuzzy neural networks are introduced in [48] to steer a car-like vehicle based on a training 

process for the parameters. A discrete model with fuzzy control in proposed in [49]. Sev- 

eral variables are controlled in [50] with an internal virtual controller. A proof of stability is 

given as well. [51] describes a fuzzy implementation of a truck with one trailer and robust 

control for stabilization tasks. 

Based on expert model knowledge, [52] develops a controller with a "safety margin" to 

execute an emergency halt. An expert based fuzzy logic controller is proposed in [53]. 

It has only a short learning phase, but it requires external experience. An expert system 

is another possible approach to solve forward and backward motion, even in constrained 

spaces [54]. 

Artificial intelligence (AI) can be used to control multibody vehicles. A general overview of 

AI can be found in [55]. The problem of a truck with trailer, backing up to a loading dock 

was famously used in [56] to show the effectiveness of a neural network based controller. 

In addition, another neural network was used for an emulator for the nonlinear dynamics to 

improve the systems model. A comparison between fuzzy and neuro-controller for trucks 

without trailer is given in [57]. A controller neural network, trained with data attained from 

a pathplanning program, is described in [15]. 

With the help of genetic algorithms, a controller for a truck with five trailers moving for- 

ward or backward while avoiding obstacles was developed in [58]. Genetic algorithms for 

the observation of nonlinear systems were introduced in [59]. The parameters in networks 

that make up a neuro-controller can also be updated by genetic algorithms [60]. 

Neural networks can learn from feedback by the environment. This is called reinforcement 

learning. With deep reinforcement learning and the Deep Deterministic Policy Gradient 

(DDPG) algorithm [61], an agent can learn continuous actions with continuous states. This 

is made possible by two neural networks, the so called actor and critic networks. In [62], 

deep reinforcement learning was applied to the truck-trailer problem. With this approach, 

many initial positions, even starting in the jack-knife position, were solved successfully. 

There is a need for real life data for the training of neural networks. This data can be 

obtained from pathplanning algorithms from real-world implementations as done in [15] 

or by street observations and postprocessing, as proposed in [63]. 
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Overview 
 

To give an overview over the literature in terms of the control of multibody robots, Table 

2.1 shows publications based on the domain and the used plant. The domain describes 

the approach to the problem, such as pathplanning or obstacle avoidance. The plant is 

the model or real implementation of trucks with a certain number of trailers. 
 

 
Truck Truck-trailer Truck with more trailers 

Forward driving [37] [54] [46], [58] 

Backward driving [44], [48] [10], [15]*, [54] [7], [10] 

Switching directions [22], [29] [14]*, [38]* 
 

Obstacle avoidance [29] [30] [26] , [46], [58] 

Pathplanning [21], [22] [14]*, [20]* [25] 

Pathfollowing 
  

[7], [24]** 

Table 2.1: *real implementation ** with simplifications (i.e. only linefollowing) 

 

One can see that in most of the cells, there is at least one contribution, but there is no 

holistic system solving the majority of problems. 
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3 Modeling and Computation 

 
For the control of autonomous multibody vehicles using artificial intelligence, a math- 

ematical model is required, e.g. for training, simulation and visualization. For computa- 

tional efficiency, this model needs to be easy to compute. 

A model is an approximation of the reality that is reduced to the properties that are rel- 

evant for the application at hand. Since in the following, the focus is on the control of 

position and angles, the models are adjusted accordingly. For example, the exact shape 

of the vehicles is neglected. In this chapter, different models for multibody vehicles are 

derived. There are several assumptions to make, as the model should suffice in the accu- 

racy of describing the system, while at the same time be as simple as possible to reduce 

effort in computation and modeling. 

However, truck-trailer mobile robots are a complex, nonlinear, unstable, underactuated 

and nonholonomic system difficult to control, especially when moving backwards, which 

have led to an intensive research work for analyzing their motion characteristics. 

 

 
3.1 Assumptions 

 
Most multibody vehicles consist of a primary body, usually called the tractor or the truck, 

and following bodies, usually called the trailers1. All bodies are assumed to have a rectan- 

gular shape with the same width. 

Most of the models are based on robot kinematics, valid when the robot moves at low 

speeds without wheels-side-slipping.   In this condition, the robot motion is determined 

only by geometrical considerations independent of masses, inertias and frictional forces. 

Common trucks are driven by acceleration and steering. For a low-velocity model, many 

effects, such as slipping of the wheels and three-dimensional behavior of the truck, can 

be neglected. Therefore, the acceleration will be regarded as 0, resulting in a constant 

velocity. 

In general, there are models with on-axle and off-axle hitching. The latter accounts for the 

fact that some trucks have the connection to their trailers not above its axles. The greater 

the distance between axle and coupling, the greater is the influence of the hitching to the 

model. For the sake of simplicity, and as the model can be changed slightly to account for 

the off axle hitching, see [8], a model without hitching will be derived. 

 

1 If there is no trailer at all, the vehicle is a car-like or single body vehicle. This is the simplest case. 
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In this setting, the truck will have front axle steering and rear axle traction1. For the 

control, it is assumed that full state information is instantly available, e.g. by sensor 

measurements, see Chapter 2.1. If not all states can be measured directly in real life 

applications, methods such as the Extended Kalman Filter (EKF) or 3DVar can be used 

[64]. 

In addition the following assumptions are made: 

• Only two-dimensional movement in the x-y-Plane is being considered. 

• Wheels and suspension are not modeled, and friction is neglected. 

 

 

 

3.2 State Description 

 
With constant velocity, a truck is controlled only by the steering. Therefore, the steering 

angle δ is the only input for a multibody vehicle. As in real life, the steering angle is limited 

 

δmin ≤ δ ≤ δmaz . (3.1) 

For symmetry, δmin = −δmaz  is assumed. 

 

(a) Truck (b) Truck with one trailer (c) Truck with two trailers 

Figure 3.1: Possible truck configurations 

 
Considering a truck O1 in the 2-D plane, it has coordinates (z1, y1) that represent the 

center of the rear axle and an angle θ1, as can be seen in Figure 3.2. The angle θ1 

describes the absolute angles of the truck respective to the x-axis. The truck itself has 

constant dimensions, such as length L1 > 0 and width w, as well as the steering angle δ. 

It is assumed that the steering can change instantly and therefore, no additional state is 

required for the steering angle, which will be an input only. 

Figure 3.1b shows a truck-trailer vehicle. The truck has front steering and rear traction 

wheels. The trailer is passive with support rear wheels. The trailer is connected to the 

truck at the center of the traction axis and it is pulled or pushed by the truck when it 

moves forwards or backwards, respectively. 

 
1 This configuration is arbitrary and can be changed by adjustments to the model, but it can be found in many 

real life examples. 
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For every additional trailer Oi, i > 1, there will be another angle θi, describing its orien- 

tation respective to the x-axis and length Li > 0, resulting in its position at the rear axle 

(zi, yi). As truck and trailer or trailer and trailer, respectively, are coupled directly, there 

results an angle in between two following bodies θij := θi − θj, see Figure 3.3. 

 

Figure 3.2: States in coordinate system for truck with one trailer 
 

Knowing all absolute angles θi of the bodies, or one angle and all the angles θij between 

the bodies, as well as the position of one body (zk, yk), k N describes the whole system. 

Thus, absolute angles and angles between bodies can be converted into each other: 

θij = θi − θj ⇒ θj = θi − θij (3.2) 

Knowing one position leads directly to all positions by applying translational and rotatory 

transformations on the position using the lengths and angles. As the lengths and widths 

do not change over time, they are parameters instead of states. 

The velocity of the truck is assumed to be constant. The velocities of the trailers may 

change with different angles, but it will be uniquely determined by the given states. Let 

the state for a truck with one trailer be given by 

 

> := [ z y θ2 θ12]T . (3.3) 

Consequently the state for a truck with two trailers by > := [ z   y    θ3   θ12   θ23]T . 

For the control of the given system, it can be useful to reduce the state representation. 
Therefore, a reduced state with R ∈ Rr n, r < n, > ∈ Rn  and >̄ ∈ Rr  is introduced 

>̄ = R> . (3.4) 

 

 

Counterclockwise angles are positive and all angles range from π to π or 

from -180 degrees to 180 degrees, respectively. 

 

 

During testing it became clear that δmaz < π is a useful constraint, as other- 

wise the behavior becomes instable. 
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Transformation 
 

To describe states in different coordinates, a transformation can be applied. Such transfor- 

mations can shift or rotate the system. Given a rotation angle α, a velocity vector v can 

be transformed to the respective coordinates with a transformation matrix T: 

 

vα := Tα v 

with 

T  := α 
 cos(α) − sin(α) 

sin(α) cos(α) 

 

 

The angles between bodies are limited, as trailers can never be in an angle over 180 

degrees relative to the preceding body as they would collide. In fact, the angles are limited 

by a value far under 180 degrees, see Chapter 3.4. In addition, the absolute angles are, 

by convention, between -180 and 180 degrees1. Therefore, the state is limited 

>min ≤ > ≤ >maz . (3.5) 

 

 

 

 

 

3.3 Model 

 
A model for a multibody vehicle consists of a way to determine the new state after a given 

input u either by computing the derivative and integrating (continuous system) 

>̇ = ̃ƒ (>, u) (3.6) 

with > Rn, u R and ƒ : Rn+1 Rn or computing the next state in a discrete system with 

timestep mt R. The discrete system can be obtained by integrating over a timestep mt, 

see Chapter 3.5. 

 

There are other ways to model a system, such as neural network represen- 

tations, but continuous systems are considered first. 

 

 

 
1 If the angle becomes greater than 180 degrees, it will be set to the respective value inside that region. 
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3.3.1 Single Track Model for one Trailer 

 

One can assume that the left and right wheels move in a similar pattern, especially as 

the front wheels are steered with the same signals. The truck-trailer robot can then be 

modeled as chained bars as it is shown in Figure 3.3, regarding the vehicle as infinitely 

thin. This simplifies the modelling and results in the so-called single-track model. 
 

Figure 3.3: Simplified model of truck with trailer 

 

Step  1:  To start with, consider only the truck, as shown in Figure 3.1 a. With steering 

angle δ and positive velocities for backward movement, it is known from the literature or 

can easily be obtained by trigonometric identities, that 

θ̇1 

v 

= − 
L1

 

 

t}n(δ) . (3.7) 

 

Step 2: Let the coordinate system be, such that velocity vector v is parallel to the x-axis, 

as shown in Figure 3.3 

vTruck = 
v

 

. (3.8) 

0 

The x and y velocities of the truck are equal to the first and second component of vTruck. 

 

The system can be rotated by any angle θ1 without affecting the actual 

movement. This is why a simple position, i.e. θ1 = 0 is used. 

 

Step 3: To obtain the model equations for the first trailer, a transformation for the angle 

θ12 has to be applied to obtain the resulting velocity affecting the trailer 

vTrailer  := 
vTrailer,1  = Tθ

 

  

 
· vTruck  = Tθ · 

v

 

= 
v  cos(θ12)  . (3.9)

 

 12 ) Trailer,2 v 
12 12 
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Step 4a: The x component of vTrailer is responsible for the movement of trailer. Therefore, 

the velocity in x and y direction of the trailer can be obtained by a rotation with the 

respective angle 

ż

 

= Tθ

 

· 
vTrailer,1

 

= 
v  cos(θ12) cos(θ2)

 

. (3.10)
 

ẏ

 2 

0 

 
 
v cos(θ 

 

12 ) sin(θ2)  

 
Step 4b: The y component of vTrailer is responsible for the rotation of trailer. As the 

rotating trailer describes an arc with the identity mθ2 · L2 = −ms, the following limits hold:1 

lim 
mθ2  

= θ̇ 
 

 

ms and lim = v 
 

 

 
(3.11) 

 
resulting in 

t→0 t t→0  t Trailer,2 

vTrailer,2 v 

θ̇   = − = − sin(θ ) . (3.12) 

 

Step  5:  By definition, θ̇12  can be computed from the derivatives of θ1 and θ2: 

θ̇12 := θ̇1 − θ̇2 

v 

= − 
L1

 

v 

t}n(δ) + 
L2

 

 

sin(θ12 

 

) . (3.13) 

 

This leads to the final truck-trailer robot model, which is given by the following equations:2 

ż = v cos(θ12) cos(θ2) 

ẏ = v cos(θ12) sin(θ2) 

θ̇2 

v 

= − 
L2

 sin(θ12) (3.14) 

θ̇12 

v 

= 
L2

 sin(θ12 

v 

) − 
L1

 t}n(δ) . 

 

In the following, the state is reduced to >, such that > := [ z1 z2 z3]T = [ y θ2 θ12]T 

with u := t}n(δ), resulting in a model of the form >̇  = ƒ̃ (>, u) = ƒ (>) + g(u).  Not including 

the x-coordinate in the state vector simplifies the controller design process significantly. 

For the LQR controller for example, only three control parameters are required and no 

unnecessary information is used. At the same time, the robots navigation capabilities are 

not impacted, as the robot will reach any x-coordinate eventually. 

 

The missing information on the x-position will be used to determine the 

switching between controllers, see Chapter 4.3. This way, it is possible to 

reach any desired x-position. 

 

 

 
 

1 The minus sign comes from the orientation of the angles (counter clockwise is positive). 

2 An algorithm to obtain the model equations for an arbitrary number of trailers is given in the next section. 

L2 
12 

2 
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3.3.2 General Single-Track Model 
 

The model with N N bodies and N 1 trailers can be derived by using the steps given in 

Section 3.3.1 and repeating steps 3-5 for all trailers. A visualization of the model with two 

trailers is given in Figure 3.1c. 

Let in the following i = 1, ..., N     1 and j := i + 1 describe two bodies that will be considered 

in a given iteration. 

Step 3*: Given the velocity vector of the first body vi and the full state of the second 

body >Full,j = [ zj    yj    θj     θij] and its length Lj, the new velocity vector can be determined 

by coordinate transformation: 

vj := 
vj,1

 

= Tθ  · vi . (3.15) 
 

ij 

vj,2 

 

Step 4a*: The resulting velocities in x and y direction can then be obtained using the 

x-component vj,1 of the velocity: 

żj

 vj,1  
v  

”.j
 

cos(θk k+1)
—  

cos(θj)  

ẏj 

 = Tθj  ·  
0 

 =  
v

 ”.j 
cos(θk k+1)

—
 
 
sin(θj) 

 (3.16) 

 

Step 4b*: The resulting angular velocity of Oi can be computed by the y-component of 

the velocity vj,2: 

θ̇j 
vj,2 

=  
Lj    

. (3.17) 

 

Step 5*: The angular velocity between the first and the second body can readily be 

determined by the angular velocities of the individual bodies: 

θ̇ij  = θ̇i  − θ̇j  . (3.18) 

Using this general formulation of the model, the two-trailer model can be obtained in a 

straightforward way. The result is: 

ż = v cos(θ12) cos(θ23) cos(θ3) 

ẏ = v cos(θ12) cos(θ23) sin(θ3) 

θ̇3 

v 

= − 
L3

 sin(θ23) 
 

(3.19) 

θ̇12 

θ̇23 

v 

= 
L2

 

v 

= 
L3

 

sin(θ12 

sin(θ23 

v 

) − 
L1

 

v 

) − 
L2

 

t}n(δ) 

 

sin(θ12) . 
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0 v cos(θ∗ ) cos(θ∗  ) −v sin(θ∗ ) sin(θ∗  )  

Jacobian linearization 

The equation for the linearization of a multivariable function ƒ (z, y) at a point (a, b) is: 

∂ƒ (z, y) 
ƒ (z, y) ≈ ƒ (a, b) + 

∂z
 

∂ƒ (z, y) 

(z − a) + 
∂y

 (y − b) 

A nonlinear system of the form ż = ƒ̃ (z, u) = ƒ (z) + g(u) can be linearized at a setpoint 

(z∗ , u∗ ) to obtain a linear approximation, valid around the setpoint. For the case z∗ = 0 
and u∗ = 0, the linear system has the form ż = Az + Bu with 

. 
(a,b) 

. 
(a,b) 

∂ƒ̃ (z, u) 
A := 

∂z
 . ∗ 

∂ƒ (z) 
= 

∂z 
.
z=z∗

 

∂ƒ̃ (z, u) 
B := 

∂u
 . ∗ = 

u=u∗
 

z=z 
u=u∗

 
z=z 

∂g(u) 

∂u   
.
u=u∗

 

L2 12 

 

3.3.3 Linearization 

 
To design a linear controller (such as the LQR controller), it is necessary to compute the 

linearization of a nonlinear system.  To obtain a linear system of the form >̇ = A> + Bu 

from a nonlinear system of the form >̇ = ƒ (>) + g(u), the Jacobian linearization can be used 

around a certain setpoint (>∗ , u∗ ). 

 

The linearized system will be used for the design of linear controllers and 

theoretical analysis only. For simulation, design of nonlinear controllers and 

training of neuro-controllers, the nonlinear model will be used. 

 

 
 

 

 

In the following, the linearization will be conducted for the one trailer model for the general 

case with >∗  = [ y∗ θ∗ θ∗  ], u∗  = t}n(δ∗ ).  Afterwards, the obtained linearization will 

be used to compute the explicit matrices A and B at one setpoint. 

   

 

A = 
∂ƒ (z) 

.
 

 
∂ƒ1 (z) 

∂z1 

=  ∂ƒ2 (z) 

 
∂ƒ1 (z) 

∂z2 
∂ƒ2 (z) 

 
∂ƒ1 (z) 

∂z3 
∂ƒ2(z) . 

∂z z=z∗
 ∂z1 

∂ƒ3 (z) 

∂z1 

∂z2 

∂ƒ3 (z) 

∂z2 

∂z3 

∂ƒ3 (z) 

∂z3 

.

  
 
z=z∗ 

 
 

(3.20) 
 

    
= 0 0 − 

v  
cos(θ∗ )  

 
 

0 0 v cos(θ∗ )  

12 2 12 2 

L2 12 
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.∂u 

 

 

L2 

· · 

L2 

L2 

2 

∂u 

 .  

 θ˙2  = 0 0 − 
v > +  

 ∂u 

= 0 . (3.21) 

L1 
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∂g1 (z) . 

 

 
  

  
0 .

 

 

  

 
0 

 

 

∂g(u) .  .    
∂g3 (z) . u=u∗ 

− 
v .

 
 

 

u=u∗ 

− 
v 

 
 

 

Now consider the important setpoint >∗ = [ y 0 0]T and u∗ = 0. The linear state-space 

equation >̇ = A> + Bu is given by: 

  
ẏ  

 
0 v 0   

 
 

  
0  

 

 

  

θ1̇2

 
0 0 

v   
 

− 
v 

 
 

 

The controllability analysis of the linearized system can be found in Appendix A.1.1. 

 

The values of y∗ and u∗ do not influence the linearized matrices A and B as 

linearization is independent of y and u. 

 

 
 

3.4 Model Behavior 

 
The derived models from Section 3.3 are nonlinear, as there are nonlinear functions, such 

as sin( ) and cos( ) in it. As there is only one control variable δ and more than one state 

to be controlled (even for most of the reduced state cases), the systems are underactu- 

ated. In addition, those robots have nonholonomic behavior, as they cannot move in any 

direction instantly and therefore requiring turns to move into certain directions. 

Considering the linearized system, the roots in the open loop can be obtained: 

s −v  0     
 

 

      

v det(sI − A) = det 0 s v       = s  − s 
= s2 s − 

v
 . (3.23) 

 L2 

0 0 s − 
v
 

 L2 L2 

 

Therefore, the behavior in backward motion (v > 0) is open loop unstable, as s1 = v > 0. 

This can be seen in Figure 3.4, as the angle θ12 converges to 0 in forward movement and 

grows even over 90◦ = π in the backward movement. 

If an angle between two bodies θij reaches 90◦ while driving backwards, the velocity in 

both directions vanishes as cos(θ12) = cos(90◦) = 0: 
 

ż = v cos(θ12) cos(θ2) = 0 

ẏ = v cos(θ12) sin(θ2) = 0 . 

 

(3.24) 

3 2 

L1 

u . (3.22) 0 L2 

L1 

0 = = ∂g2 (z) 
u=u∗ 

B = 
. 

∂u 

. 
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Figure 3.4: Open loop behavior for offset in θ12 

 

This situation is called jack-knife state, which makes the system hard to control. This is 

why it is aspired to avoid the jack-knife state. This becomes increasingly complex if there 

are several trailers, as then several angles θij can cause the jack-knife state. Figure 3.5 

illustrates several angles θ12 between truck and trailer. Note that (c) is the jack-knife state 

and (d) is impossible. 

 

(a) θ12 = 0◦ (b) θ12 = 45◦ (c) θ12 = 90◦ (d) θ12 = 135◦
 

Figure 3.5: Visualizations of different θ12 

Analyzing equation (3.14), it can be observed, that for θij with v > 0 to increase or de- 

crease, it is sufficient to decrease or increase δ, respectively1. This is, because the term 
v 

sin(θ12) only changes with θ12 (which should be changed), as v and L2 are constant. 
L2 

v
 

The second term L1  
t}n(δ) only changes with δ, which can be actively changed. As t}n( ) 

grows monotonously, δ has to be positive for θ12 to shrink and vice versa. Figure 3.6 

shows θ12 for v > 0 with δ = δmaz and δ = δmin, respectively. 

 

1.5 
 

1 
 

0.5 
 

0 
 

-0.5 
 

-1 
 

-1.5  
0 5 10 15 

time 

Figure 3.6: Reducing θ12 with δ 
 

 

1 As the sign changes for v < 0, the required sign for δ changes, too. 

v>0 
v<0 

    = max 

= min 

12
 

12
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˜

 

ƒ (>k, uk) dτ ≈ >k + ƒ (>k, uk)mt . 
= >k + 

input    : State > = [ z y θN θ12 θ23...], control input u = tan(δ), parameters 

p = [ L, v] = [ L1, L2, ..., v] and indicators reduced and noise with 

standard deviation σ 

output: Function value ƒunc 

1 Model: 

2 // compute f with given parameters 

3  ƒunc = ƒ (>, u, p) 

 
4 if reduced then 

5 // ignoring first entry 

6 ƒunc = ƒunc(2 : end) 

7 if noise then 

8 // adding noise 

9 ƒunc = ƒunc + σ ∗ randn(size(ƒunc)) 

10  return ƒunc 
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3.5 Computation 

 
To simulate the system >̇ = ƒ̃ (>, u), given an input u, the systems differential equations 

can be evaluated. Using a small timestep mt and integrating over the derivatives, the new 

states can be obtained. Let tk+1 = tk + mt  and note that ƒ̃ (>, u) is independent of time t 

 
>k+1 = >k + 

 
 

tk+1 

tk 

, mt 

˜
 

 

 

 
>̇(τ) dτ = >k + 

tk+1 

ƒ (>(τ), u(τ), τ) dτ 
tk 

˜ 

 

 

(3.25) 

 

To compute the new states for a timestep ttotal >> mt, the model can be evaluated several 

times, see Figure 3.7. 
 

Figure 3.7: Sampling with mt 

 

Many methods are known to solve the system with initial conditions >(t0) = >0 more 

precise than the given approximation and therefore, no further investigation is conducted 

on this topic. For completeness, Appendix A.1.2 presents another method. 

To simplify computation of the next states for the simulation, a compact function can be 

used1. The algorithm that implements this model including the reduced states and noise, 

is shown in Algorithm 1. Note that the function f is the ones derived in Section 3.3. 
 

Algorithm 1: Function to compute model related variables 
 

1 This way, changes to the model can be done easy and fast, as only one function has to be changed. 

0 
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3.6 Environment 

 
The robot is located in an environment. Let Et denote the environment at time t. The 

environment is a tuple consisting of the truck with its trailers O, information about the 

target state or trajectory htarget, information about objects or buildings B close to the 

robot and the time t 
 

Et := {Ot, htarget, B, t} with Ot := {N, >t, M, P, t} (3.26) 

and the robot itself being a tuple of the number of bodies N, the state >t with full state 

information, the model M, its parameters1 P and time t. 

The environment can be interpreted in interacting layers, each holding a certain part of 

the information. For visualization purposes, the operation area is surrounded by a grey 

frame and buildings are displayed in orange (Layer 1). Targets are shown with a grey 

truck or a grey dashed line, respectively (Layer 2). The robot has a simplified visualization 

consisting of the truck in blue and the trailer in red. The path that the robot already moved 

is shown in an dashed orange line (Layer 3). The layers are shown in Figure 3.8. 

 

Layer 3: Truck 

 
Layer 2: Target 

 
Layer 1: Objects 

 
Figure 3.8: Visualizations of different layers of the environment 

 

Two simple environments, as generated by the framework, are shown in Figure 3.9. Figure 

3.9a has one building and a fixed target state. Figure 3.9b represents an environment with 

target trajectory and the desired state at time t is shown. 
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(a) Sample environment with target state 
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(b) Sample environment with target trajectory 

Figure 3.9: Visualizations of different environments with truck-trailer 

 

1 Namely the velocity v, the steering angle δ, the maximal steering angle δmaz and the lengths L = [ L1, L2, ...]. 
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4 Control Strategy 

 
For the control of autonomous multibody  vehicles,  a  strategy  needs  to  be  developed. 

This includes pathplanning, direction switching, control of the steering  angle  and  jack- 

knife avoidance. 

The overall control strategy is shown in Figure 4.1. The given reference signal r is used 

to compute a desired state >∗ for the controller using a pathplanning algorithm. The 

desired state might change over time. The switching module determines which controller 

will be used to compute the control variable, e.g. if the truck should move forwards or 

backwards. Next, the chosen controller computes the control signal u based on the desired 

state and the measurement of the current state >. Lastly, the jack-knife avoidance module 

transforms the control signal to ũ such that it cannot lead to a jack-knife position. 
 

Figure 4.1: Control strategy 

 

The switching module, the controller and avoid jack-knife module need their 

respective parameters. For example, the controller module has precalcu- 

lated parameters for all possible types of controllers. 

 

 
4.1 Jack-Knife Avoidance 

 
If a truck-trailer reaches the jack-knife state, it is hard to control, especially as the lin- 

earized model is only valid around the linearization point. To avoid the jack-knife position, 

the concept proposed in [24] is used. In terms of jack-knife avoidance, the angle between 

the bodies, i.e. θ12 is important. 

As mentioned in Section 3.4, the maximum or minimum steering angle is effective to 

reduce a low or high θ12, respectively. To smooth the transition between the steering 

angle (determined by the controller for θ12 close1 to 0) and the maximum or minimum 

1 How close is determined by the fuzzy membership function. 
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steering angle, a fuzzy membership function is introduced, see Figure 4.21. 
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(a) Type A 
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(b) Type B 

Figure 4.2: Membership functions 

 

Mathematically, they have the form 

θy,0    , if  θ12  < θz,0 

ƒA(θ12 , θz,0 , θz,1 , θy,0 , θy,1 ) := (θ12 − θz,0 ) · 
θy,1 −θy,0 

+ θy,0 , if θz,0 < θ12 < θz,1 

 

 

 
(4.1) 

θz,1 − θz,0  
θy,1 , if θ12 > θz,1 

ƒA(θ12 , θz,0 , θz,1 , θy,1 , θy,0 )  

 
ƒB(θ12 , θz,0 , θz,1 , θy,0 , θy,1 ) := 

 

ƒA(θ12 , θz,0 , θz,1 , θy,0 , θy,1 )  , if θ12 < θz,1 

ƒA(θ12 , θz,1 , 2θz,1 − θz,0 , θy,1 , θy,0 ) , if θ12 > θz,1 

ƒA(θ12 , θz,1 , 2θz,1 − θz,0 , θy,0 , θy,1 ) 

(4.2) 

 

with ƒA : R R and ƒB : R R3. Note that θz,0, θz,1, θy,0 and θy,1 are parameters of the 

function and a function of type B consists of several separate fuzzy functions of type A. 

The membership functions determine y-value(s) for any point on the x-axis. Note that 

functions of type B have more than one, i.e. three y-values associated with any x-value. 

Example:  In Figure 4.2a, the value for θ12 = θz,0 is ƒA(θz,0, θz,0, θz,1, θy,1, θy,0) = θy,1. 

In Figure 4.2b, the values for θ12 = θz,0 are ƒB(θz,0, θz,0, θz,1, θy,1, θy,0) = [ θy,1 θy,0 θy,0]T . 

Let the membership function for the jack-knife avoidance be ƒm(θ12) := ƒB(θ12, − 
π , 0, 0, 1). 

Then the control signal u will be transformed by 

ũ = ƒm(θ12)T · [ δmin u δmaz]T  = ƒm,1(θ12) δmin + ƒm,2(θ12) u + ƒm,3(θ12) δmaz . (4.3) 

 

 

1 Fuzzy functions can be nonlinear, e.g. S-shaped as well. 
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Remarks 

• For a target state >̃∗ /= 0 and ũ∗ /= 0, a simple transformation >̃ := > − >̃∗  and 

ũ := u − ũ∗  leads to a system with the required properties: >̃̇ = A>̃ + Bũ. 

Proof:    Let ũ = −K >̃ and it follows >̃̇ = (A − BK)>̃ with the same K  as before. 

• The control variable can then be computed as 

u = ũ + ũ∗ = −K >̃ + ũ∗ = −K(z − >̃∗) + ũ∗ . 

• To turn the continuous system into a discrete system, the approach from Sec- 

tion 3.5 with a small mt can be used. 

 

At least one component of ƒm is zero. In the case of θ12 = 0, Equation (4.3) 

is reduced to ũ = u as ƒm(θ12)T  = ƒm(0)T  = [ 0 1 0]. 

4.2 Controller 
 

Consider the linear system1 

>̇ = A> + Bu (4.4) 

with given matrices A Rn n and B Rn. The state is > Rn and the control input u R. 

Let the target state be >∗ = 0n and u∗ = 0. 

Finding a controller can be reduced to the search for a control law to determine the control 

input u. A simple controller for state-space systems has the form 

Xn 

  
 

with control gain K R1 n. In the closed loop system, the dynamics of the state are given 

by 

>̇ = A> + Bu = A> + B(−K>) = (A − BK)> . (4.6) 

The system is stable, if and only if 
 

eig(A − BK) ⊆ C− . (4.7) 

Therefore, the control gain K can be determined such that the eigenvalues have a specified 

position in the complex plane [34]. 

A fuzzy control approach is presented in Appendix A.1.3. 

 

 

 

 

 

1 Note that > and its derivatives are functions of time, but for improved readability, the arguments are left out 

unless to underline the time dependence. 

kizi (4.5) u = −K> = − 
i=1 
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Optimal Control Theory 

As described in [65], an optimal controller can be designed with the quadratic cost function 

J(z0, u) := z(t)  Qz(t) + u(t)  u(t)dt 

, ∞ 
T T (4.8) 

0 

with Q ∈ Rn n as z ∈ Rn and u ∈ R. To minimize the cost function J, the smallest real 

has to be found.  Smallest meaning that zT Pz  ≥ zT P− z, ∀z  and for every real symmetric 

symmetric positive semidefinite solution of the Algebraic Riccati Equation (ARE), called P− , 

P ≥ 0 satisfying the ARE. The ARE has the form ATP + PA − PBBTP + Q = 0. 

Then for the minimum J (z   ) := inf{J(z   , u) |  u  ∈ R} = z   P   z    holds.  The respective min 0 0 
T   − 

0 

optimal control law using P− is u = −BTP− z = −K z . 
0 

 

4.2.1 Linear Quadratic Optimal Control (LQR) 
 

 

 

Applied to the truck-trailer system with weight matrix Q 

 

LQR = 
128   0 0 

0   100 0 
0 0   3000 

i
, the control 

gain KLQR can be computed. The resulting control law for v < 0 is given by 

u = −KLQR.v<0 > = −[ 11.3 137.7 − 55.9] > = −11.3z1 − 137.7z2 + 55.9z3 , (4.9) 

while for v > 0, the result is KLQR,v>0 = [  11.3 137.7 55.3]. Figure 4.3 shows the step 

response for the target point [ 1 0 0]T , starting from [ 0 0 0]T with v < 0. 
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Figure 4.3: Step response of LQR controller for target point [ 1 0 0]T 

 
 

The dynamical system (A,B), and Q determine P− and therefore KLQR differs 

for different parameter values and for different weight matrices Q. 

2 
12

 
y 
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≤ 

min{J = >
N 

P >N + (>
k  

Q>k + u
k  

R uk)} (4.11) 
u 

k=0 

 

4.2.2 Model Predictive Control (MPC) 
 

The general idea of Model Predictive Control (MPC) is to transform the control into an op- 

timization problem to compute the optimal control input within a control horizon tc . The 

optimization problem can take current states, limitations and constraints into account. 

Therefore, the future states are predicted for the prediction horizon tp using a mathemat- 

ical model of the dynamics [41]. The control horizon can be equal the prediction horizon, 

as shown in the visualization of the overall concept in Figure 4.4. If tc < tp, the last control 

input can be used for all following timesteps, such that without loss of generality 

tc = tp = N · mt (4.10) 

with mt being the sampling time and N the resulting number of intervals for the optimiza- 

tion. 
 

Figure 4.4: Concept of the MPC control 

Reference Trajectory (red), Predicted Output (blue), Measured Output (dark 
blue), Computed Control Input (orange) and Past Control Input (grey) 

 

The optimization problem can be formulated as follows 
 

T 
NX−1 

T T
 

with equality constraints G(>, u) = 0 and inequality constraints H(>, u) 0 with limits for 

inputs and states 
 

umin ≤ uk ≤ umaz (4.12) 

>min ≤ >k ≤ >maz . (4.13) 
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Remarks 

• The dynamics of the system are part of the equality constraints. 

• As the discrete values >k and uk are required, a discrete model has to be used. 

• The optimization problem can be solved by a suitable method, as available e.g. 

in MATLAB or presented in Appendix A.1.4, to find the best control values u. 

• The problem will be solved in every sampling step, but only the first control 
variable u0 will be used as input to the system. 

 

The step responses for one MPC controller using a linear and another using a nonlinear 

model are shown in Figure 4.5. The linear MPC (lMPC) has tc = 6s, while the nonlinear MPC 

(nMPC) has tc = 1s. Both controllers use Q MPC = 
0.1  0 0 
0  0.1  0 
0 0  0.1 

and tp = 15s with mt = 0.5s. 

It can be seen that the nMPC performs better overall, while the lMPC is slightly faster for 

the cost of a lot of overshoot. In terms of computing time for the 90 seconds simulations, 

both MPCs are slow, while the nMPC controller takes the most time (lMPC: 28.8s; nMPC: 

176.3s). 
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Figure 4.5: Step response of MPC controller for target point [ 1 0 0]T 

linear MPC (blue) and nonlinear MPC (orange) 
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Separating Axis Theorem 

Convex polygons do not intersect with each other if and only if they can be separated by a 
straight line, i.e. all vertices of the polygons are on different sides of the line. Furthermore, 
if the polygons do not overlap, one of the edges will be such a separating axis, see Figure 
1. The separating axis is shown in green. None, one or several separating axis may exist. 

 

 

 

 

 

 

 

 

 

Illustration 1: Visualization of the SAT: Separation of two rectangles 

Therefore, it can be checked if any of the edges separates the two polygons. The sign of 
the dot product can be used to check on which side of an axis a vertice is. If not all vertices 
of one polygon are on the same side, then the edge does not separate the shapes. 

 

4.3 Switching between Controllers 

 
In this work, switching between controllers refers to the changing of the driving direction 

and the respective change of control parameters. Changing the controller based on the 

velocity was done in [38]. One can think about changing the controller itself, e.g. change 

from a MPC controller to a neuro-controller, as this might improve performance for certain 

situations. For example, a certain controller might be better for high accuracy parking 

maneuver, while another is better in avoiding obstacles or for energy optimal navigation. 

 
4.3.1 Collision Detection 

 

If the signal of the current controller results in a collision, the direction should be switched. 

This is why collisions have to be detected. For the simulations it is sufficient to detect 

only real collisions1. As described in Chapter 3, the model consists of one rectangle per 

body, i.e. truck and the trailers. The environment is assumed to consist only of convex 

polygonal shapes2. For an efficient implementation of collision detection, the Separating 

Axis Theorem (SAT) can be used. 
 

 

An implementation of the SAT can be found in Appendix A.1.5. 

1 In reality, as sensor measurements are noisy, there should be a safety margin to avoid collisions that result 
from wrong measurements. 

2 Non polygonal shapes can be placed inside infinitesimally larger polygonal objects [13]. 
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4.3.2 Cost Function 
 

A cost function J is a function that evaluates a state or a situation2. To do this, the current 

state of the robot >t and the target state >target can be used to compute the error 

et := >t − >target . (4.14) 

Then either the error itself can be used as a cost function, e.g. Jt := eTet. Another approach t 

is to use a positive definite symmetric3 weight matrix R = RT > 0, which can be used to 

transform the error, such that 

Jt := eT R et. 
t 

(4.15) 

The value of the cost function is then used to determine the best point in time to switch 

the controllers. 

 

Switching to avoid Collisions (switching type 1) 
 

First, if a collision in the next step is detected, then a change of the direction will avoid 

that collision. Therefore, the driving direction will be changed if a collision is detected. 

Second, if a cost function that describes the progress of the control has certain properties, 

the direction should be changed to improve performance. This is, when the cost function 

indicates that the robot is driving away from the target1. 
 

 

Aside from collision avoidance, a cost function is used to determine switches. The overall 

logic is visualized in Figure 4.6 and explained afterwards. 
 

Figure 4.6: Logic used to determine switches 

 

 

 

 

 
 

1 This is especially relevant for trajectory following, as usually there is a correct direction to follow the trajectory 

and going in the other direction does not make sense. 
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Reaching the Target (stopping) 
 

The first, straightforward case in terms of the cost function is, when the system reached 
its target. That is the case, if the value of the cost function is at or below a threshold S ≥ 0, 

S ∈ R: 

Jt ≤ S ⇒ v = 0 . (4.16) 

 

 

The condition S = 0 is very restrictive, as it might be impossible to reach the 

target state exactly, e.g. because of noise. 

If the velocity is set to zero, the resulting controller is the one that always 

returns u = 0, as the system should not move anymore. 

 
Trajectory Direction (switching type 2) 

 

The driving direction is encoded in the given trajectory by order of the points, i.e. the 

second point should be targeted after the first point. This is the truck is moving in the 

wrong direction if previous points become closer to the truck during driving. Then, the 

direction is changed. 

 

Instant Switching (switching type 3) 
 

If the cost function increases in the first few steps of the simulation, this suggests that the 

truck is moving away from the target. In principle, this might be the right thing to do, but 

in other cases it is better to move in the other direction. Since it cannot be known if the 

cost function will decrease in the other direction, but there is a high chance of it doing so, 

the direction will be changed in such cases. 

 

Dynamic Overshooting (switching type 4) 
 

Next, the driving direction should be changed if the current configuration does not improve 

the cost over a certain period of time. Therefore, the minimum costs Jmin(t, t̃) since time t̃ 

until time t  with t̃ ≤ t  are introduced: 

Jmin(t, ̃t) :=  min Jτ . (4.17) 
t̃≤τ≤t 

Let in the following t̃  denote the time since the last switch.  If now the costs rise much 

higher than the minimum costs since the last switch, then the system moves away from 

the target - potentially in the wrong direction - and the controller should switch1 

Jmin(t, ̃t) ≤ Jt − ρ1 ⇒ v = −v (4.18) 

with ρ1    R being a hysteresis coefficient, e.g.   allowing the system to turn.   This is, 

because of the nonholonomic system properties, as the truck is not able to change its 

angle instantly. 

1 The driving direction changes, if and only if v = −v. 
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time 

Figure 4.7: Cost function example: with switch (orange) and without switch (blue) 

The dashed blue curve in Figure 4.7 shows how the cost function from equation (4.15) with 

 
 

0 1 0 0 
R = 

0 0 25 0 

0 0 0 0 

 

(4.19) 

starting from [ 20, 0,     1, 0.1]T and targeting the origin behaves. In this case, no switching 

is done. Note that the third state (θ2) has a larger factor, while the fourth state (θ12) is 

ignored entirely. This is, because there should not be a direction change because of the 

angle between truck and trailer, as it might be required for a turn. The third state needs a 

larger multiplier to compensate that its values in rad are smaller than the position of the 

truck in meters. 

The orange curve in Figure 4.7 illustrates the influence on the cost function with a switch 

starting according to Equation (4.18) with ρ1 = 3000. Note that by the switching, the 

target could be reached. 

 

Static Overshooting (switching type 5) 
 

In certain situations, it can be useful to change the direction dependent on the overall 

minimum costs as well. This is why as second condition for the situation that the system 

moves away from the target is introduced: 

Jmin(t, ̃t) ≤ Jt − Jmin(t, 0) − ρ2 ⇒ v = −v (4.20) 

with Jmin(t, 0) begin the overall minimum costs and another constant ρ2 R, usually 

smaller than ρ1. 

2000 

1000 J 
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4.4 Pathplanning 

 
Let r be the reference or the target state. In case of a non-moving target state, r is one 

state of the robot that should be reached. In case of a target trajectory, the reference is a 

function of points to be followed. This function is called path. 

To follow paths, such as lines and nonlinear functions, a method is needed to compute an 

instantaneous desired state (IDS) >∗ that is used to compute the control input u. Let in 

the following >∗ = [ z∗ y∗ θ∗ θ∗ ], the desired state for a truck with one trailer. The 

value of >∗ changes over time unless it is identical with the reference or target state. 

There are many ways to compute >∗ for all kinds of function types, e.g. linear functions, 

circles and trigonometric functions. In the following, a generic algorithm is derived, that 

can find or approximate the desired position for more general types of trajectories. 

 

Target State 
 

In case of a parking position or a simple target state with θ2 = 0, this state can be used 

as desired position in any step. As the state not only consists of the position, but also of 

the orientation, it may be necessary to plan a straight line to the desired position. The line 

then has the inclination of the desired angle θ∗ and leads to the target state r, see Figure 

4.8. 
 

Figure 4.8: Pathplanning for target states 
 

A general-shape trajectory ƒ is given by the equation: 

 

y = ƒ (z) . (4.21) 

If the reference is given as a trajectory, a method to determine the desired state in every 

step is required. In the following such methods will be derived. 
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Line of sight method 

For trajectories that satisfy the given conditions, the line of sight method (LOS), as pre- 

sented in [24], can be used. Figure 4.9 illustrates the constellation, with > being the robots 

current state and >∗ representing the robots instantaneous desired state (IDS) given by 

its coordinates (z∗ , y∗ ), the orientation θ∗ and the angle θ∗ . 
2 12 

 

Figure 4.9: Trajectory following using the line of sight method 

 

The conditions imposed on the trajectory ƒ (z) are: 

1. It is well-defined for every x-coordinate that the mobile robot moves by. 

2. It is differentiable up to the third derivative: ƒ ’(z), ƒ ’’(z) and ƒ ’’’(z). 

Algorithm: 

Step 1: Set z∗ := z 

Step 2: Compute y∗ = ƒ (z∗ ) 

Step 3: Compute the desired orientation as the inclination angle of f at (z∗ , y∗ ): 

θ∗ = arctan(ƒ ’(z∗ )) . 

Step 4: Using the models equation from Section 3.3 and differentiating θ∗, one obtains: 
 

∗   = arctan(−L2 ƒ ’’(z) cos3 (θ2)) . 
 

Step 5: Differentiating again, the desired steering angle δ∗ can be computed with respect 

to the models equations: 

δ∗ = arctan(L1 L2 ƒ ’’’(z∗ ) cos4 (θ∗ ) cos3 (θ∗  ) + L1 sin(θ∗  )(1 − 1.5 t}n(θ∗ ) cos(2θ∗  ))) . 

 

 

This is only an approximation, as the projection onto the x axis (as done by 

step 1) is not necessarily the closest point on the trajectory. 

θ 
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Extended Perpendicular Desired Position Method (EPDP) 
 

The main drawbacks of the line of sight method are the approximation of the x value 

in step 1 and the resulting conditions on the target trajectory, especially that ƒ  has to 

be well-defined for every x. This is also relevant for trajectories that are jumping in the y 

coordinate. Furthermore, both conditions do not allow trajectories as shown in Figure 4.10. 

The approximation error is visualized in Figure 4.11. 
 

Figure 4.10: Complex trajectory Figure 4.11: Approximation error 

 

This is why a more generic method is aspired. As proposed in [24], the perpendicular 

desired position method can be used. This method is presented for linear functions and 

circles only, which results in restrictions for the target trajectory ƒ 1. Furthermore, as dis- 

cussed by the author, the method is only applicable when the intersection point of the 

perpendicular line between point and trajectory is unique and its computation is reason- 

able. 

To improve the computation of the desired state, the extended perpendicular desired  po- 

sition method (EPDP) is derived. First, the desired position P∗ := (z∗ , y∗ ) is computed by 

a minimum distance optimization between the current position P := (z, y) and the target 

trajectory ƒ . This resolves not only the condition of a well-defined trajectory, but also en- 

ables the handling of general-shaped functions, instead of just certain types of functions. 

Furthermore, the steps to compute the desired angles, are provided in a more general 

manner. 

Algorithm: 

Step 1:  The distance d between an arbitrary point (z, y) and a point on the trajectory 

(zt, yt) = (zt, ƒ (zt)) can be computed by 

d(z, y, zt, yt ) := 
,

(z − zt)2 + (y − yt)2 = 
,

(z − zt)2 + (y − ƒ (zt)2  . 

To find the desired point P∗ on ƒ with minimum distance to P, a minimization over the 

trajectory can be conducted to obtain the minimum distance dmin := minzt d(z, y, zt, ƒ (zt)) 

and thereby the desired point 

z∗ := arg min 
,

(z − zt)2 + (y − ƒ (zt))2 . 

 

1 There are different notations for the target trajectory. ƒ is related to the mathematical function and r to the 

target object. 
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sin(θ∗ ) − t}n(δ∗) ⇔ δ∗ = arctan 
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Step 2: Compute y∗ := ƒ (z∗ ). 

Step 3: The last trailer, here the only trailer, should follow the angle of the tangent of the 

trajectory at (z∗ , y∗ ). The tangential angle can be computed using the derivative of ƒ : 

θ∗ = arctan(ƒ ’(z∗)) . 

 

Step 4: Using the equation of the truck-trailer model, one can obtain θ∗ by 
 

θ̇∗ = − 
v

 sin(θ∗ ) ⇔ θ∗ = arcsin(− 
L2  

θ̇∗ ) . 

 

Step 5: Again with the models equation, the desired steering angle δ∗ can be computed 

by: 

v v 
  

( v   sin(θ∗  ) − θ̇∗  ) L2 
!

 

  
 

Remarks 

• As the steering angle δ is limited, one has to make sure that δ∗ is limited, too. 

• The values of θ̇∗  and θ̇∗ can be computed by step 3 and step 4, respectively. 
2 12 

• As sin(·) : R → [ −1, 1], appropriate means have to ensure that (−
 L2 θ˙∗ ) ∈ 

[ −1, 1]. 

• For computation, the trajectory might be given in a sampled form or as set of 

two-dimensional points describing the desired path: 

 

ƒs := {(z1, y1), (z2, y2), ..., (zN, yN)} . 

 
• For efficient computation, step 1 can be simplified by 

z∗ := minzi ∈ƒs d(z, y, zi, ƒ (zi)). 

• The derivatives can be computed by numerical approximation (forward and 
backward differentiation) with a small h ∈ R: 

ƒ ’(z) ≈ 
ƒ (z + h) − ƒ (z) 

≈ 
ƒ (z) − ƒ (z − h) 

.
 

• The method can be generalized for N-bodies as well. This can be done in a 

straightforward way by inserting further steps to compute θ23, ... . It should 

be noted that after the calculation of θN, the next value to be computed is the 

angle between trailer N-1 and N-2: θ(N−2)(N−1). Afterwards, all the preceding 

angles can be computed, as the model is in a chained form. However, the 

algorithm will not be presented here, but the 2-trailer case can be found in the 

implementation files. 

L1 L2 θ ̇ ∗ 
12 

= . 
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4.5 Stability Analysis 

 
It has been shown in previous works that there are stable controllers for the truck-trailer 

system [31]. For the practical application, stability1 alone is not sufficient. It is rather im- 

portant for which environment around the target the controller converges. In addition, the 

convergence should be as fast as possible, while demonstrating a reasonable behavior2. 

To analyze the stability in a practical way, a structured approach will be used. 

First, the behavior for a single target state will be analyzed. Therefore, the convergence 

of the system with initial states close to the target state will be investigated. Next, to 

generalize the findings from this investigations, a study with many initial conditions will 

be conducted, showing an empirical approximation of the area of stability. Third, it will 

be shown how the area of stability can be extended, such that it is sufficient to design 

controllers for a small area around the origin. Finally, research on the behavior for pathfol- 

lowing will be done. It will be shown how the system behaves for different types of paths, 

such as linear or nonlinear functions. 

 

Convergence 
 

Figure 4.12 shows the convergence to the origin from various initial conditions for the LQR 

controller, the RL agent3 and the nonlinear MPC. The initial conditions were chosen ran- 

domly from a quadratic box with side length 4 around the start position. The convergence 

behavior shows that the controllers are able to reach the origin. Note that the y-axis with 

z = 0 is always reached, but the exact target position is missed from time to time with 

certain initial conditions. This is because no switching was used in this case. 

 
 
 

40 40 40 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 

 
 

-40 0 
x [m] 

(a) LQR from (-40, 25, π , 0) 

 

-40 0 
x [m] 

(b) RL from (-40, 20, − 
π 
, 0) 

 

-40 0 
x [m] 

(c) nMPC from (-30, 10, 0, 0) 

Figure 4.12: Visualization of the convergence behavior 

 

 

 

 

 
 

1 Stability in the sense, that the robot eventually reaches the target. 

2 This is especially important for autonomous driving applications, as there will be other vehicles and humans, 
that have to trust the autonomous controller. 

3 Refer to Chapter 5.3.1. 
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How to extend the area of stability 

The area of stability can be extended for any controller that is stable in an area with 

by 

|y| ≤ dstab, dstab ∈ R+ around the origin. By transforming the y-position for the controller 

y = 
y
 

, if y < dstab 

 
d stab , if y > dstab 

with e.g. dstab = 40. This way, initial points farther away from the origin are stable as well. 

 

Area of Stability 
 

To visualize the area of stability, an experiment with 1000 runs was conducted with the 

LQR controller. To always reach the desired target position, switching conditions, as intro- 

duced in Section 4.3, are used. The performance of the entire system in different scenarios 

is analyzed in Chapter 6. The results can be seen in Figure 4.13. The red points repre- 

sent an initial position that did not lead to a successful run, while green points indicate a 

successful run. 

 

150 

 
100 

 
50 

 
0 

 
-50 

 
-100 

 
-150 

-150 -100 -50 0 50 100 150 
x [m] 

Figure 4.13: Area of stability by sampling initial points with θ12 ∈ (− 
π , π ) and θ2 ∈ (−π, π) 

In this setting, the stability of the controller depends primarily on the distance to the 

target. In detail, if the initial point has a y-coordinate larger than some value or from 

another point of view the initial position has a large y-distance to the target, the system 

becomes unstable. Performance for positive initial x-values is better than for negative 

ones. 

 

 

This is the reason why the stability need not be investigated further, and it is sufficient to 

design a controller that is stable in an area with y < dstab around the origin. Note that 

this is only valid for object-free environments without noise. 

y 
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Pathfollowing Behavior 
 

Given a controller is stable around the origin, the same controller can be used to follow a 

given trajectory by applying the approach described in Section 4.4. Figure 4.14 shows the 

behavior for several trajectory-types, initial conditions and controllers. The initial positions 

are sampled from a square box around a given start position. It can be observed that both, 

the LQR and RL controller, are able to follow the linear, nonlinear and non-differentiable 

trajectory in the proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

linear nonlinear non differentiable 
 

Figure 4.14: Convergence behavior for pathfollowing 

 
 

A sufficient pathfollowing behavior leads to another way extending the area 

of stability. This is to plan a trajectory, e.g. a line, from the robots current 

position to the target position or close to it to ensure convergence by first 

following the line and afterwards converge to the target, when the robot is 

close to it. 

R
L 
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5 Control with Artificial Intelligence 

 
For the control of autonomous multibody vehicles using artificial intelligence, neural 

networks can be used to compute the control signal. Several network types and training 

approaches are known to handle this task. 

This chapter deals with the application of artificial intelligence, especially machine learn- 

ing, for the control of dynamical systems. More precisely, the controller from Chapter 4 

that computes the control variable will be implemented using neural networks. 

Therefore, the overall structure changes, as there will be a training  phase  and a produc- 

tion phase, using parameters from memory determined in training. During training, the 

structure will look as shown in Figure 5.1. 
 

Figure 5.1: Structure in the training phase of the neuro-controller 

 

5.1 Neural Networks 

Artificial Neural Networks (ANN) consist of structured connections between artificial neu- 

rons. Those are technical simplifications of biological neurons from the human brain. The 

networks can build structures, such as feedforward or recurrent networks. They are trained 

to improve their performance. Therefore, the weights between neurons in different layers 

are adapted. The network should generalize after the training, so the mode can work even 

for unseen situations. This can be done using labeled training data or by interacting with 

the environment and providing a reward, just to name two examples. 

In general, a neural network produces an input-output mapping. The complexity of the 

mapping depends on the activation functions, the number of layers and neurons in each 

layer as well as the extent and quality of training. A neural network is called a deep neural 

network if it has more than one hidden layer. The network is denoted as 

 

u = Ω(>, ξ) (5.1) 

 

with u being the output of Ω, ξ representing the parameters, such as weights and struc- 

ture, and > is the input to the network. Let in the following > ∈ R3 and u ∈ R. 
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5.1.1 Structure 

 
So-called Multilayer Perceptrons (MLP) have an input layer, hidden layers and an output 

layer. The number of neurons in the input and output layer depends on the dimensionality 

of the input data >(i) and output data u(i), respectively. The required number of hidden 

layers and the number of neurons in each layer depends on the complexity of the under- 

laying function that should be approximated. Those are parameters that can be tuned to 

improve performance of the network. The connection from neuron i in layer l to neuron j 

in layer l + 1 has weight w[l] ∈ R. 

Any function can be approximated as precisely as desired with one hidden layer of suffi- 

cient size [66]. This requires a sufficient amount of training data. In certain situations it 

can be more efficient to use more than one hidden layer, as the number of neurons per 

layer can be reduced and the training is more effective in terms of the number of train- 

ing examples. Let H = [ H1, H2, ...] , Hl N+ be the number of neurons in the respective 

hidden layer l. The overall structure of a neural network is shown in Figure 5.2. 

 

Figure 5.2: Visualization of a MLP with one hidden layer 

 

To improve the understanding of the structure of neural networks, and to simply display 

larger networks, only one neuron per layer will be shown. Therefore, the structure shown 

in Figure 5.3 is equivalent to Figure 5.2. Note that the number above the neuron indicates 

the number of neurons in the respective layer. In addition, the weights between layer l 

and l + 1 will be noted as w[ l]    RHl Hl+1 , l    N+ to simplify handling of more than one 

hidden layer. 

 

Figure 5.3: Simplified visualization of a MLP with one hidden layer 
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mi := wij · mj . (5.2) 

5.1 Neural Networks Masterthesis Benedikt Roder 

 

A neuron computes the dot product of the incoming values. For neuron i in layer l, the 

activation m[l] is given by 

[ l] 
XHl 

[ l−1] [ l−1] 

 

 

An activation function ƒ is applied afterwards: n[l] = ƒ (m[l] ). Common activation functions 
i i 

are the linear function, the rectified linear unit (ReLU), the gaussian function and the tanh 

function (sigmoid). Simplified neurons are visualized in Figure 5.4. Most of the time, the 

activation function of hidden layers is chosen to be relu or tanh functions while the output 

layer has a linear or tanh function. 

 

    

(a) Linear activation: 
ƒ (z) = z 

(b) ReLU activation: 

ƒ (z) = maz(0, z) 

(c) Gaussian activation: 

ƒ (z) = e− z2
 

(d) Tanh activation: 

ƒ (z) =    2  − 1 

Figure 5.4: Visualizations neurons with different activation functions 

 

 
5.1.2 Training 

 
After fixing a structure of a neural network, the parameters are initialized randomly. At 

this point, the network is able to make predictions with its parameters, but as they are 

initialized randomly, the result is expected to be random as well. Using an optimization 

approach, such as gradient descent, the network can adapt its parameters to improve its 

performance. The optimization is done by presenting data to the network.1 By carefully 

choosing the data and validating the trained network, it can then generalize to new data. 

After the training, outputs can be computed for unknown data points [55]. 

 
Data 

 

Most classical approaches use so-called supervised learning. This is, using labeled data 

to train the network to minimize the error on a given dataset. For supervised learning 

not only the input data with N N samples >(input) = [ >(0) , >(1) , ..., >(N)], but also the 

respective output data u(i), i = 0, 1, ..., N are known for training. 

This is why in general a sufficiently large dataset is required. The data can be gener- 

ated artificially, e.g. by a mathematical model. However, this has the disadvantage of 

patterns not matching with reality. Real data more accurately represents the reality, in- 

cluding noise, e.g. by a sensor. The quality of the datasets has a huge influence on the 

performance. 

In case of reinforcement learning, data is obtained by the interaction with the environment 

by observing rewards, as well as trial and error, see Section 5.3. 

 

1 The data should be scaled (e.g. to [ 0, 1]) and shuffled. 

j=1 
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Algorithm 
 

The training can be done by the Stochastic Gradient Descent (SGD) algorithm. The algo- 

rithm consists out of three steps to adapt the weights. Without loss of generality, let wij 

represent a general weight in any layer. Let u∗ be the teacher, this is the label for the 

input >ρ, ρ ∈ {1, 2, ..., N}. 

Step 1: Select a random sample ρ and compute the error between the output of the 

network uρ = Ω(>ρ, ξ) and the respective label u∗ 

eρ := uρ − u∗ . (5.3) 
 

Step 2: Compute the loss Jρ and its derivative ∂Jρ using error eρ. 

Step 3: The update for the weight wij with learnrate η ∈ R is then given by 

∂Jρ 

wij ← wij − η
∂wij  

. (5.4) 

To complete one epoch, steps 1-3 are repeated for all data points. To obtain a well-trained 

network, usually several epochs are required. 

 

Evaluation 
 

As stated before, some measure for the performance of the network, such as a cost func- 

tion J or a reward function R is used for training1. When learning from data, the cost 

function is based on the labels (teachers) or the error between labels and output of the 

neural network. 

A widely used cost function is the Mean Squared Error (MSE). It computes the sum of the 

square of the distance of the network output of all relevant points uk = Ω(>k, ξ) to its 

teachers u∗, for k = 1, ..., N:2 

The derivative ∂JMSE for the gradient descent algorithm can be obtained straightforward by 
ij 

chainrule [55] 
N ∗ N 

∂JMSE  
= 

X 
(u

 
 

 
− u∗ )T 

∂(uk − u
k 
) 

= 
X 

(u
 

 

∗ T 
∂uk 

− u ) , (5.5) 

while ∂uk 
ij 

depends on the position of wij in the network. 

 

 

 

 

 

 

 
 

1 Will be covered later. 

2 Note that N = 1 for stochastic gradient descent, while N > 1 for (mini) batch gradient descent. 

k=1 k=1 

k k 
∂wij 
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5.2 Neuro-Controller 

 
The design of a neuro-controller starts with the design of a neural network uk = Ω(>k, ξ) to 

determine the action uk based on the state >k  at step k. Goal of the controller is to track 

a desired setpoint >∗. Figure 5.5 shows the block diagram for the closed loop system with 

a neuro-controller. 
 

Figure 5.5: Structure of the neuro-controller 

The inputs of the neural network can be the state > of the truck-trailer system with training 

points 

 y(0)   
 

y(1)   
 
y(N)  

>(input) =  
θ

(0) 

 
 

 ,  θ
(1) 

 
 

 , ...,  
θ

(N) 

 
 

 
. (5.6) 

 

2 

(0) 
12 

2 

(1) 
12 

2 

(N) 
12 

 

If supervised learning is applied, the labels are the respective control variables, e.g. de- 
termined by another control algorithm 

u(input) = {u(0), u(1), ..., u(N)} . (5.7) 

 

The steps from network design to the deployment of the model are visualized in Figure 5.6. 

Note that the network architecture can change during the training and validation process. 

 

 

Figure 5.6: Visualization of the development process for neural networks 
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Training Approach 
 

As the setup is fixed, it has to be determined how to best train the network and which 

network architecture is the most suitable. As part of the training process, the tuning of 

hyperparameters, such as the learning rate η and the number of neurons, is crucial. In the 

following, four ways to train a deep neural network to control a dynamical system, such 

as the truck-trailer, are presented: 

1.) A neural network can imitate a controller, such as designed in Chapter 4. The advan- 

tages are the generalization and possibly the faster computation. 

Therefore, a dataset consisting of 400 trajectories with 250 points each, so 100000 points, 

was generated with the respective control inputs, computed by a linear quadratic optimal 

controller. A network with one hidden layer and tanh activation function as well as linear 

output neurons was then trained with the Levenberg-Marquardt algorithm and validated. 

By trial and error, the number of neurons H1 = 50 was found. The result is not improved 

by a larger number of neurons, so the additional effort for training and the unnecessary 

degrees of freedom are not needed. 

After 265 iterations, the training was completed with a MSE of 0.000280. Figure 5.7 shows 

the training progress. 

 
0.2 

 
 
 
 
 

0.1 
 
 
 
 
 
 

0 100 200 
Epoch 

Figure 5.7: Learning curve (MSE per epoch) of the neuro-controller 

 

However, this neuro-controller requires the design of another controller to generate the 

training data. As there are only few advantages, another approach is aspired. Note that, 

the performance of this neuro-controller can be improved by generating a more diverse 

set of data, e.g. with different controllers for different areas, such as a fuzzy controller for 

points far away and MPC for points close to the target. 

 

A neuro-controller can be used to find a smaller representation of a complex 

controller, such as a MPC. In this case, the neural network simplifies the 

computation by approximating the real controller (there are also cases with 

the neuro-controller being equivalent to another controller) and is faster. 

M
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2.) Starting with a stable neuro-controller, such as derived in the previous section, the 

training can be continued with the Dynamic Back Propagation (DBP)  algorithm.  This 

method uses the model of the system to further improve the dynamic capabilities. This 

improves the performance even further. 

In contrast to the first approach, the cost function used for the DBP algorithm does not 

use known-to-be-good control signals, but rather utilizes the mathematical model of the 

system and the desired output of the system. This way, the cost function 
 

1 

JDBP := 
2

 

makes direct use of the desired state >∗. 

N 

 
k=1 

(>k − >∗)2 
 

(5.8) 

 

Attention has to be paid to maintain stability of the closed-loop system, as 

the algorithm is likely to produce jack-knife states otherwise. Therefore, a 

very small learning rate, such as η 0.0000001, should be used. This leads 

to a convergence inside the current minimum of the network. 

 

3.) Using two deep neural networks, forming an agent that can interact with the environ- 

ment, a neuro-controller can be trained using Reinforcement Learning (RL), more specific 

the DDPG algorithm, see Section 5.3. 

 

There is another approach to use two neural networks as a controller: One 

network represents the controller while another one learns the behavior of 

the plant and therefore replaces the model. The model network is then 

trained by the behavior of the real plant based on inputs of the controller 

network. The controller network is then updated using the derivative of the 

model network. 

 

4.) Finally, a genetic algorithm can be applied to evolve the network parameters. This will 

not be investigated further in this work, but more information can be found in [60]. 

 

Other ideas to approach this type of problem are (a) using a neural network 

with two or more outputs, so it can also determine the velocity or the direc- 

tion or (b) using a modified cost function, e.g. with a term for the deviation 

to another controller, see Chapter 7. 
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5.3 Reinforcement Learning 

 
In the following, a so-called agent is trained. An agent is a neural network that is ca- 

pable of determining an action u. While training, the agent starts with random actions 

and learns by trial and error. The training can be done while interacting with the environ- 

ment, so without explicit model knowledge.1 Note that for simulation, model knowledge 

is necessary. 

The goal in reinforcement learning is to maximize the cumulative reward function [67] 

 

Rk := rk + γ rk+1 + γ2 

 

rt+2 + ... = 

∞ 

γi 

i=0 

 

rk+i (5.9) 

with γ [ 0, 1] a discount factor for expected future rewards. The control actions uk are 

chosen such that 
u∗ = arg m}x Q(>k, uk) (5.10) 

k uk 

with >k and uk being the state of the system and the control action at step k, respectively. 

To obtain the optimal control actions, they are taken from the control policy µ: 

 

uk := µ(>k) . (5.11) 

A control policy computes an action uk based on the current state >k and therefore acts 

like a controller. The action-value function Q(>k, uk) describes the expected reward after 

taking an action uk in state >k and thereafter following policy µ. It is defined as: 

Q(>k, uk) := E[ Rk|>k, uk] (5.12) 

with all ui, i > k sampled from µ. To maximize the cumulative reward from equation (5.9), 

the optimal control policy µ∗ has to be found. 

The optimal action-value can be obtained by finding the policy that maximizes the ex- 

pected value of the future reward: 

Q∗(>k, uk) = mazµE[ Rk|>k, uk] . (5.13) 

This can be solved with dynamic programming and the Bellman equation: 

Q∗(>k, uk) = E[ r(>k, uk) + γ Q∗(>k+1, uk+1)] . (5.14) 

For discrete states and actions, a Q-table can be used to store the action-values. For 

continuous states and actions, a neural network can be used to approximate the action- 

value functions, providing Q-values for any combination of state and action, see Chapter 

5.3.1. 

 

 

 
1 The training can be improved by artificial noise or closed-loop training with the real sensors. 
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5.3.1 Deep Deterministic Policy Gradient (DDPG) 
 

In the  following,  the  Deep  Deterministic  Policy  Gradient  (DDPG)  algorithm  will  be  used 

for the training of the neuro-controller, as proposed in [62]. The DDPG approach imple- 

ments an actor and a critic neural network and therefore works for continuous states and 

continuous actions [61]. The overall architecture is illustrated in Figure 5.8. 
 

Figure 5.8: Architecture of the DDPG concept 

 
 

Note that the action-value Q and the reward r are not direct inputs to the 

actor and critic, network respectively, but are used to adapt the parameter. 

 

Within this framework, one deep neural network is used to compute the optimal con- 

trol actions u∗ and another network approximates the action-value function Q∗ (>k, uk). 

These networks are called actor and critic networks, respectively. The actor network1 is 

represented by µ(>k, ξµ) and the critic network by Q(>k, uk, ξQ) where ξµ and ξQ are the 

parameters of the actor and critic networks, respectively.  The critic network is trained 

in a supervised learning manner with gradient descent to predict the optimal action-value 

function given by equation (5.14). Therefore, the cost function that this network minimizes 

is: 

J(ξQ) := E[(Q∗(>k, uk) − Q(>k, uk, ξQ))2] (5.15) 

where Q∗ (>k, uk) is computed with Equation (5.14). The gradient of this cost function is 

given by: 
∂J(ξQ) 

∂ξQ 
= E (Q∗ (>k, uk) − Q(>k, uk, ξQ 

∂Q 

∂ξQ 
. (5.16) 

At the same time, the optimal control actions u∗, given by Equation (5.10), are computed 

with gradient ascent, where the gradient of the actor network is given by: 

∂Q(>k, uk, ξµ) 
 

 

  
∂Q(>k, uk, ξµ) ∂uk 

  
 

 

   
 

 

1 Note that the notation for policy and neural network is both µ, as the policy is approximated by a neural 

network. 

∂ξµ k ∂u 
. (5.17) 



5  Control with Artificial Intelligence Masterthesis Benedikt Roder 

52 

 

 

∂ξQ 

← − 

2 

∈ 

κ , if ||>k − >∗ ||2 ≤ ε 

 

Equation (5.16) shows that ∂J(ξ
Q ) 

requires the computation of Q∗ (> , uk ), which depends 

on Q∗ (>k+1, uk+1).  As proposed in [61], a target critic network Q’  is used to compute 

Q∗ (>k+1, uk) and uk+1 is computed with a target actor network µ’. The target actor and 

critic networks are two additional neural networks with parameters ξµ’ 
and ξQ’ 

, respec- 

tively. The parameters are updated according to: 

ξµ
’ 

τξµ + (1 τ)ξµ
’
 

ξQ
’ 

← τξQ + (1 − τ)ξQ
’ (5.18)

 

with 0 < τ << 1. Note that target networks have the same structure as non-target net- 

works. 

The algorithm includes a replay memory to estimate the expectations of Equations (5.16) 

and (5.17). In addition, the algorithm also uses noise to explore new states. As proposed in 

[61], an Ornstein-Uhlenbeck process is used. Figure 5.9 shows the executed action during 

one episode of training. The influence of the noise can be seen as the random spikes. 
 

/4 
 
 

0 
 
 
 

- /4 
 

250 500 
Step 

Figure 5.9: Noisy steering angle in the first episode 

 
Reward 

To successfully apply DDPG to the given problem, a suitable reward function has to be de- 

signed. A high reward given for a certain situation should represent the desired behavior. 

This is, that the agent approaches the target position as fast as possible, but at the same 

time pay attention to the control effort. Let the control effort in every step ck be propor- 

tional to the difference between current and preceding control input: ck := β |δk − δk−1|. 

The input to this algorithm are the states > and the respective reward for each state: 

 

rk(>k, uk) = 2 

−||>k − >∗ ||2 − ck , otherwise 
(5.19) 

 

with β, κ and ε R design parameters. Note that κ has to be large enough to dominate 

the total cumulative reward, if the target position is reached. 
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5.3.2 Training 
 

In every step, the agent gets its action from the actor. During training, noise is added to 

the action. The action is executed in the training environment and the respective reward 

is observed. Using the replay memory and the formulas from Section 5.3.1, the actor and 

target networks are updated. 

An episode terminates if the maximum number of steps kmaz is reached or the agent 

reaches the target: 

isDone = k ≥ kmaz OR ||>k − >∗||2 < ε . (5.20) 

To begin a new episode, the agent will be reset to a random initial position. The start 

position of episode i can be obtained by 

  
z̃1   

 

 
 

U (zmin, zmaz) 

  
U (−25, 25)   

>
[ i] 

= 
 
z̃2  

∼ 
 U (ymin, ymaz) 

 

 
 

 

 =  U (−25, 25) 
(5.21) 

  
z̃4  

 
  

U (θ12,min, θ12,maz)   

 
U (−1, 1)  

with z      U (a, b) being a uniformly distributed variable between a and b. Note that initial 

positions that satisfy the condition in Equation (5.20) will be discarded. To ensure that the 

jack-knife state is avoided, the approach described in Section 4.1 is used before applying 

the action. 

 

The training is done using the nonlinear model of the system to obtain the 

best possible result, even for states that do not match the linearized version. 

 

Actor 
 

The actor is a network that computes an action uk from a state >k. During training, a mini 

batch of size 256 is used to approximate the gradient for the network update with the 

learnrate ηµ = 0.0001. Figure 5.10 shows the architecture with Hµ = 100 neurons in the 

hidden layers. 
 

 

Figure 5.10: Architecture of the actor network 

 
 

This network, after being trained, is the controller that will determine the 

input for the steering. 

, θ 2,min U (θ 
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Critic 
 

The critic is a network that computes the action-value Q(>k, uk) from a state >k and a 

respective action uk. During training the learnrate ηQ = 0.001 is used. Figure 5.11 shows 

the architecture with HQ = 100 neurons in the hidden layers. 
 

Figure 5.11: Architecture of the critic network 

 
 

The critic network and the reward function are only used for training and 

have no further use. Afterwards, only the trained actor network is used. The 

critic is only trained to obtain an approximation for the Q values which are 

used to train the actor. The critic is trained based on the rewards from the 

reward function. 
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5.4 Results 

 
In the following, results will be shown for the training of several DDPG agents. Therefore, 

the influence of the parameters β, κ and σ, as well as the structure of the actor will be 

investigated. To find the best parameters, one parameter at a time will be changed and 

the resulting performance will be evaluated by training the DDPG agent for 1500 steps. 

 

1. Value 2. Value 3. Value 4. Value 

 
1 1 

 
 
 

0 0 
 
 
 

-1 -1 
 

1000 1000 
 

(a) Different β: 0, 1, 10, 100 (b) Different κ: 200, 2000, 20000, 200000 
 

1 1 
 
 
 

0 0 
 
 
 

-1 -1 
 

 

Episode 
1000  

Episode 
1000 

(c) Different σ: 0.1, 0.3, 0.5, 0.7 (d) Different structures 

Figure 5.12: Performance curves (cumulative reward after episode termination, either be- 
cause of success or after 500 steps) for a selection of the parameters β, κ, σ 
and the structure of the actor network using different parameter values 
First value (grey), second value (blue), third value (dark grey) and fourth value 
(orange). 

 

Note that the performance of the parameters β and κ can not be evaluated 

using the cumulative reward directly, as the parameters have an influence 

on the reward. This is why the performance values are normalized, such that 

the theoretical maximum is 1. Note that the theoretical minimum does not 

exist, therefore -20000 was chosen for appropriate scaling. A positive value 

indicates a successful training. The curves are smoothed over 80 points. 

Only one example training process is shown. Training took 10 hours per 

configuration. 
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Punishment of Control Effort 
 

Table 5.1 shows the influence of the parameter β (factor for the punishment related to the 

control effort). For β = 0, the reward is determined based on the state only. Learning steps 

are the number of episodes to reach the highest reward for the first time. 

 

 

 

 

 

Table 5.1: Performance for different β with κ = 20000, σ = 0.3 and baseline structure 

The respective performance curves are shown in Figure 5.12a. It can be seen that for 

β = 100 the training is successful. As the performance of the remaining configurations is 

in the same order of magnitude, β = 0 will be used for simplicity. 

 

Reward for Success 
 

Table 5.2 shows the influence of the parameter κ (reward for reaching the target). For 

κ = 200, the total reward will likely turn out to be negative, while κ = 200000 will most 

likely lead to a positive total reward if the target is reached. 
 

No. κ Avg. reward Target reached # Learning steps 

1 200 -2162 C 699 

2 2000 -1750 ✓ 1496 

3 20000 8369 ✓ 1290 

4 200000 97356 ✓ 1499 

Table 5.2: Performance for different κ with β = 0, σ = 0.3 and baseline structure 

The respective performance curves are shown in Figure 5.12b. It can be seen that κ = 

200 does not lead to successful training, as the reward is too small to induce desired 

behavior, but even for κ = 2000 the average reward is negative. To obtain a fast but 

stable convergence, κ = 20000 is chosen. This also fits the order of magnitude of the 

negative reward obtained by an untrained agent. 

No. β Avg. reward Target reached # Learning steps 

1 0 7340 ✓ 1208 

2 1 12111 ✓ 1329 

3 10 2487 ✓ 1496 

4 100 -17350 C 1139 
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Influence of Noise 
 

Table 5.3 shows the influence of the parameter σ (variance of the noise process). For 

σ = 0, the process would not explore at all, while a large σ (close to 1) leads to a lot of 

exploration while not exploiting much.1 

 

No. σ Avg. reward Target reached # Learning steps 

1 0.1 9998 ✓ 1345 

2 0.3 11479 ✓ 896 

3 0.5 7910 ✓ 1489 

4 0.7 -2558 C 970 

Table 5.3: Performance for different variances σ, κ = 20000, β = 0 and baseline structure 

The respective performance curves are shown in Figure 5.12c. It can be seen that σ = 0.7 

does not lead to enough exploration while σ = 0.5 converges slower compared to the 

smaller values. To boost exploration (as the system should get to know the setting) σ = 0.3 

will be chosen. 

 

Structural Changes 
 

Table 5.4 shows the influence of the structure of the actor network. For the first run, the 

structure in unchanged to obtain a baseline. 
 

No. Change of actor Avg. reward Target reached # Learning steps 

1 Baseline (no changes) 9558 ✓ 1114 

2 Use tanh activation 2423 C 658 

3 Use H = 50 11672 ✓ 736 

4 Use 2 hidden layers 8448 ✓ 1262 

Table 5.4: Performance for different structural changes of the actor network with κ = 

20000, β = 0 and σ = 0.3 

The respective performance curves are shown in Figure 5.12d. It can be seen that the tanh 

activation function does not perform well, while the other modifications do not improve the 

network significantly. This is why the structure will remain unchanged. 

 

 

 

 

 

 

 

 

 
 

1 This is called the Exploration-Exploitation Dilemma. 
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Final results 

The final training process for 10000 episodes is shown in Figure 5.3.1.1  Note that in the 

first 500 episodes the agent slowly learns and thereby improves its performance. To make 

sure the agent performs well from a large variety of initial positions, the agent is trained 

for many more episodes. All used parameters can be found in Table 5.5. 
 

Parameter Value Description 

σ 0.3 Variance of noise 

γ 0.99 Discount factor 

Θ 107 Length of experience buffer 

mt 0.5 Sampling time 

kmaz 500 Maximum number of steps 

ε 0.2 Threshold to reach target 

κ 20000 Reward for reaching the target 

β 5 Factor for control effort reward 

Hµ  100 Number of actor hidden neurons 

HQ  100   Number of critic hidden neurons 

τ 0.001 Target network smooth factor 

Table 5.5: Parameters for training 

 
 

Those problems (or reinforcement learning problems in general) are sensitive 

to most of the parameters and the system will not converge to acceptable 

performance for most of the parameter values. In general, learning rates for 

the actor and critic should be selected rather small, with the learning rate 

of the critic being larger than the learning rate of the actor. In addition, the 

simulation of the environment has to work flawlessly to ensure convergence. 

In this setting, the correct reward is key, i.e. only desired behavior should be 

rewarded and episodes should terminate afterwards. 

 

 

 

 

 

 

 

 

 

 
 

1 The processing was done on an Intel i7 2600K CPU @3.40 GHz with 8 GB RAM and took 28 hours to 

complete. The system is trained once for forward driving and once for backward driving and both actor  
networks are saved as controllers. 
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Figure 5.13 shows the training process of the first DDPG agent that is only used for back- 

ward driving. It can be seen that the training is successful. The cumulative reward in later 

episodes almost reaches 20000. This shows that the agent learned to reach the target, 

as positive values are only possible if the target was reached. It cannot be expected to 

further improve, as κ = 20000 is the upper limit. This is, because κ is only rewarded once 

and even with perfect behavior, it takes the truck some steps to reach the target. 

 
2 

 
 
 

1 
 
 
 

0 
 
 

-1 
5000 10000 
Episode 

Figure 5.13: Performance curve of the backward driving DDPG agent 
 

Figure 5.14 shows the training process of the forward driving DDPG agent. The training is 

successful and compared to the first agent, faster and more stable. This is because the 

forward driving problem is much easier that the backward driving, so the training is faster 

and in later episodes the reward is almost always at the same high level. 
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Figure 5.14: Performance curve of the forward driving DDPG agent 

 
 

If the original setup does not converge for any known parameter set, the 

following approach can be used: Pretrain a neural network with the archi- 

tecture of the actor with known controller data (e.g. from a LQR controller). 

The learning rate of the pretrained actor is set to 0 and the critic network is 

trained. After the convergence of the critic network, one has to start retrain- 

ing the actor with the pretrained critic. In this way, the solution space is a lot 

smaller, hence the convergence should be more robust. 
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6 Simulations and Evaluation 

 
For the control of autonomous multibody vehicles using artificial intelligence, simulations 

have to be done, to asses the capabilities of the system regarding autonomy. This means, 

the system being able to deal with unknown situations. 

 
 

6.1 Implementation 

 
The overall system was implemented in MATLAB. The main functions are: 

• Build complex environments consisting of objects, targets and trucks 

• Update the state of the truck with trailers (Chapter 3) 

• Determine steering angle based on different controllers (Chapter 4) and artificial in- 

telligence approaches (Chapter 5) 

• Determine the desired state based on a given target trajectory (Section 4.4) and 

switching the driving direction based on collisions and a cost function (Section 4.3) 

• Simulate the full system including interaction with the environment (Chapter 6) 
 

Figure 6.1: Configuration of the modules 
 

Figure 6.1 illustrates the interaction of the respective modules.1 In a first step, the con- 

troller parameters, e.g. control gain or parameters of a neural network, are determined 

based on the model parameters. Independently, the environment including obstacles and 

a representation of the target, i.e. a target state or trajectory is designed. In every cy- 

cle, the main control module computes a steering angle and a driving direction based on 

the current state, the parameters and the environment. For debugging and presentation 

purposes, the state is visualized in the respective environment. 

1 This visualization is only conceptual, as the actual implementation is different for the sake of modularity and 

generality, see Appendix A.2. 
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Noise 

 
To account for measurement errors and 

model inaccuracies, noise will be added to 

the states and the control input, see Illustra- 

tion 2. The noise will be sampled from a nor- 

mal distribution with mean 0 and a standard 

deviation that depends on the value range of 

the respective variable, such that 

zmeas := z + emeas 

2 e meas ∼ N (0, σ   ) z 
Illustration 2: Measurement noise 

  measurement 
ground truth 

 

6.2 Simulation Results 

 
To investigate the proposed controllers and the overall system, a structured approach 

will be taken. First, several test scenarios, described in Chapter 6.2.1, will be designed 

(first page of every scenario). Second, the performance of the system in every single 

scenario will be analyzed in terms of statistical measures and overall performance and 

computational efficiency. 

For the simulations, the test will be conducted several times with random initial position 

to obtain statistically relevant insights. Therefore, not only the information about success1 

or failure is relevant, but also the length of the path travelled, as well as the needed time 

and number of switches. Generally, a short path in a short time and with a low number of 

switches, all while reaching the target, is the best outcome. 

The simulations were partly computed on a Workstation with Intel Core i7 2600K CPU 

(4 Cores @3.40 GHz) and 8GB of memory and on a 2013 MacBook Air with Intel Core 

i3 CPU (2 Cores @1.30 GHz) and 4GB of memory. An average simulation with a simple 

controller takes approximately 30 seconds to compute up to 500 seconds of simulated 

time including visualization. 

Without visualization, the computation is around 10z faster. Compared to the visualiza- 

tion, the simulation of the environment and the collision checking, the computations for 

the controllers are economical in terms of computational resources. However, the required 

time depends on the selected controller, see Tables 6.3 - 6.10 of the simulated scenarios. 

 
 

 

 

 

 
 

1 A simulation run is successful if the truck reaches the target state and stops based on the S value or follows 

the general course of the trajectory. 
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Parameters 
 

The parameters used for the following simulations are shown in Table 6.1. The manipulat- 

edVariablesRate (mVR) is a Matlab parameter that is given here for the sake of complete- 

ness. 

 

Module Parameter Value Parameter Value 

General: Controller LQR or RL or nMPC mt 0.05 or 0.5 (nMPC) 
 Pathplanning EPDP Method1 tmaz 500s 

Model: L1 5 

−1.5 m/s 
π 

− 6 
π 

2 

0.3 

L2 15 

 vForward vBackward 1.5 m/s 

 δmin δmaz 
π 

6 

 θ12,maz S 0.03 

 σzy σθ 0.03 

Jack-Knife: z0 

y0 

π 

− 3 

0 

z1 0 

y1 1 

Switching: ρ1 1000 ρ2 750 
 diag(R) [ 1 1 25 25]   

LQR: KLQR,v<0 

KLQR,v>0 

[ 11.3, 137.7, −55.9] 

[ −11.3, 137.7, 55.9] 

diag(QLQR) [ 124, 100, 3000] 

nMPC: tc 10s tp 2s 
 diag(QMPC) [ 0.1 0.1 0.1] mVR 0.3 

RL Agent: Activation 
µ Q 

Hi , Hi 

ηµ 

ηQ 

(zmin, zmaz) 

(ymin, ymaz) 

(θ2,min, θ2,maz) 

(θ12,min, θ12,maz) 

relu κ 20000 
 

100 β 0 
 

0.0001 τ 0.001 
 

0.001 γ 0.99 
 

(−25, 25) σ 0.3 

kmaz 500  (−25, 25) 

ε 0.2  (−π, π) 

Θ 107  (−1, 1) 

Table 6.1: Parameter values for the simulation 

 

Controller and network parameters are saved, so they do not have to be com- 

puted for every execution. If relevant model parameters (e.g. the speed) 

change and new parameters are required, new controller and network pa- 

rameters are computed by optimization of parameters or training of the net- 

works. 

 

 

1 With runtime optimizations as mentioned in the respective remarks. 
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enced as MPC from now on. 

 

6.2.1 Behavior in Test Scenarios 
 

Table 6.2 gives an overview of the tasks that will be investigated in the following sec- 

tions. Aside of the general overview, a short description introduces the basic task of every 

scenario. 
 

No. Name Description 

1 Basic Parking Starting from a random position inside the operation 
area, the system has to reach a final state with a random 
angle without any further constraints. 

Starting from an initial position close to the target with 
the exact opposite orientation, the system has to reach a 
final state in a smaller operation area. 

Starting from a random position inside the start area, the 
system has to follow a simple but nonlinear sinusoidal 
trajectory without any further constraints. 

Starting from a random position inside the operation 
area, the system has to follow a nonlinear trajectory with- 
out any further constraints. 

Starting from a random position inside the start area, the 
system has to follow several partial trajectories to avoid 
non-solid objects. 

Starting from a random position inside the start area, the 
system has to pass a bottleneck with a trajectory seg- 
ment to reach a final state at a loading dock. 

Starting from a random position close to the target but 
with a perpendicular orientation, the system has to reach 
a final state constrained by nearby objects. 

Starting from a random position parallel to the target with 
the same orientation, the system has to reach a final 
state constrained by nearby objects. 

 

2 

 

Change Direction 

 

3 

 

Simple Trajectory 

 

4 

 

Trajectory 

 

5 

 

Slalom 

 

6 

 

Bottleneck 

 

7 

 

Perpendicular Parking 

 

8 

 

Parallel Parking 

Table 6.2: List of all test scenarios 

 
Scenario 1-2 test the ability to reach a target position. Scenario 3-5 are about 

trajectory following in different levels of difficulty. Appendix A.1.6 shows 

the behavior for longer trajectories. Finally, Scenarios 6-8 showcase more 

complex challenges including objects. Additional visualizations can be found 

in Appendix A.1.7. 

 

 

As only the nonlinear MPC (nMPC) is analyzed in this chapter, it will be refer- 
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Legend 
 

Every scenario will be studied in detail on the following pages. To illustrate the given 

situation, the legend shown in Figure 6.2 will be used. 

 

Figure 6.2: Elements in the simulation scenarios 

 
The area of operation is the entire area that the system operates in.  The boundaries can 

be seen as objects. In the real-world, this area can be a parking lot or a factory site. The 

Truck-Trailer (potentially with more than one trailer) is the system. It moves around in 

the area of operation and is controlled by the proposed approaches. The desired state 

is the state that the system tries to reach. It can be the only target, then it is the final 

or target state, or it can be accompanied by a target trajectory. The target trajectory is a 

function that describes a path inside the area of operation. When given, the system should 

follow the path as close as possible. The path traveled describes the past positions of the 

system. In case of trajectory following, the path traveled should be similar to the target. A 

non-solid object describes a thing that will not directly lead to a collision such as a traffic 

cone, but should be avoided anyway. An orientation mark illustrates a variable or fixed 

orientation of certain elements. An object is a solid thing inside the area of operation, 

such as a building or other trucks. The start area describes an area from which the truck 

can start in a given scenario. The exact start points will be uniformly sampled from that 

area. Note that the size of the start area refers to the position of the robot, so the rest of 

the robot can actually start outside of it. 

 
Desired Behavior 

 

The main goal of the truck-trailer system is to reach a target state or to follow a given 

target trajectory. When only the target state is given, the system should find a reasonable 

way to drive in the wanted direction, i.e. no unnecessary moves and no collisions. As there 

is no explicit global pathplanning in this approach, a top level planner has to make sure 

that the target is easily reachable (e.g. when no objects are around) or basic information 

about the path to the target are given. When following a target trajectory, first the system 

should find its way onto the trajectory and second the system should track the trajectory 

as close as possible. 

As the system should operate in areas with humans around, the desired behavior should 

enable others to trust the system. This includes understandable turns and points to switch 

the direction, as well as safety margins in terms of obstacle avoidance. Finally, the behav- 

ior should be somewhat predictable, so that people can get used to it. 
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6.2.2 Basic Parking 
 

The first scenario is about basic parking situations for a truck with one trailer. The target 

state is fixed and there are no objects. The robot starts from a random position inside the 

start area, see Figure 6.3. The only constraint is the border of the operation area.1 

Operation area    Start area        Initial position Target 
 

120m  80m       80m  40m      Sampled randomly    Target state: [ 0 0 0 0]T 

This is the easiest test to show the basic functionality of the navigation. In real life, this 

situation comes into play on large and empty parking lots or during training for truck 

drivers. 
 

Figure 6.3: First scenario: Basic Parking 

 

The desired behavior in this situation is simply a fast and smooth convergence to the target 

state. However, some switches might be necessary to avoid collision with the border or as 

the system might overshoot the target. 

 

Here and in the following, θ12 = 0 is assumed for target states. The imple- 

mentation of the feature to enable θ12 = 0 is not straightforward, but possi- 

ble. To do so, the concept of an angled line to a target position with θ2 = 0 

has to be extended. Therefore, a circle segment has to be planned adjacent 

to the target state with a θ∗ such that the circle segment is followed. 

 

 

 

 

 
 

1 This scenario also refers to all parking situations without objects, as a target state with another position or 

angle describes the same scenario just in a different coordinate system (shifted and rotated). 
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Results 
 

In 99.7 % of the cases with the RL controller, the simulation was successful. All controllers 

are able to complete the task, while the MPC controller has a lower success rate.1 On 

the one hand, based on the simulations, the best controller is the RL controller with the 

shortest time and path. On the other hand, it has the cost of a long training process pre-

startup and a longer computation time. 
 

✓ 
Success 

RL 
COntROlleR 

190m 
PatH lenGtH 

127s 
Time PasseD 

4 
# switcHes 

 
Figure 6.4 shows visualizations, which illustrate the behavior in space and across all runs. 

Figure 6.4b shows that there are 4 used switching types with dynamical switching being 

the one most used. The other ones are mostly to avoid the border and to switch right at 

the beginning in the direction of the target. In special cases, there are more switches e.g., 

if the start point is close to an edge of the area of operation. 
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(a) Exemplary path of the truck 

 

 
(b) Histogram of switching types 

Figure 6.4: Visualization of the first scenario 

Table 6.3 shows the average results for 300 runs. It can be seen that the LQR and the 

RL controller have a similar performance. The MPC controller requires more time for the 

computation with a lower success rate. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 99.0 % 212.3 m 141.5 s 4.1 1.3 s 

RL Agent 99.7 % 190.8 m 127.2 s 3.6 2.9 s 

MPC 62.3 % 566.5 m 377.7 s 9.8 63.6 s 

Table 6.3: Averages for the first scenario 

 

 

 
 

1 This could potentially be improved by better fine tuning of the parameters. 
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Change Direction 
 

In the second scenario, another parking situation for a truck with one trailer is studied. The 

target state is parallel to the initial position of system and there are no objects. However, 

the system starts with the exact opposite orientation and has to change its direction by 

180◦ to reach the target, see Figure 6.5. The situation is constrained by a smaller area of 

operation. 
 

Operation area Start area Initial position Target 

60m  80m 20m  60m Initial orientation: π Target state: [ 10 0 0 0]T 

This test shows more advanced navigation capabilities in tight spaces, compared to real 

life. The area of operation might be limited, because of buildings or other vehicles. 
 

Figure 6.5: Second scenario: Change Direction 
 

The desired behavior in this situation is a full turn with as few switches (at the border) as 

possible. However, the number of switches is influenced by the effectiveness and space 

requirements of the controller. 

 
In this case,  as no trajectory is given,  the system plans a path indirectly 

by the controller. This might lead to suboptimal behavior, as the controller 

has no way to gain knowledge about the future as only the current state is 

directly fed into the control pipeline. 
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Results 
 

In 94.3 % of the cases with the LQR controller, the simulation was successful. The MPC 

controller is not able to complete the task, while the RL controller has a lower success 

rate. Based on the simulations, the best controller is the LQR with the shortest time and 

path. 

✓ 
Success 

LQR 
COntROlleR 
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Time PasseD 

11 
# switcHes 

Figure 6.6 illustrates the inputs and outputs over time as well as the cumulative costs of all 

simulated trucks over time. Figure 6.6a shows the convergence of the individual states. It 

can be seen that all of them converge, even with noise. Figure 6.6c shows the respective 

control input. The oscillations in the end result from the noise while driving forward. Figure 

6.6b visualizes how the costs decrease over time for the minimum time of 90.8 s. 
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Figure 6.6: Visualization of the second scenario 

Table 6.4 shows the statistics for 300 runs. It can be seen that this task is more difficult 

than the first scenario. In some situations, the controllers are not able to make the full 

turn, as the area is to small. Therefore, most of the switches are to avoid collisions. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 94.3 % 274.5 m 183.0 s 10.8 1.6 s 

RL Agent 86.3 % 306.0 m 204.0 s 16.8 4.6 s 

MPC 0.7 % 749.7 m 499.8 s 21.5 156.1 s 

Table 6.4: Averages for the second scenario 

105 

12
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6.2.3 Simple Trajectory 
 

The third scenario studies the pathfollowing behavior of the system. Starting inside the 

start area, a truck with one trailer has to converge to the trajectory and then stick to it. 

The simple but nonlinear sinusoidal trajectory is given by 

ƒ (z) = 20 sin 
  z 

(6.1) 

15 

for z ∈ [ −30, 55], see Figure 6.7. There are no further constraints. 

Operation area Start area Initial position Target 

120m  80m 30m  40m Sampled randomly Sampled with step length h = 0.1 

This test analyzes the capabilities to follow a simple trajectory. In this scenario, the in- 

ternal trajectory planning is important. A real-life truck might have a high-level trajectory 

planning system that determines the target trajectory. 
 

Figure 6.7: Third scenario: Simple Trajectory 
 

The desired behavior is to converge to the trajectory as fast as possible and then following 

it as close as possible. As the trajectory is constantly changing, a lot of steering is required. 

 
The desired direction is encoded in trajectory as well, so the system has to 

change the driving direction if it is moving in the wrong direction. 
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Results 
 

In 89.7 % of the cases with the LQR controller, the simulation was successful. The RL 

controller is able to complete the task as well, while the MPC controller fails most of the 

time. Based on the simulations, the best controller is LQR with the shortest time and the 

highest success rate. 
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Figure 6.8 shows two exemplary paths of the system with the LQR and the MPC controller, 

respectively. It can be seen that the LQR controller in Figure 6.8a converges to the trajec- 

tory quickly and follows it until the end. Figure 6.8b in contrast shows the MPC controller 

being trapped close to a border with forward and backward driving resulting in a collision. 

Note that this behavior can be improved by a better collision avoidance module. This is, 

e.g., switching the direction some distance before reaching the border or move from the 

border away first after switching the direction. 
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(a) Exemplary path of a successful truck 
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(b) Exemplary path of a failed truck 

Figure 6.8: Visualization of the third scenario 

Table 6.5 shows the statistics for 300 runs. It can be seen that LQR and RL controller can 

follow the trajectory, while the MPC controller has a low success rate. The shortest path in 

a successful run was 120.4 m (LQR), 130.6 m (RL) and 113.0 m (MPC). Note that especially 

the initial conditions with a wrong initial orientation lead to a failed run and longer paths. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 89.7 % 295.8 m 197.2 s 10.6 8.6 s 

RL Agent 86.3 % 312.0 m 208.0 s 11.0 11.9 s 

MPC 10.0 % 715.6 m 477.0 s 27.4 160.3 s 

Table 6.5: Averages for the third scenario 
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Complex Trajectory 
 

In the fourth scenario, the trucks target is a complex nonlinear trajectory. Starting from a 

random position inside the operation area, the system has to reach and follow a nonlinear 

trajectory without any further constraints. The trajectory is given by 

ƒ (z) = 10 sin 

•  z ‹ 
+ 15

     z 
 
 

(6.2) 

30 1 + |z| 

for z ∈ [ −30, 55], see Figure 6.9. There are no further constraints. 

Operation area Start area Initial position Target 

120m  80m 30m  40m Sampled randomly Sampled with step length h = 0.1 

This scenario investigates the capabilities to follow an arbitrary trajectory. Trajectories of- 

ten do not follow simple shapes, so the resulting functions can be complex and challenging 

to describe mathematically. 
 

Figure 6.9: Fourth scenario: Complex Trajectory 
 

The desired behavior is to reach the trajectory, follow it and get back to the target, even 

if the truck cannot follow certain parts of the trajectory (e.g. tight turns1) closely. The 

steering needs to adapt constantly to the trajectories shape. 

 

In contrast to Scenario 3, the description of this trajectory is more complex. 

This is why a generalization of the planning for the desired position is cru- 

cial, as the theoretical solution cannot be known for any trajectory, so the 

numerical approach derived in Section 4.4 has to be used. 

 

 

1 This can lead to edge cases with a trajectory so steep or discontinuous that it cannot be followed closely 

anymore. 
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Results 
 

In 98.3 % of the cases with either LQR or LR controller, the simulation was successful. In 

general, all controllers are able to complete the task, while the MPC controller has a lower 

success rate. Regarding performance of the MPC controller only in successful cases, the 

average path of 353 m and the average number of switches of 4.3 is in the same order of 

magnitude as the other controllers. 
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Figure 6.10 shows an exemplary path of the system with the respective costs over time. 

The truck converges to the trajectory and follows it until the end, see Figure 6.10a. The 

same situation can be seen in Figure 6.10b as the costs are directly related to the distance 

from truck to trajectory. 

 
 

40 
 

30 450 

400 
20 

350 
10 300 

 
0 

 
-10 

 
-20 

 
-30 

 
-40 

-60 -40 -20 0 20 40 60 
x [m] 

(a) Exemplary path of a successful truck 

 

250 
 

200 
 

150 
 

100 
 

50 
 

0 

 
 
 
 
 
 
 
 
 
 
 

0 20 40 60 80 100 120 
time [s] 

(b) Exemplary costs over time 

Figure 6.10: Visualization of the fourth scenario 

 

Table 6.6 shows the statistics for 300 runs. It can be seen that the LQR and RL controller 

perform quite similar with the RL controller being marginally better. Compared to Scenario 

3, it can be seen that even though Scenario 4 has a mathematically more complex trajec- 

tory, the performance is better. This might be because of the overall simpler shape with 

fewer and not so tight turns. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 98.3 % 194.2 m 129.5 s 2.9 5.6 s 

RL Agent 98.3 % 189.9 m 126.6 s 2.7 7.2 s 

MPC 56.7 % 525.0 m 350.0 s 17.3 150.0 s 

Table 6.6: Averages for the fourth scenario 
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Slalom 
 

Scenario five represents a slalom situation. From inside the start area, the system has to 

follow several partial trajectories. Some non-solid objects are shown to visualize the task 

at hand. The target trajectory is given by 

ƒ  z 
20 , if 10 ≤ z ≤ 25 

−10 , otherwise 

for z ∈ [ −20, −5] ∪ [ 10, 25] ∪ [ 40, 55], see Figure 6.11. 

Operation area Start area Initial position Target 

 
(6.3) 

 

120m  80m 30m  40m Sampled randomly Sampled with step length h = 0.1 

This type of setting enables many new applications in terms of navigation. For example, 

the trajectory for certain parts of the way might be known (e.g. because of experience) but 

other parts of the way can change or are not important at all. In those cases, partial target 

trajectories can fix certain segments of the trajectory but leave the rest to be determined 

during operation. 
 

Figure 6.11: Fifth scenario: Slalom 
 

First, the given trajectory segments should be followed as close as possible. Second, the 

system should reach the next segment in a reasonable manner. 

 

This scenario introduces a new type of targets. Namely, this combines path- 

following with target tracking, as between segments the first point of the 

next trajectory segment is the target position until the segment is reached. 

A new segment is defined by a distance between two points on the trajectory 

larger than 1m. 
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Results 
 

In 98.3 % of all the cases with the RL agent, the simulation was successful. The LQR 

controller has a similar performance.  Looking at the best cases, the LQR controller has 

0 switches with a path less than 200 meters in 130 seconds and the RL controller has 0 

switches with a path of less than 150 meters in 96 seconds. On the other hand, by visual 

inspection it becomes clear that the LQR controller shows the better driving behavior 

and completes the slalom course correctly more often, thereby needing more time and 

therefore driving a longer path. Thus, the LQR controller has a better performance overall. 
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Figure 6.12 shows an exemplary path of the system with the respective control input. In 

Figure 6.12a, it can be seen that the slalom course is completed successfully and Figure 

6.12b shows that the control input is highly dynamical with small spikes because of the 

noise. No switch was needed in this run. 
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Figure 6.12: Visualization of the fifth scenario 

Table 6.7 shows the statistics for 300 runs. It can be seen that this task is not a problem for 

any of the controllers, but by visual inspection it becomes clear, that the MPC controller, 

despite a relatively high success rate, shows non satisfactory driving behavior in many 

cases. In addition, it needs 10 times the computation time. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 98.3 % 272.2 m 181.4 s 3.1 4.4 s 

RL Agent 98.3 % 213.7 m 142.5 s 3.1 5.4 s 

MPC 85.7 % 356.7 m 237.8 s 6.7 56.1 s 

Table 6.7: Averages for the fifth scenario 
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6.2.4 Bottleneck 
 

In the sixth scenario, a complex situation with buildings, partial trajectories and a final 

position is tested. Starting inside the start area, the system has to pass a bottleneck 

with a trajectory segment to reach a final state. The bottleneck has a total width of 15 

meters with the truck having a width of 5 meters. The trajectory is defined by ƒ (z) = 0 for 

z ∈ [ −15, 15] sampled with a step length of h = 0.1, see Figure 6.13. 

Operation area Start area Initial position Target 
 

120m  80m 15m  40m Sampled randomly Target state: [ 53 25 0 0]T 

The situation models a typical loading dock scenario for trucks. Commonly, loading docks 

are not located next to a street, but rather somewhere on a plant. In addition trucks often 

need to navigate some sort of bottleneck to reach their target, e.g. between two buildings. 
 

Figure 6.13: Sixth scenario: Bottleneck 
 

In this case, the desired behavior is primarily to reach the target position without any 

collisions. In a second step, the distance to buildings should be safe while the number of 

switches as well as the time needed should be minimized. 

 
This scenario illustrates a common application of the developed system. Fur- 

thermore, the partial trajectory will not change over time as it is the only way 

to pass the two buildings. Without a given trajectory, it is not possible for 

the low-level planner to reach the target directly, as it cannot know where to 

drive through the buildings. 
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Results 
 

In 97 % of the cases, the simulation with LQR or RL controller was successful, whereas the 

nMPC controller seems not to be able to complete the task. 
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The exemplary path in Figure 6.14a follows the trajectory and tracks the final target with 

a few switches for the parking maneuver. Figure 6.14b shows the respective costs, which 

consist of several parts: from 0-20 seconds the truck approaches the trajectory, from 20- 

40 seconds the trajectory is followed. Then the target changes whereby the costs "jump" 

and from 40-90 seconds the truck approaches the target position and from 90-180 seconds 

a parking maneuver including four switches is performed. 
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Figure 6.14: Visualization of the sixth scenario 

Table 6.8 shows the statistics for 300 runs. Note that the number of switches in case of a 

failed run is usually much higher (e.g. 85 switches for the LQR controller). This indicates 

that failures happen around borders or objects, when the robot gets trapped. 

In contrast, MPC has not so many switches even though the success rate is almost 0. 

Additionally, many of the simulation runs have pretty low costs, such as 0.58 for example. 

In fact 66 % of the failed runs have a minimal cost below 10. This does not lead to a 

successful run but indicates that the MPC controller is actually able to reach the target, 

but does not have enough time to do so. This is, the MPC controller will be successful, 

eventually. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 97.3 % 384.1 m 256.0 s 10.1 4.0 s 

RL Agent 97.0 % 334.6 m 223.0 s 9.6 6.6 s 

MPC 0.7 % 749.0 m 499.3 s 25.1 87.7 s 

Table 6.8: Averages for the sixth scenario 
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Perpendicular Parking 

 
In this scenario, a complex parking situation is analyzed. Starting from a random position 

close to the target but with a perpendicular orientation, the system has to reach a final 

state constrained by nearby objects. The parking space is 30m  7m while the overall 

truck dimensions are 20m  5m. 

Operation area Start area Initial position Target 
 

120m  80m 30m  40m Initial Orientation: ± 
π

 Target state: [ 55 0 0 0]T 
 

The situation models a perpendicular parking maneuver with tight constraints in terms of 

the parking position. This is the case on parking lots, i.e. the nearby objects are other 

vehicles, or when entering a parking garage.1 
 

Figure 6.15: Seventh scenario: Perpendicular Parking 
 

The desired behavior is to reach the parking position without any collision. Furthermore, 

few or even no switches while not using much space describes the perfect behavior. 

 

To accurately model a real-world parking situation, it is not assumed that 

enough space is available. This can lead to forced changes in the driving 

direction, such as in a real-world parking situation. Note that the forward 

parking case is not shown here as it is easier and more uncommon. 

 

 

 

 

 

 

1 Watch https://www.youtube.com/watch?v=jhhqkHsGrsA for a real life video of a human driver performing a 

similar task. 

http://www.youtube.com/watch?v=jhhqkHsGrsA
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Results 
 

In over 99 % of all the cases with LQR or LR agent, the simulation was successful. The MPC 

controller has a low success rate, because it is not able to enter the small space between 

the two objects most of the runs. 
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Figure 6.16a shows an exemplary path of the system, which illustrates the parking behav- 

ior. Often there are switches to enter the space between the buildings and sometimes 

there are additional switches to improve the position. Figure 6.16b displays the cumulated 

costs over time. One can observe that in the first 30 seconds the costs are increasing, 

because the truck needs to move away from the target to enter the parking area. After 

that, the costs decrease monotonously. 
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Figure 6.16: Visualization of the seventh scenario 

Table 6.9 shows the statistics for 300 runs. Additionally, the control effort can be investi- 

gated. It is 103 rad/run with a standard deviation of 63.7 for the RL agent. This indicates 

that the control effort varies a lot from run to run. In addition, the effort depends heavily 

on the update frequency of the controller. 

 
 

Controller Success rate Path length Time passed # switches Compute Time 

LQR 99.7 % 207.0 m 138.0 s 6.2 1.5 s 

RL Agent 99.3 % 178.9 m 119.3 s 5.8 3.0 s 

MPC 8.3 % 730.0 m 486.7 s 42.4 62.3 s 

Table 6.9: Averages for the seventh scenario 
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Parallel Parking 
 

In this scenario, two parking situations (case A and B) are analyzed. Starting from position 

parallel to the target with the same orientation, the system has to reach a final state 

constrained by nearby objects. In the first case, the parking spot is only constrained on 

the left side of the target position. In the second case, the target position is constrained 

on three sides, leaving only the right side open. The resulting parking space is 50m  6m 

while the overall truck dimensions are 25m  5m. 

Operation area Start area Initial position Target 
 

120m  40m 90m  12.5m Initial Orientation: 0 Target state: [ 10 − 8 0 0]T 

The situation models a parallel parking maneuver with constraints in terms of the parking 

position. This is the case on parking lots, i.e. the nearby objects are other vehicles, or 

while parking directly next to the street. 
 

Figure 6.17: Eighth scenario: Parallel Parking 
 

The desired behavior is to reach the parking position without any collision. Furthermore, 

few or even no switches while not using much space describe the perfect behavior. 

 
To accurately model a real-world parking situation, it is not assumed that 

enough space is available. This can lead to forced changes in the driving 

direction, such as in a real-world parking situation. Note that this model 

might represent a street, so other vehicles can constrain time and space 

even more. 
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Results 
 

In 100 percent of the runs with case A, the simulation for was successful using the LQR or 

RL agent. Case B has a slightly lower success rate. All controllers are able to complete the 

task, while the MPC controller has a long computation time. 
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Figures 6.18a and b show exemplary paths of the system for cases A and B, which illus- 

trate the convergence behavior. Figure 6.18c displays the respective states over time. It 

can be observed, that the first and second component converge quickly, while the third 

component has small spikes to account for the noise. 
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Figure 6.18: Visualization of the eight scenario 

Table 6.10 shows the statistics for 300 runs per case. It can be seen that case B is more 

challenging than case A, but most of the measures are in the same order of magnitude. 

The shortest path for this scenario is shorter than 50 meters (e.g. 47 for LQR and 38 for 

the RL agent). Note that all of this happens without a high-level planner. Only a low-level 

planner without predetermined information about the path and the objects is used. 

 
 

Contr. Success rate Path length Time passed # switches Comp. Time 

LQR 100 | 93.0 % 182.3 | 238.3 m 121.5 | 158.9 s 3.7 | 11.5 1.2 | 1.8 s 

RL A. 100 | 92.7 % 144.5 | 168.5 m 96.3 | 112.3 s 2.7 | 10.0 2.3 | 2.9 s 

MPC 70.3 | 75.7 % 506.3 | 525.1 m 337.6 | 350.0 s 10.2 | 18.5 44.3 | 47.8 s 

Table 6.10: Averages for the eight scenario 
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6.3 Summary 

 
Overall, the LQR controller and the RL agent performed well with a success rate of 96.62 % 

and 95.32 %, respectively over all 2700 runs of the 9 scenarios. In the simulated runs, the 

controller has a worst-case scenario performance of 89.7 % (scenario 3), while the agent 

has at least 86.3 % success (scenario 2 & 3). 

In general, the LQR controller and the RL agent are comparable in terms of performance, 

while they differ in the design process, as the LQR controller requires model knowledge, 

while the RL agent can be trained using only observations from the actual system. On 

the other side, the training and fine-tuning of the parameters takes a lot of computational 

resources for the DDPG approach. 

The MPC controller has an overall success rate of 41.16 % with some scenarios being suf- 

ficient (e.g. Scenario 5 with 85.7 %) while others fail entirely (e.g. Scenario 6 with 0.7 %). 

The MPC controller has the additional disadvantage that the time for computation is 10z 

the time of the other controllers. That said, the performance, as well as the computational 

efficiency can be improved with better parameters and design, as this was not the primary 

goal of this work. 

From time to time, even the best performing controllers get "trapped" close to edges. In 

this situation, forward and backward movement (according to the current control signal) 

leads to a collision. This way, the direction is changed forever, and the truck is stuck. This 

is, because no high-level obstacle avoidance is implemented that can switch the direction 

earlier or change the control signal to move away from an object first. 

In addition, sometimes the movement of the controller does not track the given trajecto- 

ries sufficient. This might be the case because of complex trajectories or the form factor of 

the truck. This is, because the long trailer makes it hard to follow tight turns while driving 

backwards. 
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Advantages 

+ Navigate complex environments 

+ Switch direction automatically 

+ Use of different controllers 

+ Handle noise 

Disadvantages 

−   Gets  "trapped"  around  edges 

− Some conditions apply 

−   Only constant velocity possible 

 

 

 

 

 

7 Conclusions and Outlook 

 
In this work, several models for multibody robots were derived and analyzed. Especially 

the standard truck-trailer model was then used for further investigation. It has been shown 

that a linearized model can be used for the control of the nonlinear system. Furthermore, 

a plurality of controllers were introduced for setpoint tracking and trajectory following. 

In addition, the control strategy was extended by the switching of the driving direction to 

avoid obstacles and to eventually reach the target position even in complex environments. 

Next, artificial intelligence techniques were presented to improve the control performance, 

especially in difficult cases. Therefore, deep reinforcement learning was used to learn the 

best actions in a plurality of scenarios.  Simulations showed that such approaches have 

a good performance in several test cases, including obstacles, nonlinear trajectories and 

switching between forward and backward movement. 

There are many advantages to the system presented: First, it can successfully navigate, 

simple and complex situations, including objects, nonlinear and partial trajectories as well 

as target state tracking. Second, the system automatically switches the driving direction 

if needed, e.g. to avoid collisions, to reach the target faster or to follow trajectories. 

In addition, the system can handle noise and use different controllers, such as classical 

controllers, neuro-controllers or model-predictive controllers. 

On the other hand, the system has no high-level object avoidance so far and is based on 

some assumptions, e.g. the availability of truck dimensions. For example, it was assumed 

that the length of the truck and all trailers are known. In the real world, this might not 

be the case, especially if new trailers or more than one trailer are used. Therefore, a 

state estimator or an adaptive controller could be necessary to estimate the length of the 

trailers. Additionally, the current system can only operate with constant velocity. 
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Guard for pilot principle 
 

The guard for pilot principle uses two parts to control a given system. The so-called pilot, 

usually a complex artificial intelligence controller, is used to compute driving instructions. 

As it is difficult to obtain a rigorous proof of stability for such systems, another simple 

controller, the guard, such as a LQR controller, is used to determine a set of possible 

actions. Furthermore, steering angles larger than the maximum, actions leading to objects 

and other dangerous actions can be excluded from the set of possible actions of the AI 

controller. This way, the performance can be improved by also guaranteeing stability of 
the resulting system. 

Masterthesis Benedikt Roder 7 Conclusions and Outlook 

 

Future Work 
 

In the future, how to deal with edge cases, such as being stuck between objects and how to 

determine the optimal point in time to switch the direction should be investigated. Poten- 

tial performance improvements can be achieved by preview control for certain trajectory- 

following situations or using the guard for pilot principle. 

 

 

To improve the switching module, further switching conditions can be introduced. Switch- 

ing based on the angle of the truck relative to the target position and angle can lead to 

faster convergence and a smoothed driving behavior. 

To extend the current system, that only consists of a low-level planner, a path can be 

planned by using a combination of planning with a noise-free model and incorporating 

different controllers to do so. This involves planning different paths and even combining 

path segments from two or more different controllers, e.g. the first segment with the LQR 

controller and after a change in direction switching to the RL controller. 

Another way to improve the reinforcement learning agent is to use images that represent 

the environment as an input. This means using a pixel image (e.g. 320 x 320 pixels) 

instead of only a 3-element vector for training. This way, the controller is able to avoid 

obstacles by itself (as they are part of the environment) and can directly plan ahead. 

As mentioned before, the problem with more than one trailer is also relevant. The mod- 

elling is considered in this work, while the explicit control was not discussed in detail. To 

control a truck with two trailers, only a few changes have to be made: either retrain the 

reinforcement learning agent with a two-trailer model and compute new controller gains 

for the simplified model to control the model directly. Alternatively, the current setup can 

be used for forward driving, as the system is stable in those cases and the second trailer 

will just follow the first one. This also leads to another way to approach targets. As back- 

wards driving with two or more trailers is challenging and the stabilization task, i.e. driving 

straight backwards and just having noise, is more workable, the truck could move such 

that it drives just forward to reach a line directly to the target and then move straight 

backwards to finally reach it. 
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rank(K) = rank([ B AB A2B]) = rank  v2 

L1 L2  = 3 (A.2) 

v v2 

 

A linear system ż = Az + Bu is called controllable if the Kalman matrix K has full rank 

rank(K) = rank([ B AB A2B . . . An−1B]) = n . (A.1) 

 

 

 

 

 

A  Appendix 

 
A.1 Theoretical  Appendix 

 
A.1.1 Controllability 

 
 

 

In this case with n = 3, assuming v /= 0, 
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holds and therefore the system is controllable1. This is, there exists a feedback such that 

the system can reach any desired state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Note that in the case of v = 0 the system does not move and is therefore not controllable. 
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A.1.2 The classical Runge-Kutta-Method 
 

In the following section, a representative of the class of numerical solution methods is 

presented. The classical Runge-Kutta method (RK4) is an explicit 4-step method for solving 

initial value problems of ordinary differential equations. The RK4 offers a good compromise 

between accuracy (all discretization errors up to the third derivative are compensated) and 

speed or computational effort, since only four function evaluations are necessary. 

Given an ordinary first-order differential equation of the form 
 

ẏ(t) = ƒ (t, y(t)) (A.3) 

with t      R, y  : R      Rr, r      N and ƒ  : Rr+1      Rr.  With the known initial condition y(t0) = 

y0 (first order problem). If ƒ is four times continuously differentiable, the method has 

consistency order 4. 

Fixing a step length h   R+ , an approximation for ui+1    y(ti+1) can be obtained. The 

recursive equation 
 

ui+1 = ui + h · Ø(ti, ui, ƒ , h) (A.4) 

1 1 1 1 

 

with 

Ø(ti, ui, ƒ , h) = 
6 

k1 + 
3 

k2 + 
3 

k3 + 
6 

k4 (A.5) 

 

k1 = ƒ (ti, ui) 
h h 

k2 = ƒ (ti + 
2 

, ui + 
2 

k1) 

h h 

k3 = ƒ (ti + 
2 

, ui + 
2 

k2) 

k4 = ƒ (ti + h, ui + hk3) 
 

holds. 
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A.1.3 Fuzzy Control 
 

A fuzzy controller as described in [50] can be used to control a truck-trailer vehicle. In this 

case, no mathematical model is required. Still, there are a few design parameters to be 

selected, e.g. by an expert. Then, only the state > and the target state >∗ are needed. 

In the case of one trailer, a virtual controller for the trailer is used. Therefore, the desired 

input angle for the trailer and the distance to the desired y-position are determined: 

γ∗ := −sign(v) · (θ2 − θ∗) and dist := y − y∗ . (A.6) 

Next, those values are fuzzified using a fuzzy function of type B, as introduced in Section 

4.1, with the angle AE (e.g. π ) for γ and the distance DE (e.g. 80m) for dist: 

µγ := [ µγ,1 µγ,2 µγ,3]T = ƒB(γ∗, −AE, AE, 0, 1) 

µdist := [ µ 
 

dist,1 µdist,2 µdist,3 ]
T = ƒB 

(A.7) 

(dist, −DE, DE, 0, 1) . 
 

The correlation-minimum inference formula µu,i = min{µγ,j, µdist,k} with i := 3(k     1) + j is 

used for fuzzy inference. To defuzzify the values before applying them to the system, the 

centroid defuzzification formula yields the virtual control by 

 
uvirtual  = 

n 

i=1 
n 

ui µu,i 

µu,i 

 
(A.8) 

i=1 

where n is the number of rules, and ui  is 0 for i      {1, 5, 9},    Bu  for i      {2, 3, 6} and Bu  for 

i {4, 7, 8}. This is the corresponding set of rules and Bu is another design parameter, 

which limits the angle between truck and trailer, e.g. Bu = π . Finally, the steering angle δ 

can be obtained by its inverse relationship to the required difference of the angle between 

truck and trailer, see Chapter 3.4. Let mθ12 := θ12 − uvirtual and with a fuzzy function of 

type A, δ  can be obtained:  δ  = −sign(v) · ƒA(mθ12, − IN, IN, δmaz, δmin), e.g.  with IN  =  π . 

The step response for the y-component is shown in Figure A.1. 

 
1 

 
0.5 

 
0 

0 20 40 60 80 100 120 140 160 180 
time 

Figure A.1: Step response of fuzzy controller for target point [ 1 0 0]T 

 

 

This controller is 5z slower than the LQR approach, but the performance can 

possibly be increased by better expert knowledge. 

y 
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> 

input   : Two representations rectangles = [rect1, rect2 ] with 5 points each 

output: Boolean value doOverlap indicating if collision was detected 

1 checkCollision: 

2 for i = 1:2 do 

3 // loop through all edges, except first (as is equal to last) 

4 for j = 2:5 do 

5 

6 

7 

8 

9 

10 

rect  =  rectangles(i); 

zreƒ = rect(j − 1, 1); 

// compute the perpendcular to the edge vector 

yreƒ  = rect(j − 1, 2); 

11 

12 

13 

14 
 

15 

16 

17 

18 

19 

yrot = rect(j, 1) − rect(j − 1, 1); 

for k = 1:4 do 

// compute projection of vertex onto perpendicular edge 

zrot = −rect(j, 2) + rect(j − 1, 2); 

s1(k) = sign(zrot ∗ (rect1(k, 1) − zreƒ ) + yrot ∗ (rect1(k, 2) − yreƒ )); 

end 

s2(k) = sign(zrot ∗ (rect2(k, 1) − zreƒ ) + yrot ∗ (rect2(k, 2) − yreƒ )); 

// check if vertices are on different sides of the edge 

if (min(s1) > −1 and maz(s2) < 1) || (maz(s1) < 1 and min(s2) > −1) then 
// case polygons are intersected, so return 0 

return 0; 

20 end 

21 end 

22   return 1; 

 

A.1.4 Active-Set-Methods 
 

Given constraints and a function ƒ , which should be minimized.1 The problem 
 

min ƒ (>) (A.9) 

s.t. 

g(>) = 0, h(>) ≥ 0, >min ≤ >j ≤ >maz (A.10) 

should be solved. For a nonlinear ƒ , a problem of this form can be solved with active set 

methods. For this a valid start value >0 is required. This is iteratively improved. For this 

purpose, ƒ is approximated by a square function and g or h by linear functions [68]. 

 
A.1.5 Implementation of the Separating Axis Theorem 

 

Algorithm 2 describes the implementation of the SAT for two rectangles. 
 

Algorithm 2: Function to detect collisions between rectangles 
 

1 The terms used in the appendix differ from the terms used in the rest of the thesis. In particular, > here is 
any vector and ƒ is any function. 
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A.1.6 Visualization of longer Trajectories (LQR) 
 
 
 

 

 
 

Figure A.2: Behavior of the system with a simple line as target 

 

 
 

 

Figure A.3: Behavior of the system with an angled line as target 

 

 

 

Figure A.4: Behavior of the system with a sinus trajectory as target 

 

 
 

 

Figure A.5: Behavior of the system with a non-continuous trajectory as target 
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A.1.7 Additional Visualizations for the Scenarios (LQR) 
 
 

 
 
 
 
 

(a) Exemplary path (b) Alternative path 

 

Figure A.6: Typical behavior for Scenario 1 

 

 

 

 

(a) Exemplary path (b) Alternative path 

 

Figure A.7: Typical behavior for Scenario 2 

 

 

 

 
 

(a) Exemplary path (b) Alternative path 

 

Figure A.8: Typical behavior for Scenario 3 
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(a) Exemplary path (b) Alternative path 

 

Figure A.9: Typical behavior for Scenario 4 

 

 

 

 

 

 

(a) Exemplary path (b) Alternative path 

 

Figure A.10: Typical behavior for Scenario 5 

 

 

 

 

 

(a) Exemplary path (b) Alternative path 

 

Figure A.11: Typical behavior for Scenario 6 
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(a) Exemplary path (b) Alternative path 

 

Figure A.12: Typical behavior for Scenario 7 

 

 

 

 

 

 

 

(a) Exemplary path case A (c) Alternative path case A 

 

 
 

 

(b) Exemplary path case B (d) Alternative path case B 
 

Figure A.13: Typical behavior for Scenario 8 

 

 

 

 

 
 

          All plots show the trucks state, sampled every 16 seconds. 
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A.2 Software Architecture 

 
To better understand the software architecture and the interplay between the different 

classes and methods, the most relevant classes will be presented below. In this section, 

classes and structures will be written like Class and methods are referenced by method() 

(even if the method has parameters). The overall software architecture is illustrated in 

Figure A.14. 
 

Main System 
 

Controller 
 

+mode: String 

+K_LQR: double[6] 
+nMPC: nlmpc 
+RLAgent: 
rlDeterministicActorRepresentation[2] 
+rho: double[2] 

 

+Controller() 

+setLQR(env) 
+setNMPC(env) 
+updateLQR(env, desiredTruck): double 
+updateNMPC(env, desiredTruck): double 
+avoidJackKnife(theta12): double[3] 

+updateDirection(env, desiredTruck): 
Environment 
+update(env, dt): Environment 

 
 
 
 
 
 
 

Environment 
 

+size: double[4] 

+objects: paintable[] 
+truck: Truck 
+targetState: double[4] 
+targetTrajectory: double[2][] 
+done: boolean 

 
+Environment(size) 

+reset() 
+checkCollisions(): boolean 
+simulate(controller, plot) 
+evaluate(targetTruck): double 
+trajectory(xValue): double 

+getDesiredState(): Truck 
+switchDirection(type) 
+draw() 

 
 
 
 

<<struct>> 

Parameter 

+veloctiy: double 

+lengths: double[] 

 

 
Paintable 

 
+numberEdges: int 

+center: double[2] 
+angle: double 
+color: double[3] 
+dimensions: double[2] 
+edges: double[2][numberEdges+1] 

+Paintable(numberEdges) 

+create(position, dimensions) 
+move(direction) 
+rotate(angle) 
+getCoordinates(): double[2] 
+overlap(otherObject): boolean 

+draw() 
 
 

 
Truck 

 
+numTrailers: int 

+position: double[2] 
+delta: double 
+lengths: double[numTrailers] 
+anglesBetween: double[numTrailers] 
+angleN: double 

+maxDelta: double 
+maxAngleBetween: double 
+objects: Paintable[numTrailers +1] 
+path: double[2][] 
+model: Model 

+Truck(numTrailers) 

+updatePaintable() 
+reset() 
+updateState(dt) 
+getState(): double[3+ numTrailers] 
+setState(state) 

+getParams(): Parameter 
+draw() 

 
 

Figure A.14: Software architecture of the main system 

Model 

+noisy: boolean 

+reduceState: boolean 

+Model(reduceState) 

+f(x,u,params): double 
+dfdx(x,u,params): double 
+dfdu(x,u,params): double 
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The class Truck represents the entire truck that is controlled in this work. It consists of 

the tractor and an arbitrary number of trailers. To describe the truck completely, its di- 

mensions, state and its mathematical model are needed. For the visualization, the truck 

has Paintable objects, that represent the rectangular shapes. The truck can use updat- 

eState() to obtain the resulting truck after the time dt with the control input delta. The 

draw() method shows the truck by using the draw() method of the Paintable objects. 

Objects of the class Paintable are geometrical shapes that can be painted. The shapes 

have an arbitrary number of edges and an array to save the respective points with the 

first point being identical to the last to close the circumference. In addition, the center, di- 

mensions, rotation angle and color describe every shape possible. Those attributes can be 

changed by the create(), move() and rotate() method.  The overlap()  method determines 

if there is an overlap between another object and the object itself. This is implemented 

using the SAT, see Section 4.3. 

To compute new states based on Algorithm 1 proposed in Chapter 3, Model is used. It 

consists of three methods f(), dfdx() and dfdu() to obtain the respective mathematical 

values by providing the current state >, the control input u and the model parameters of 

the type Parameter. It also implements the features of a noisy output and it can reduce 

the state of the output by simply leaving out the first component. It is used inside the 

Truck class to compute the new state and during network training to provide the resulting 

behavior. 

The structure Parameter is used to hold the velocity of the truck and all the lengths of 

the tractor and trailers. This is useful, because this set of parameters is used often in the 

model, truck and other methods, so it is easier to handle. 

The Controller class implements the functionalities introduced in Chapter 4. It has at- 

tributes for the different controller and switching parameters. Aside of initializing the 

controllers, it updates the control variable with the chosen controller using the update() 

methods. Additionally, it uses the updateDirection() method to determine if a change of 

the direction is necessary. The actual direction change is executed by the Environment 

object. Finally, avoidJackKnife() applies the approach presented in Section 4.1. 

An object of the class Environment represents a whole scenario, including objects, a tar- 

get and a truck. The theory is presented in Section 3.6, but it also works as the overall 

structure to keep all relevant data in one place. This is why it features the simulate() 

method that is called from outside to start the simulation and why it is used to visualize 

the whole system with the draw() method. It has attributes to describe the chosen sce- 

nario by specifying its size and the objects. Plus, the target state, target trajectory or 

both are saved there. As stated before, it simulates the whole system, but also assigns 

costs with evaluate() to every situation, uses checkCollisions() and actually changes the 

driving direction with switchDirection(). 

 

Other methods are used to create the scenarios and controllers, handle the 

simulation and analyze the results afterwards. The file param contains all 

parameters in a single place location. 



A.2  Software Architecture Masterthesis Benedikt Roder 

95 

 

 

 

The handling of the learning with the DBP algorithm is done with two classes Network 

and Layer. The Network class implements in neural network with all the layers and the 

training process using the train() method. It can do a forward pass with the pass() method 

and can be used in the production setting with the useNet()  method.   The layers itself 

are implemented as Layer. This class represents one single layer with all its neurons, the 

weights and the activationFunction. At this level, the forward pass is computed using the 

activation() function and the error backpropagation gets executed. Figure A.15 illustrates 

the architecture. 
 

Figure A.15: Software architecture of the DBP learning 

 

The training of the reinforcement learning agent is done using a MATLAB function. The 

rlDDPGAgent requires a custom environment with certain methods to do the training. This 

is why the RLEnvironment class was implemented. It is a combination of a simplified 

environment and support for the training process. For example, it holds the parameters 

for the reward and the simulation, like the parameter  kappa  or the  samplingTime.  When 

it is executed,  the reset()  method starts a new episode.  Afterwards,  the step()  method 

is called continuously to simulate the behavior. Afterwards the actor and critic networks 

are updated using the rlDDPGAgent. For debugging purposes, the RLEnvironment can be 

visualized with a plot() method as well. 
 

Figure A.16: Software architecture of the reinforcement learning 
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