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Abstract 
 

The Incoherent Scatter Radar (ISR) technique provides an important tool for ionospheric 

plasma parameter estimation through the calculation of the electron density spectrum. This 

quantity is constrained to the ionospheric approximations considered. If these are very realistic, 

finding an analytical expression for the terms involve in the electron density spectrum could 

be impossible. In that sense, using the mathematical tool known as stochastic differential 

equation (SDE) is required. Because of the nature of the equation described the ionospheric 

particle dynamics, called Langevin equation, stochastic numerical methods have to be studied. 

In this work, we will present a review of ISR theory and the connection to SDE. Moreover, we 

list three different methods, which are used to analyze the collisional and magnetized 

approximation of the ionosphere.   
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Chapter 1 

 

Introduction 
 

Plasma is known as the fourth state of matter and can be described as a hot ionized gas 

where a combination of positive ions, electrons, and neutral species exhibit collective 

behaviors. The essential difference between gases and plasmas is that the latter is strongly 

influenced by electromagnetic interactions, despite its almost zero density charge [4]. A plasma 

exists because of two principal mechanisms known as ionization and recombination processes. 

The first one stands for removing electrons of the last electronic levels of atoms composing the 

plasma, because of the absorption of energy. In contrast, the recombination process stands for 

joining ionized atoms and electrons to form neutral species. An equilibrium of both reveals the 

essence for stable plasmas. 

A wide range of different types of plasmas exists because of the several values their 

characteristic parameters can assume. The number density of charged particles, for electrons 

𝑛𝑒, is a representative quantity for plasmas because of the information about the number of 

charges on a subvolume.  It will lead to a differentiation between low-density and high-density 

plasmas. Another characteristic parameter is the Debye length 𝜆𝐷, a fundamental length scale 

that determines the limit of action of the electric potentials on a test charge. It can be estimated 

from the temperature and number density of the charged particles inside the plasma [1].  

As shown in figure 1, the plasma habiting the ionosphere is characterized by a low temperature 

and density compared to the others. This region represents the ionized portion of our 

atmosphere and is of importance because it participates in terrestrial and satellite 

communication.  This work proposed a theoretical revision of the Incoherent Scatter Radar 
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(ISR) technique used to analyze the ionospheric plasma, including its dynamical description 

based on the Brownian motion process. Moreover, an introduction of the mathematical and 

computational tools needed to solve the dynamic equations is presented.   

 

Figure 1: Temperature and density of various plasmas. [4] 

 

This document is going to be divide as follows: In Section 2, the basis of the ISR technique is 

describing. Then, in Section 3, the foundation of Stochastic Differential Equations (SDE) 

resulting from the dynamical description of ionospheric plasma is discussing. Additionally, in 

Section 4, various stochastic numerical methods are used and compared taking the 

approximation of friction and diffusion coefficients as constants. Finally, at the end of section 

4, future work is mentioned. 
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Chapter 2 

 

The Incoherent Scatter Radar Theory 
 

The Incoherent Scatter is a commonly term referring to the dispersion caused by an 

electromagnetic wave on a medium carried of charged particles [8].  A recognized use of this 

phenomenon is the incoherent scatter radar (ISR) technique. It is used to analyze the 

ionospheric plasmas by utilizing a set of antennas from the Earth's surface, a process known as 

remote sensing. In this section, a brief review of the ISR technique is presented by the study of 

Thomson Scattering. Then, the response of this technique is analyzed considering an 

ionospheric model with constant friction and diffusion coefficients. 

 

2.1 Operating Principle 

The incoherent scatter process consists of oscillating free electrons radiating as Hertzian 

dipoles, and results in a phenomenon known as Thomson Scattering [10]. The objective is to 

recover ionospheric plasma parameters by sending a well-defined electromagnetic wave from 

the radar. To achieve it is necessary to find the equations describing the interaction between 

the wave and the charges immerse in the plasma. In the next lines, we will summarize the 

develop made by Kudeki and Milla (2011).  

The standard response of a charge (received signal by the radar), because of an incident wave, 

is the Hertzian dipole expression (1 ≪  r) subject to the frame of reference in figure 2: 

 𝐸𝑟
⃗⃗⃗⃗ (𝑟) = 𝐸𝑖

𝑟𝑒
𝑟

𝑠𝑖𝑛(θ)𝑒−𝑖𝑘𝑟 θ̂ (1) 
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where 𝐸𝑖 = 𝐸𝑜(𝑟 )𝑒
−𝑖𝑘𝑟  describe the information of the incident wave sending by the radar, 

𝑟𝑒 =
𝑞𝑒

2

4πε0𝑐𝑚2 is a constant, and 𝑟 is the distance between the electron and the radar. The 

backscatter electric field received by the antennas (θ̂ = −𝑧̂) described in equation (1), is the 

response of just one electron due to the oscillation caused by the incident wave.  

 

Figure 2: Hertzian dipole radiation because an incident EM wave. [10] 

However, we must sum the contribution of all the electrons within a subvolume Δ𝑉 as follows 

(see figure 3): 

 𝐸𝑠 = −
𝑟𝑒
𝑟

𝐸𝑖 ∑ 𝑒𝑖𝑘⃗ ⋅𝑟𝑝⃗⃗⃗⃗  

𝑁𝑜Δ𝑉

𝑝=1

 (2) 

where 𝐸𝑠 refers to the backscatter amplitude, 𝑁0 indicates the number of electrons within de 

subvolume Δ𝑉, and 𝑟𝑝 denotes the positions of individuals electrons. 

 

 

 

 

Figure 3: a) Interaction between the radar beam and the charged particles of the plasma (blue and red dots).   
b) Subvolume Δ𝑉 considered in the scattering process.[10] 
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Note that the backscatter amplitude 𝐸𝑠 depends on the position 𝑟𝑝, which also depends on a 

retarded time 𝑡 −  𝑟/𝑐. As explained in reference [9] and [10], we can use the definition of the 

microscopic number density 𝑛𝑒(𝑟 , 𝑡) of the electrons within Δ𝑉: 

 𝑛𝑒(𝑟 , 𝑡) = ∑ δ3 (𝑟 − 𝑟𝑝⃗⃗⃗  (𝑡))

𝑁𝑜Δ𝑉

𝑝=1

 (3) 

and taking its Fourier Transform, the backscatter magnitude can be modified as 

 𝐸𝑠(𝑡) ≈ −
𝑟𝑒
𝑟

𝐸𝑖 ∑ 𝑒𝑖𝑘⃗ ⋅𝑟𝑝⃗⃗⃗⃗  (𝑡−
𝑟
𝑐
)

𝑁𝑜Δ𝑉

𝑝=1

 =  −
𝑟𝑒
𝑟

𝐸𝑖𝑛𝑒 (𝑘⃗ , 𝑡 −
𝑟

𝑐
) (4) 

where the summation term represents the transformation. Thus, the space parameter 𝑟  has 

changed to the wave vector 𝑘⃗ . Nevertheless, a proper description of the backscatter electric 

field must be expressed in the frequency space (𝑡 →  ω). A theorem known as the Wiener-

Khintchine theorem establishes that the Fourier transform of an autocorrelation function (ACF) 

results in a power spectrum [3], thus 

 ⟨|𝐸𝑠(ω)|2⟩ = ∫𝑒−𝑖ωτ⟨𝐸𝑠
∗(𝑡)𝐸𝑠(𝑡 + τ)⟩𝑑𝜏  (5) 

Therefore, replacing the expression of equation (4) in (5), we obtain 

 ⟨|𝐸𝑠(ω)|2⟩ =
𝑟𝑒

2

𝑟2
|𝐸𝑖|

2 ⟨|𝑛𝑒(𝑘⃗ , ω)|
2
⟩ Δ𝑉 (6) 

Note that determine the backscatter field spectrum, left side of equation (6), results in finding 

an expression for the electron density spectrum ⟨|𝑛𝑒(𝑘⃗ ,ω)|
2
⟩ . From the definition in (5), the 

electron density spectrum can be expanded as shown in reference [9] and [10], 

 ⟨|𝑛𝑒(𝑘⃗ ,ω)|
2
⟩ = 𝑁0 ∫𝑑τ𝑒−𝑖ωτ ⟨𝑒−𝑖𝑘⃗ ⋅Δ𝑟 ⟩ = ⟨|𝑛𝑡𝑒(𝑘⃗ ,ω)|

2
⟩ (7) 
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where Δ𝑟  is the electron displacement on a time τ, and the subscript 𝑛𝑡𝑒  refers to the electron 

density spectrum taking the assumption that individual electrons follows independent random 

trajectories. This assumption is not valid in a real ionosphere, but this hypothetical result plays 

an important role in calculating the electron density spectrum in the presence of collective 

interactions [9]. Hence, the complete description (without the assumption) of the electron 

spectrum can be viewed in terms of a constant contribution (the spectrum taking the 

assumption) plus a perturbation as 

 𝑛𝑒(𝑟 , 𝑡) = 𝑛𝑡𝑒(𝑟 , 𝑡) + δ𝑛𝑒(𝑟 , 𝑡) (8) 

Thereby, the ISR technique resumes on finding an expression for the electron density spectrum 

⟨|𝑛𝑒(𝑘⃗ ,ω)|
2
⟩.  As will be shown, this can be obtained by a linear combination of the contributions 

of the charged species (electrons and ions) when no collective effect is considered.  

 

2.2 Electron Density Spectrum 

According to the general framework presented previously in this section, let 𝑛𝑡𝑒(𝑘⃗ ,ω) and 

𝑛𝑡𝑖(𝑘⃗ ,ω) denote the complex amplitudes of electron and ion number density waves generated 

under the assumption of a plasma of non-interacting particles following independent random 

trajectories [9]. Conversely, 𝑛𝑒,𝑖(𝑘⃗ , ω) express the complete particle interaction on a real plasma 

(meaning that electrostatic interactions are not ignored) and can be described in terms of 

𝑛𝑡𝑒,𝑖(𝑘⃗ , ω). First, consider the next Ampere’s Law: 

 ∇ × H⃗⃗ = J + ε0

∂𝐸⃗ 

∂𝑡
 (9) 

where the total electron current density 𝐽  along the direction of the wave vector 𝑘⃗  results in the 

superposition of two parts: the macroscopic currents σ𝑒𝐸 and σ𝑖𝐸 (where σ𝑠 express the 
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conductivity of the specie 𝑠), and a contribution equals to ω

𝑘
𝑒(𝑛𝑡𝑒 − 𝑛𝑡𝑖), because of an 

imbalance in the space charged density between the independent random variables 𝑛𝑡𝑒,𝑖(𝑘⃗ , ω) 

[10]. The equation of Ampere’s law results: 

 0 = (σ𝑖 + σ𝑒)𝐸 +
ω

𝑘
𝑒(𝑛𝑡𝑖 − 𝑛𝑡𝑒) + 𝑖ωε0𝐸 (10) 

The equation above is equivalent to an electrical circuit applied to the plasma species. As we 

need an expression for the electron density amplitude 𝑛𝑒(𝑘⃗ ,ω), the equivalent circuit for 

electrons must be solved −ω𝑘−1𝑒𝑛𝑒 = 𝐸σ𝑒 − ω𝑘−1𝑒𝑛𝑡𝑒. Isolating the electric field 𝐸 and then 

replacing in equation (10), we obtain 

 𝑛𝑒(𝑘⃗ , ω) =
(𝑖ωε0 + σ𝑖)𝑛𝑡𝑒(𝑘⃗ ,ω) + σ𝑒𝑛𝑡𝑖(𝑘⃗ , ω)

𝑖ωε0 + σ𝑒 + σ𝑖
 (11) 

Note that 𝑛𝑡𝑒,𝑖(𝑘⃗ ,ω) are independent random variables as we are considering the assumption of 

independent random trajectories. Then, we can find the electron density spectrum by squaring 

and averaging: 

 ⟨|𝑛𝑒(𝑘⃗ , ω)|
2
⟩ =

|𝑖ωε0 + σ𝑖| ⟨|𝑛𝑡𝑒(𝑘⃗ , ω)|
2
⟩

|𝑖ω𝜀0 + σ𝑒 + σ𝑖|2
+

|σ𝑒|
2 ⟨|𝑛𝑡𝑖(𝑘⃗ ,ω)|

2
⟩

|𝑖ωε0 + σ𝑒 + σ𝑖|2
 (12) 

 

This spectrum expression is a general result valid not only with a singular type of ion, but we 

can also include more in the current density treatment ( 𝐽  ) and use it in the Ampere’s law [10]. 

To have a complete description of the equation (12), conductivities must be known. In general, 

these are complex quantities and requires the use of two extra relationships.  

Note that have a complete representation of a complex number means having both real and 

imaginary coefficients. Kramers-Kronig relations provides the connection between these two 

parts, where the imaginary part 𝐼𝑚[σ𝑒,𝑖(𝑘⃗ , ω)] can be identified as a Hilbert transform of the 



8 
 

real part 𝑅𝑒[σ𝑒,𝑖(𝑘⃗ , ω)]. Moreover, according to the fluctuation-dissipation theorem, a relation 

between 𝑅𝑒[σ𝑒,𝑖(𝑘⃗ ,ω)] and the spectrum ⟨|𝑛𝑡𝑒,𝑖(𝑘⃗ ,ω)|
2
⟩ is provided.  In summary, determines a 

complete representation of conductivities σ𝑒,𝑖(𝑘⃗ , ω), results in finding the spectrum  

⟨|𝑛𝑡𝑒,𝑖(𝑘⃗ ,ω)|
2
⟩. Therefore, it turns out that the density spectrum on a real plasma ⟨|𝑛𝑒,𝑖(𝑘⃗ , ω)|

2
⟩ is 

completely solved by utilizing ⟨|𝑛𝑡𝑒,𝑖(𝑘⃗ ,ω)|
2
⟩, which denotes the electron and ion density 

spectrum under the assumption of particles following independent random trajectories. For a 

more detail explanation of both, Kramers-Kronig relations and fluctuation dissipation theorem, 

see references [9] and [10]. 

Finally, determine the electron density spectrum ⟨|𝑛𝑡𝑒,𝑖(𝑘⃗ , ω)|
2
⟩ described in equation (7) 

simplifies in finding the characteristic function: 

 ⟨𝑒𝑖𝑘⃗ ⋅Δ𝑟 ⟩ = ∫𝑓(Δ𝑟) 𝑒𝑖𝑘⃗ ⋅Δ𝑟 𝑑(Δ𝑟) (13) 

which also turns out to be determined if the displacement probability distribution function 𝑓(Δ𝑟)  

is known. However, specifying the pdf 𝑓(Δ𝑟)  means solving the dynamic equations of plasma 

species for a large number of different trajectories (statistical approach) or solving the 

Boltzmann equation for the pdf 𝑓(Δ𝑟) (plasma kinetic approach). Note that the dynamic 

equations are constrained to the level of ionospheric plasma realism considered.  

An appropriate description of the ionospheric plasma complexity must regard the contribution 

of the charged particles interaction known as Coulomb collisions. It can be modeled in 

Newton’s second law as the influence of two forces: friction and diffusion forces. However, 

different from other scenarios, these forces are stochastic contributions, leading to a reconsider 

the dynamic interaction as a Langevin equation. 
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Furthermore, different as its name suggests, Coulomb collisions are not collisions in the 

complete sense. It describes the electromagnetic force interaction between charged particles at 

a microscopic level. In other words, particles are constantly deflected by this force when they 

get nearer. It is the effect we want to recover modeling the contributions of friction and 

diffusion forces. 

To exemplify, using the statistical approach, we will not use the more complex model when 

friction and diffusion coefficients are variable with velocity as shown in reference [11]. Instead, 

a collisional approximation (friction and diffusion coefficients as constants) and magnetized 

ionosphere is considered in the treatment of this work.  

2.3 Brownian Motion in a Magnetized Ionosphere 

The incoherent scatter radar approximation allows us to simplify the estimation of plasma 

parameters calculating the probability distribution function of the charged particles 

displacements 𝑓(Δ𝑟).  In general, this cannot result in an easy task. As mention before, it can 

be achieved by solving analytically the full Boltzmann Kinetic equation [4]. Nevertheless, 

despite some available solutions for simplified versions, determining the pdf results in a 

difficult task, and sometimes, there is no solution. Alternatively, simulating a large set of 

particle trajectories permits to recover some statistical quantities. However, the stochastic 

natural behavior of equations describing particle velocities adds a different kind of 

complication explained later in this section. Using the latter approximation, statistical 

approach, the pdf  𝑓(Δ𝑟) will be calculated considering a first collisional approximation on 

magnetized ionosphere.  

First, the dynamics described by the motion of charged particles in a plasma, constraint to a 

constant random contribution of the Brownian motion process, can be described with a 

Langevin equation as: 
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 d𝑣 (𝑡)

d𝑡
= 𝐴(𝑣 , 𝑡) + 𝐶̃(𝑣 , 𝑡)𝑊(𝑡) (14) 

where 𝐴 is a vector and 𝐶̃ a matrix whose arguments are 𝑣  and 𝑡. Also, W(𝑡) is a random vector 

with gaussian independent components [6]. Note that the second term in the right side of 

equation (14) is a fluctuating force which stands for Brownian Motion defined as 𝑊(𝑡2) −

𝑊(𝑡1) = √𝑡2 − 𝑡1𝑁(0,1), where 𝑁(0,1) denote a random normal distribution with mean μ = 0 

and unit variance [5]. 𝑊(𝑡) is a vector that contributes equal and independently in each velocity 

direction. 

A special case of Markovian process (or continuous memoryless stochastic process) occurs 

when 𝐴(𝑣 , 𝑡)  =  −𝛽𝑣  and 𝐶̃ = 𝐷1/2𝐼3, used in the approximation of constant friction and 

diffusion coefficients [Kudeki milla], where 𝐷 is the diffusion coefficient and 𝐼3 stands for a 

unitary 3 × 3 matrix. Furthermore, the fluctuating force 𝑀(𝑡) = 𝐶̃𝑊(𝑡) must satisfy the 

property of Gaussian white noise correlation function [6]. 

 ⟨𝑀𝑖(𝑡)𝑀𝑗(𝑡 + τ)⟩ = 𝐷δ𝑖𝑗δ(τ) (15) 

where the suffix (𝑖, 𝑗) denotes the component direction.  

Let us rewrite the equation in terms of the new variables, adding the magnetic force because of 

the  𝐵⃗  field contribution 

 d𝑣 

d𝑡
=

𝑞

𝑚
𝑣 × 𝐵⃗ − 𝛽𝑣 + 𝐷1/2𝑊(𝑡) (16) 

To determine the pdf 𝑓(Δ𝑟), we will assume a Gaussian distributed displacement and calculate 

the corresponding variance, which can be calculated analytically from the solution of the 

Langevin equation (16). Before that, we can make an appropriate change of coordinates where 

the last component is parallel to the magnetic field 𝐵⃗ . This will be useful in calculating the 

variance. Therefore, consider an orthogonal rotation matrix  
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 𝑅(𝑡) = (
𝑐𝑜𝑠 ωB𝑡 𝑠𝑖𝑛 ωB𝑡 0
−𝑠𝑖𝑛 ωB𝑡 𝑐𝑜𝑠 ωB𝑡 0

0 0 1

) (17) 

where ωB = 𝑞|𝐵⃗ |/𝑚. Then, the analytic solution of equation (16) considering the rotation can 

be expressed as indicated in Jimenez (2006) 

 𝑣 ′(𝑡) = 𝑒−β𝑡𝑅(𝑡)𝑣0⃗⃗⃗⃗ 
′
+ 𝑅(𝑡)∫ 𝑒−𝛽(𝑡−𝑠)

𝑡

0

𝑅𝑇(𝑠)𝑀(𝑠)𝑑𝑠 (18) 

when the prime symbol denotes the new coordinate system. 

 Before to calculate the variance of the displacement, we need to calculate the correlation 

function for the velocity 𝑣 ′(𝑡) at two different times. To do that, we assume an initial Maxwell 

distribution function for velocity. As shown in [6], the correlation function for velocity read as 

 
⟨𝑣𝑖⃗⃗⃗  

′
(𝑡1)𝑣 𝑗

′
(𝑡2)⟩ =

𝑘𝐵𝑇

𝑚
𝑒−𝛽(𝑡1+𝑡2)𝑅𝑖𝑘(𝑡1)𝑅𝑗𝑘(𝑡2)

+
𝐷

2𝛽
𝑅𝑖𝑘(𝑡1)𝑅𝑗𝑘(𝑡2)[𝑒

−𝛽(𝑡1−𝑡2) − 𝑒−𝛽(𝑡1+𝑡2)] 
(19) 

where 𝑘𝐵  is the Boltzmann constant and 𝑇 is the plasma species temperature. 𝐷 can be 

calculated from the condition when 𝑡1 = 𝑡2 = 𝑡, and times goes to infinity. In that case, 

Brownian particle must be in thermal equilibrium as follows from the equipartition theory of 

classical statistical thermodynamics 

 
1

2
𝑚⟨𝑣′2(𝑡)⟩ =

3𝑘𝐵𝑇

𝑚
𝑒−2𝛽𝑡 +

3𝐷𝑚

4𝛽
[1 − 𝑒−2𝛽𝑡]  =  

3𝑘𝐵𝑇

2
 (20) 

 

from which is obvious that 𝐷 = 2𝑘𝐵𝑇𝛽/𝑚. [6] 

Using the last results, we can perform the variances for the vector position defined commonly 

as 𝑑𝑟 ′(𝑡)/𝑑𝑡 = 𝑣 ′(𝑡). Then, if at 𝑡 = 0 the particle is in 𝑟 ′(0), the mean square displacement 

can be defined as 
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 ⟨(𝑟 ′(𝑡) −  𝑟 ′(0))
2
⟩ = ∑∫ ∫ ⟨𝑣𝑖⃗⃗  

′(𝑡1)𝑣𝑖⃗⃗  
′(𝑡2)⟩

𝑡

0

𝑡

0

3

𝑖=1

𝑑𝑡1𝑑𝑡2 (21) 

Note that the equations (19) and (20) can be employed to solve equation (21). If we rename the 

directions as 𝑟 ′(𝑡) = (𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)), we obtain first for the 𝑧′ direction (which is parallel to 

𝐵⃗ )  

 ⟨(𝑧 ′(𝑡) − 𝑧 ′(0))
2
⟩ =

𝑘𝐵𝑇

𝑚
[∫ ∫ 𝑒|𝑡1−𝑡2|𝑑𝑡1𝑑𝑡2

𝑡

0

𝑡

0

] (22) 

 

 ⟨(Δ𝑧′)2⟩ =
2𝑣𝑡ℎ

2

𝛽2
(𝛽𝑡 − 1 + 𝑒−𝛽𝑡) (23) 

   
where 𝑣𝑡ℎ = (𝑘𝐵𝑇/𝑚)1/2 is the thermal velocity. Then, for the 𝑥′ and 𝑦′(both perpendicular 

to 𝐵⃗ ), we obtain 

 ⟨(Δ𝑥′)2⟩  =  ⟨(Δ𝑦′)2⟩  =  
𝑘𝐵𝑇

𝑚
[∫ ∫ 𝑐𝑜𝑠𝜔(𝑡1 − 𝑡2) 𝑒

|𝑡1−𝑡2|𝑑𝑡1𝑑𝑡2

𝑡

0

𝑡

0

] (24) 

 

 ⟨(Δ𝑥′)2⟩ = ⟨(Δ𝑦′)2⟩ =
2𝑣𝑡ℎ

2

𝛽2 + ω2
(𝑐𝑜𝑠(2γ) + 𝛽𝑡 − 𝑒−𝛽𝑡𝑐𝑜𝑠(ω𝑡 − 2γ)) (25) 

  

where γ = 𝑡𝑎𝑛−1𝛽/ω [10].  

Having the variances which contains the information about this spectra model (considering an 

ambient 𝐵⃗  field and constant friction and diffusion coefficients), we can find the probability 

density function 𝑓(Δ𝑟). As explained before, this is used to obtain the electron density 

spectrum ⟨|𝑛𝑒,𝑖(𝑘⃗ ,ω)|
2
⟩, and consequently, the ionospheric plasma parameters. 

The recovery of analytic expressions for the variances could be impossible if we increment the 

realism of the ionospheric plasma model. For instance, if we consider charged particles 

undergoing Coulomb collisions with friction and diffusion coefficients dependents of speed 
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|𝑣 |, there is no analytic solution available [10]. Despite this new complexity, we can still 

calculate the pdf 𝑓(Δ𝑟) by solving numerically the corresponding Langevin equation. To 

calculate the variances, and so the pdf 𝑓(Δ𝑟), we must solve for a large set of different particle 

trajectories. Then, using a Monte Carlo approach, the statistics can be obtained. 

Nevertheless, solving an SDE is not trivial. As the Langevin equation corresponds to that kind 

of equations, we must focus on the complications this approximation implies. In the next 

section, an introduction to SDEs and three different numerical algorithms to solve them are 

presented. 
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Chapter 3 

 

Stochastic Differential Equations 

 
The deterministic calculus, developed mainly by Newton and Leibnitz, allowed us to 

build a variety of dynamical systems from many areas of scientific research. However, 

stochastic effects must be considered if more realistic models are required. Stochastic calculus, 

known as Ito calculus, describes the dynamic systems when randomness is essential to model 

a phenomenon [12]. As mention before, ionospheric particle dynamics are described by the 

Langevin equation (14), and, because of its stochastic nature, it is relevant to understand the 

behavior of this type of equations. In this section, an introduction to SDE theory is provided. 

Then, some stochastic numerical methods are presented and studied. 

 

3.1 A first approach to SDE theory 

Stochastic equations are used in many research areas, however, all of them maintain almost the 

same structure. Let us consider the following one-dimensional SDE of the form 

 𝑑𝑋𝑡 = 𝑎(𝑋𝑡)𝑑𝑡 + 𝑏(𝑋𝑡)𝑑𝑊𝑡 (26) 

defined on the interval 𝐼[0, 𝑇], with the initial condition 𝑋(𝑡 = 0) = 𝑋0. This equation consists 

of two parts: a slowly varying component corresponding to the drift coefficient 𝑎,  and a rapid 

random fluctuation associated to the diffusion coefficient 𝑏 [12]. Note that the second 

differential in the right side of the equation is respect to a Wiener process, also known as 

standard Brownian Motion.  
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The main difference between the deterministic classical calculus and the stochastic calculus is 

that the path of a Wiener process is not differentiable [5]. From the stochastic chain rule, is 

more obvious what is the meaning of this 

 𝑑𝑓(𝑋𝑡) = (𝑓′(𝑋𝑡)𝑎(𝑋𝑡) +
1

2
𝑓′′(𝑋𝑡)𝑏

2(𝑋𝑡)) 𝑑𝑡 + 𝑓′(𝑋𝑡)𝑏(𝑋𝑡)𝑑𝑊𝑡  (27) 

where an extra term proportional to 𝑓′′(𝑋𝑡) in the drift function, provides the essential 

difference between deterministic and SDE numerical methods [12].  

 

3.2 Stochastic Numerical Methods 

As mention previously, the dynamic system equation of a phenomenon undergoing randomness 

contributions, must be solved for stochastic numerical algorithms. The complexity of these can 

vary because of the precision required to solve the equation. Similar to the deterministic case, 

more terms involving the numerical method results in a more accurate estimation. Next, we list 

three methods: 

1) Euler-Maruyama method 

The Euler-Maruyama method, applied on the general form of the SDE in (26), takes the 

form 

 𝑋𝑛+1 = 𝑋𝑛 + 𝑎(𝑋𝑛)Δ𝑡 + 𝑏(𝑋𝑛)Δ𝑊;     𝑛 = 1,2, . . 𝐿 (28) 

where Δ𝑡 is the time-step used for the numerical simulation along the interval 𝐼[0, 𝑇], 

and 𝐿 =  𝑇/Δ𝑡 is number of steps. Also, defined as a standard Brownian motion, Δ𝑊 =

𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛) is a normally distributed random variable with mean zero and 

variance Δ𝑡 =  𝑡𝑛+1 − 𝑡𝑛, or equivalently, Δ𝑊 = √Δ𝑡 𝑁(0,1), where 𝑁(0,1)  denotes 

a normally distribution random variable with mean zero and unit variance [5]. 



16 
 

This algorithm is the simplest of the stochastic methods. It is the first approximation in 

the stochastic Taylor expansion, and no second-order terms are involved [7]. Note that 

if 𝑏 ≡ 0 and 𝑋0 is constant, we return to the deterministic case known as Euler’s 

Method. Despite this simple approximation, it could be used in a wide range of 

problems, as in the asset price model in financial mathematics, where good 

approximations are obtained [5]. Also, as described in reference [11], this method is 

used to calculate the ionospheric particle statistics even when variable friction and 

diffusion coefficients are considered. However, while more complex is the 

phenomenon, a higher computational performance is needed. For this reason, higher-

order and accurate computational methods have been developed. 

  

2) Richardson Extrapolated method 

A wide range of stochastic numeric methods, which produce more accurate results, has 

been developed in the last decades.  In 1990, Talay and Tubaro proposed a numerical 

algorithm known as the Richardson extrapolated method. It belongs to a family of 

algorithms known as extrapolated methods, which take advantage of less precise 

methods to obtain more accuracy. In particular, the Richardson extrapolated method 

makes use of the Euler-Maruyama approach described before [12]. It takes the 

following form  

 𝑌𝑔,2
Δ (𝑇) = 2𝐸 [𝑔 (𝑋Δ(𝑇))] −  𝐸 [𝑔 (𝑋2Δ(𝑇))] (29) 

where 𝑋δ(𝑇) denotes the value at time 𝑇 of the Euler-Maruyama approach with time-

step equals to δ, and 𝑌𝑔,2
Δ (𝑇) denotes the more accurate result. The idea is that taking 

the difference of the expectation terms 𝐸 [𝑔 (𝑋𝛿(𝑇))], the leading error coefficients 
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cancels out [12]. Hence, we obtain a better approximation against Euler-Maruyama 

method. 

 

3) Stochastic Runge-Kutta (Platen 1999) 

A more accurate numerical algorithm was the stochastic method proposed by Platen in 

1999 [7]. It is from the family of the stochastic Runge-Kutta approximations shown in 

reference [2]. However, this version provides a free-derivative approximation that 

allow us to reduce the calculation when the coefficients of equation (25) are more 

complex. The method reads as follows  

 
𝑋𝑛+1 = 𝑋𝑛 + (𝑎(𝑋𝑛̂) + 𝑎(𝑋𝑛))

Δ𝑡

2
+ (𝑏(𝑋𝑛

+) + 𝑏(𝑋𝑛
−))

ΔWn̂

4

+ (𝑏(𝑋𝑛
+) − 𝑏(𝑋𝑛

−))((ΔWn̂)
2 − Δ𝑡)

1

4√Δ𝑡
 

(30) 

 

with  

 𝑋𝑛̂ = 𝑋𝑛 + 𝑎(𝑋𝑛)Δ𝑡 + 𝑏(𝑋𝑛)Δ𝑊𝑛̂ (31) 
and 

 𝑋𝑛
± = 𝑋𝑛 + 𝑎(𝑋𝑛)Δ𝑡 ± 𝑏(𝑋𝑛)√Δ𝑡 (32) 

 

where  Δ𝑊𝑛̂ is a three-point distributed random variable with 𝑃(Δ𝑊𝑛̂ = ±√3Δ𝑡)  =

 1/6 and 𝑃(Δ𝑊𝑛̂ = 0) = 2/3. Different to the previous methods, is clearly that more 

precision requires adding various terms in the discretization.  

All the above methods can be expanded into higher dimensions if it is required to the dynamic 

system of interest. It is important to note that to recover statistical quantities, you must use 

these methods to solve a large set of simulations. Hence, you must find the best stochastic 

method which give an adequate balance between the precision required, and the computational 

cost of each of these methods need. For example, a high-order algorithm from the family of the 
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stochastic Runge-Kutta methods can be used to have higher precision, but you must deal with 

all terms involving the discretization and the computational effort it introduces. Conversely, 

you should use a simple approximation as Euler-Maruyama, but you must deal with the low 

accuracy of the simulation. Moreover, as we required statistical quantities, we must multiply 

these complications by the number of simulations needed. 

 

3.3 Weak and Strong convergence 

Previously in this section, three algorithms had been presented. Each method can be used to 

solve the general form of the SDE shown in equation (26). These methods differ in the precision 

that each of them can achieve at solving the equation, however, we still have not provided a 

rigorous form to analyze it.  Therefore, an introduction to the order of convergence is presented. 

First, a SDE numerical method is said to have a strong order of convergence equal to γ if exists 

a constant 𝐶 such  

 𝐸|𝑋𝑛 − 𝑋(𝑡𝑛)| ≤ 𝐶Δ𝑡γ (33) 

where the left part of the inequality denotes the expected value of the error between the analytic 

value 𝑋𝑛 and the simulation 𝑋(𝑡𝑛), at a time 𝑡 =  𝑛 Δ𝑡 [5]. Strong convergence suggests a 

strictly restrictive relation. It affirms that the mean of the absolute error of a large set of 

simulations, is enclose by the right side of (32). In other words, the simulation is required to be 

constantly close to the exact solution. 

On the other hand, a method is said to have weak order of convergence of order γ if exists a 

constant 𝐶 such that  

 |𝐸[𝑔(𝑋𝑛)] − 𝐸[𝑔(𝑋(𝑡𝑛))]| < 𝐶Δ𝑡γ (34) 
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In contrast to the strong convergence, the left part of the inequality denotes that the error of the 

expected value of a dependent function 𝐸[𝑔(𝑋𝑛)] compared to the simulated expected value 

𝐸[𝑔(𝑋(𝑡𝑛))], are delimited. In this case, it is not important the exact solution of the variable 

𝑋𝑛, but to keep the tendency of functions evaluated in this variable.  

Note that all stochastic methods have both, strong and weak order of convergence, which are 

not necessarily equal. There are methods which has a higher strong order of convergence, but 

low weak order of convergence, and the reverse. As we are interested on statistical quantities, 

which are functions that depends on the dynamic variables, methods with higher weak order of 

convergence are required. 
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Chapter 4 

Numerical Analysis of SDEs 

 

4.1 Weak convergence analysis on a one-dimensional SDE 

As mention before, numerical SDE methods can be classified by their strong or weak order of 

convergence. We already listed three different algorithms, but no test has been done yet. 

Therefore, we will examine the weak order of convergence by using a one-dimensional SDE. 

First, to analyze the weak order of convergence 𝛾 of each method, we need to stablish the 

following relation derived from equation (34) 

 𝑙𝑜𝑔 𝑒Δ𝑡
𝑤𝑒𝑎𝑘 = 𝑙𝑜𝑔 𝐶 + γ 𝑙𝑜𝑔Δ𝑡 (35) 

where the inequality has been converted into an equation. Also, a ten based logarithm has been 

taken, and 𝑒Δ𝑡
𝑤𝑒𝑎𝑘 denotes the difference between the expected values |𝐸[𝑔(𝑋𝑛)] − 𝐸[𝑔(𝑋(𝑡𝑛))]| 

calculated with a time-step Δ𝑡. The idea is solving for a least square method, considering 𝑙𝑜𝑔 Δ𝑡 

as an x-axis,  𝑙𝑜𝑔 𝑒Δ𝑡
𝑤𝑒𝑎𝑘 as a y-axis and γ as the slop of the curve. Hence, we obtain a straight-

line approximation where each point denotes the error between the exact value and the 

simulation calculated with a time-step Δ𝑡. 

To exemplify this, consider the following SDE of the form 

 𝑑𝑋𝑡 = (
1

2
𝑋𝑡 + √𝑋𝑡

2 + 1)𝑑𝑡 + √𝑋𝑡
2 + 1𝑑𝑊𝑡 ;    X(0) = 0       (36) 

with analytic solution 𝑋𝑡 = 𝑠𝑖𝑛ℎ(𝑡) + 𝑊𝑡 . 
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To analyze the weak order of convergence γ, consider a time interval 𝐼[0,2] and a function 

𝑔(𝑥) = 𝑝(𝑎𝑟𝑐ℎ𝑠𝑖𝑛(𝑥)), where 𝑝(𝑧) = 𝑧3 − 6𝑧2 + 8𝑧 is a polynomial. Also, the expectation 

of the solution can be calculated as shown in [2] 

 𝐸(𝑔(𝑋𝑡)) = 𝑡3 − 3𝑡2 + 2𝑡 (37) 

Finally, the solution of 𝐸(𝑔(𝑋𝑡)) is approximated with step sizes 2−1, 2−2, 2−3, 2−4, and a 

number 𝑁 = 106 of different simulations were performed to calculate the numerical 

expectation.   

 

Figure 4: Weak order of convergence is shown using the SDE (35). The analysis for Euler Maruyama, 
Richardson extrapolated method and stochastic Runge-Kutta (proposed by Platen) are in colors red, blue, and 

green, respectively. The four dots in each line are for each time-step value. 

 

These methods are particularly useful when statistical quantities are required. From figure 4, 

we can observe two features: the first one is concern to the method itself. The error associated 

to each one is reduced when time step is decreased. Also, the way that these errors decrease 

with the time step is as straight line with slope equals to γ. From the literature, it is known that 

the order of convergence is γ =  1 for Euler-Maruyama, and γ =  2 for the others two methods. 

The second feature is that in order of accuracy, Euler-Maruyama is the less precise, and, despite 

Richardson extrapolation and stochastic Runge-Kutta have the same order of convergence, the 
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latter is more accurate. This is consequent with the fact that if the method has a bigger 

discretization, the simulation is more precise. 

 

4.2 Monte Carlo simulation of the Woodman’s Model 

The Woodman’s (1967) model considers a collisional and magnetized ionosphere but taking 

the friction and diffusion coefficients as constants. The expression of the dynamics was 

described in equation (16), but we can be more explicit and separate it in three dimensions 

  𝑑 (

𝑣𝑥
′

𝑣𝑦
′

𝑣𝑧
′

) =  (

𝑣𝑦
′ ω𝐵 − 𝛽𝑣𝑥

′

−𝑣𝑥
′ω𝐵 − 𝛽𝑣𝑦

′

−𝛽𝑣𝑧
′

)𝑑𝑡 + (

𝐷⊥
1/2

0 0

0 𝐷⊥
1/2

0

0 0 𝐷∥
1/2

)𝑑 (
𝑊1

𝑊2

𝑊3

) (38) 

remember that 𝑣𝑧
′  is parallel to the 𝐵⃗  field and the prime symbol is due to the change of 

coordinates of the rotation matrix in (17). Also, ωB =  𝑞𝐵/𝑚 is the gyrofrequency and the 

diffusion matrix is diagonal with 𝐷⊥
1/2

= 𝐷∥
1/2 = (2𝑘𝐵𝑇𝛽/m)1/2 because of the approximation 

taken.  

As we are interested in computing the statistical quantities (variances) numerically, previously 

calculated analytically in (23) and (25), we will use the three methods mentioned above to solve 

the velocity equation (38). To achieve this, we must follow the next steps: first, to compute the 

particle velocity described in equation (16) we can use each of the methods listed above. 

However, the multidimensional extension to each algorithm must be considered, such we are 

working with a velocity vector. These extensions are found in reference [7]. Then, the velocity 

vector must be integrated over time to obtain the particle displacement Δ𝑟 . Finally, the 

variances ⟨(Δ𝑥′)2⟩,  ⟨(Δ𝑦′)2⟩ and ⟨(Δ𝑧′)2⟩ are calculated by averaging a large set of particles. 
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Note that in figure 5, the simulation has been done with the next settings: first, the friction 

coefficient is equal to 𝛽 =  5.88 𝐻𝑧, and the diffusion coefficient follows the constrain 𝐷 =

2𝑘𝐵𝑇𝛽/𝑚. Additionally, 𝑇 =  1000 𝐾  and the mass 𝑚 is for oxygen ions 𝑂+. Then, the initial 

velocity condition is assumed to be a random normal distributed 𝑁(0, 𝑣𝑡ℎ). Last, a time step 

Δ𝑡 = 10−4 𝑠 and a number 𝑁 =   10 000 of different particle trajectories were simulated 

within the time interval 𝐼[0,0.5] in seconds.  

 

 
(a) 

 

 

 
(b) 
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(c) 

 
Figure 5: Parallel 𝑧′ (left plot) and perpendicular 𝑥′ , 𝑦′ (right plot) variances has been simulated for each SDE 
method listed in this work.  In blue are plotted the analytic expressions (equations (23) and (25)), and in red are 
plotted the simulations (a) Euler-Maruyama (b) Richardson Extrapolation (c) Stochastic second order Runge-

Kutta 

 

From the graphics, a clear increment of accuracy is observed for higher-order algorithms as the 

shapes of both curves are nearer. This suggests that without the necessity of increasing the 

number of trajectories for the Monte Carlo, a reduction in the absolute error is obtained. 

However, we must pay the computational effort for the extra terms used in the higher-order 

algorithms.  

 

4.3 Future Work 

This work intends to present a theoretical review of ISR technique and SDEs. Moreover, the 

importance to study SDE theory when no analytic solution is available has been discussing. In 

addition, we are interested to show the availability of other higher-order algorithms and their 

potential to perform better stochastic analysis, as many times required in ionosphere 

research. Richardson extrapolated method and stochastic weak second order Runge-Kutta are 

potential alternatives against the Euler-Maruyama scheme. The most important extension to 

this work is to complete the analysis for the methods listed here by convergence and linear 
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stability tests. Then, produce an SDE analysis but in the complete Milla and Kudeki (2011) 

description, where the friction and diffusion coefficients are variable and take the form of 

Spitzer coefficients [11].  
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