PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

ESCUELA DE POSGRADO

“RESTAURACIÓN DE LOS CANALES EUTROFIZADOS DE ABASTECIMIENTO DE AGUA A LOS PANTANOS DE VILLA”.

TESIS PARA OPTAR EL GRADO ACADÉMICO DE MAGÍSTER EN DESARROLLO AMBIENTAL

AUTOR
ING. ALVARO HOLGER SÁNCHEZ SÁNCHEZ

ASESORA
DRA. ANA SABOGAL DUNIN BORKOWSKI

Agosto, 2020
RESUMEN

La estrecha relación entre los usos del agua que se da fuera de los Pantanos, con el estado de conservación del ecosistema del Refugio de Vida Silvestre Pantanos de Villa (RVSPV), están muy ligados. Esta investigación se centra en los manantiales de agua y en los canales de abastecimiento de agua que alimentan al RVSPV, que se encuentran en el área de amortiguamiento.

Por un lado, la falta del servicio de agua y desagüe, obliga a la población aledaña a los canales a buscar una fuente segura de agua para satisfacer sus necesidades. Según las encuestas realizadas para esta investigación, los usos del agua más representativos es la “lavandería”. Este lugar es un ojo de agua en la cual esta acondicionado para que la población tenga acceso y las facilidades para realizar actividades para el lavado de ropa.

Por otro lado, se evidencia una constante afectación al RVSPV por numerosas investigaciones en la misma área protegida, ignorando los usos del agua que se dan dentro del área de amortiguamiento del RVSPV.

En la investigación se evidencia que, pese a la llegada de los servicios de agua y desagüe a los domicilios, un 37% de los encuestados seguirán utilizando las instalaciones de la “lavandería”. Debido a que las instalaciones de la lavandería: no representa una afectación económica para ellos, facilita lavar frazadas de forma rápida/eficiente; y la lavandería es considerada como una actividad de distracción y/o esparcimiento donde hasta los niños juegan.

Representando la actividad de la “lavandería”, un aporte constante de fósforo al agua, contribuyendo a elevar el estado trófico de los canales y a las mismas lagunas de los Pantanos. Proceso eutrófico el cual origina: un crecimiento excesivo de vegetación, disminución del área de los Pantanos, pérdida de biodiversidad y la degradación del área natural protegida en sí.

Palabras claves: Usos del agua en Pantanos de Villa, eutrofización de los canales de los Pantanos de Villa.
ABSTRACT

The close relationship between the uses of water that occurs in the buffer zone, with the conservation status of the Pantanos de Villa Wildlife Refuge (RVSPV), are closely linked.

This research focuses on water outlets and water supply channels that feed the RVSPV, which are located in the buffer zone.

On the one hand, the water and sewer service absence, forces the surrounding population to the channels to find a safe source of water to meet their needs. According to the surveys conducted for this research, the most representative uses of water is “laundry”. This place is underground outlet water in which it is conditioned so that the population has access and has facilities to carry out activities for washi

On the other hand, a constant impact on RVSPV is evidenced by numerous researches in the same protected natural area, ignoring the uses of water that occur within the RVSPV buffer zone.

The investigation shows that, despite the arrival of water and sewage services to homes, 37% of them will continue to use the facilities of “laundry”. Because the laundry facilities: does not represent an economic affectation for them, it facilitates washing blankets quickly/efficiently; and laundry is considered a distraction and/or leisure activity where even children play.

Representing the activity of “laundry”, a constant contribution of Phosphorus to water, contributing to elevate the trophic state of the channels and to the lagoons of the RVSPV. Eutrophic process which originates: an excessive growth of vegetation, decrease in the area of RVSPV, loss of biodiversity and the degradation of the protected natural area itself.

Key words: Water uses in RVSPV buffer zone, trophic level index in RVSPV.
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICE DE TABLAS</td>
<td>5</td>
</tr>
<tr>
<td>INDICE DE FIGURAS</td>
<td>6</td>
</tr>
<tr>
<td>AGRADECIMIENTOS</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>8</td>
</tr>
<tr>
<td>CAPÍTULO 1: PROBLEMA SOCIOAMBIENTAL</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Justificación</td>
<td>10</td>
</tr>
<tr>
<td>CAPÍTULO 2: ESTADO DE LA CUESTIÓN</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Humedales</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Clasificación del nivel trófico</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Eutrofización</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Actividad antropogénica en cuerpos de agua</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Determinación de análisis de agua</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Área de estudio: Pantanos de Villa</td>
<td>36</td>
</tr>
<tr>
<td>2.7 Base legal</td>
<td>39</td>
</tr>
<tr>
<td>CAPÍTULO 3: METODOLOGÍA</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Objetivo</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Hipótesis</td>
<td>43</td>
</tr>
<tr>
<td>3.3 Preguntas de investigación</td>
<td>43</td>
</tr>
<tr>
<td>3.4 Selección del lugar de estudio</td>
<td>44</td>
</tr>
<tr>
<td>3.5 Análisis Cualitativo</td>
<td>46</td>
</tr>
<tr>
<td>3.6 Análisis Cuantitativo</td>
<td>54</td>
</tr>
<tr>
<td>CAPÍTULO 4: RESULTADOS OBTENIDOS DE LAS ENCUESTAS</td>
<td>65</td>
</tr>
<tr>
<td>4.1 Caracterización de la población encuestada</td>
<td>67</td>
</tr>
<tr>
<td>4.2 Resultados de las respuestas de la población encuestada</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Resultados del uso industrial del agua</td>
<td>73</td>
</tr>
<tr>
<td>CAPÍTULO 5: RESULTADOS OBTENIDOS EN LA CALIDAD DEL AGUA</td>
<td>80</td>
</tr>
<tr>
<td>5.1 Trabajo de Campo para recolección de muestras de agua</td>
<td>80</td>
</tr>
<tr>
<td>5.2 Resultados de los análisis de agua</td>
<td>86</td>
</tr>
<tr>
<td>CAPÍTULO 6: DISCUSIÓN DE RESULTADOS</td>
<td>89</td>
</tr>
<tr>
<td>6.1 Resultados sobre el uso del agua</td>
<td>89</td>
</tr>
</tbody>
</table>
6.2. Resultados del nivel trófico del agua ...90
6.3. Relación entre los usos del agua con el estado trófico ..93

CAPÍTULO 7: CONCLUSIONES ..96
CAPÍTULO 8: RECOMENDACIONES PARA CONTROLAR DETENER Y/O
MINIMIZAR EL USO DEL AGUA EN LOS CANALES ..98
CAPÍTULO 9: BIBLIOGRAFÍA ..99
ANEXO 1 ...105
ANEXO 2 ...110

INDICE DE TABLAS
Tabla 1: Cuadro de Infraciones Administrativas ... 41
Tabla 2: Matriz de consistencia .. 45
Tabla 3: Cálculo de la muestra por habilitación ... 49
Tabla 4: Tamaño de muestra y encuestas realizadas por habilitación 49
Tabla 5: Modelo de encuesta aplicado ... 53
Tabla 6: Resumen de velocidades en puntos de control en el área de amortiguamiento
del RVSPV. .. 57
Tabla 7: Plan de muestreo de la calidad de agua ... 58
Tabla 8: Esquema de Clasificación trófica de lagunas propuesta por la O.E.C.D. en 1982
(Organización para la Cooperación y el Desarrollo Económico) 61
Tabla 9: Índice de estado trófico y clasificación de lagos de Carlson 1996 62
Tabla 10: Resumen de toma de muestras de agua .. 63
Tabla 11: Matriz general de datos crudos, obtenidos en la encuesta con más de 2400
data procesados .. 66
Tabla 12: Género y rango de edad de la población de encuestados 67
Tabla 13: Población de encuestados por sexo y por habilitación 68
Tabla 14: Género de los encuestados versus disponibilidad de agua y desagüe en sus
viviendas .. 69
Tabla 15: Uso del agua de la lavandería por género .. 69
Tabla 16: Periódiedad de uso del agua de la lavandería ... 70
Tabla 17: Horarios de uso del agua de la lavandería .. 70
Tabla 18: Razones por lo que las familias seguirán utilizando la lavandería pese a la llegada de los servicios de SEDAPAL. .. 71
Tabla 19: Familias que no usan la lavandería según disponibilidad de servicios por SEDAPAL. .. 71
Tabla 20: Conocimiento de destino final del agua. ... 72
Tabla 21: Conocimiento de destino final del agua y continuidad del uso del agua por género. .. 72
Tabla 22: Identificación de las empresas aledañas a los canales de abastecimiento de agua.. 74
Tabla 23: Resultados de los parámetros evaluados en la caracterización del agua residual tratada PTAR Esmeralda Corp. y métodos asociados. .. 78
Tabla 24: Resultados de medición de TDS y pH de las muestras de agua............................ 86
Tabla 25: Comparación de los resultados de Sólidos Totales Disueltos (TDS). 87
Tabla 26: Resultados de los monitoreos de la calidad del agua en los canales 88
Tabla 27: Determinación de los valores de transparencia a partir de Turbiedad. 90
Tabla 28: Valores de TSI (Troffic State Index) en las muestras de agua Carlson (1996). .. 91
Tabla 29: Clasificación del nivel trófico utilizando el método OCDE (1982) las muestras de agua .. 92
Tabla 30: Comparación de los resultados utilizando los métodos Carlson (1996) y del OCDE (1982)... 93

INDICE DE FIGURAS

Figura 1: Ciclo del nitrógeno.. 18
Figura 2: Ciclo del fósforo ... 20
Figura 3: Procesos comunes de contaminación del agua subterránea 29
Figura 4: Distribución de nitratos y nitritos en humanos.. 30
Figura 5: Croquis de ubicación del área de las encuestas... 51
Figura 6: Ubicación de los manantiales, según Dirección de Geología Ambiental y Riesgo geológico INGEMET, 2019. ... 55
Figura 7: Ubicación de los puntos de muestreo de agua en los canales 56
Figura 8: Mapa de Los Pantanos de Villa (Adaptado de SERNANP-RVSLPV, 2010). 59
AGRADECIMIENTOS

Para la elaboración de la presente investigación, agradezco en primer lugar a Dios por darme la vida y la idea del tema de tesis, en segundo lugar, a mi esposa por el apoyo incondicional y por la paciencia por todo el tiempo que duro la investigación. Agradezco también el apoyo a mis hijos que de un modo aportaron el desarrollo de la investigación.

A mis padres por la motivación, apoyo moral y por la insistencia en lograr el nuevo grado.

También agradezco a los colaboradores del SERNANP en especial a Maria Diaz y al Ing. Omar Ubillus, así como los guardaparques y voluntarios; que, con algunas limitaciones, trabajan arduo para proteger y conservar al Refugio de Vida Silvestre Pantanos de Villa.

A las profesoras de los cursos Seminario de Tesis I y II; así como a la asesora Dra. Sabogal, por su constante aporte para enriquecer más esta investigación.

A todas aquellas personas que no he mencionado, pero que me han apoyado indirectamente en esta investigación. Muchas gracias por su desinteresado apoyo.
INTRODUCCIÓN

El refugio de Vida Silvestre Pantanos de Villa son humedales en la cual se desarrollan ecosistemas acuáticos y terrestres en un solo lugar. Aquí se origina la diversidad este en su máximo esplendor. «La estructura de un humedal está influenciada por su hidrología. La cual tiene dos componentes. Uno es el aspecto físico del agua y su movimiento: la precipitación, la superficie y el flujo de la superficie, la dirección y la energía cinética del agua y la composición química de ésta» (Smith & Smith 2007: 576-577).

Esta tesis estudia la estrecha relación entre los usos del agua que se da fuera de los Pantanos, con el estado de conservación del ecosistema del Refugio de Vida Silvestre Pantanos de Villa (RVSPV). En donde estos usos del agua de los canales originan una afectación considerable sobre el humedal en sí.

La afectación del humedal se estudiará desde el enfoque como el Estado Trófico, en la cual es un concepto fundamental en la gestión de los mismos. «En él se describe la relación entre el estado de nutrientes en un lago y el crecimiento de la materia orgánica en el mismo», así como la pérdida de diversidad (Moreno & Quintero 2010: 25).

En la investigación se evidencia que, pese a la llegada de los servicios de agua y desagüe a los domicilios (que aún no cuentan con este servicio), un 37% de los encuestados seguirán utilizando las instalaciones de la “lavandería”. Atribuyendo a que facilita lavar frazadas de forma rápida/eficiente; y la lavandería es considerada como una actividad de distracción y/o esparcimiento donde hasta los niños juegan.

Representando la actividad de la “lavandería”, un aporte constante de fósforo al agua, contribuyendo a elevar el estado trófico de los canales y a las mismas lagunas de los Pantanos. Proceso eutrófico el cual origina: un crecimiento excesivo de vegetación, disminución del área de los Pantanos, pérdida de biodiversidad y la degradación del área natural protegida en sí.
CAPÍTULO 1: PROBLEMA SOCIOAMBIENTAL

El crecimiento urbano no planificado de los distritos de Chorrillos, San Juan de Miraflores, Surco y Villa el Salvador, han reducido la superficie del Refugio de vida Silvestre Pantanos de Villa a sólo 263,27 ha; en un proceso (que se evidencia bibliográficamente desde el año 1996 y) que aún no se detiene. El área vecina a los pantanos está ocupada por clubes privados, colegios particulares, áreas urbanas (residenciales y marginales), así como industrias [formales e informales] (MINAGRI 1996 en Álvarez 2016: 2).

Desde 1996 se considera que uno de los principales problemas de contaminación de los Pantanos de Villa es el uso de los canales de abastecimiento del humedal como lavaderos domésticos (MINAGRI 1996), lo cual produce contaminación por detergentes en las lagunas principales de los humedales afectando así la cadena trófica. Además, al contaminar los canales de abastecimiento o algunas lagunas con desechos urbanos, se acelera severamente el proceso de eutrofización y, en consecuencia, se degrada una reserva natural rica en biodiversidad y altamente frágil (Álvarez 2016: 3).

El ecosistema de los Pantanos de Villa, ha sufrido varios cambios a través de los años mediante la contaminación de los canales de abastecimiento y/o las lagunas con desechos urbanos y aguas residuales sin tratamiento (eliminación de basura orgánica y adición de detergentes), derivando en una aceleración en los procesos de eutrofización, alterándose los diferentes microhábitats formados y afectando las especies de flora y fauna. (Guillén 2002: 24).

El uso de los ojos de agua como “lavandería” por parte de la población se remota desde que el crecimiento de la zona urbana saturó el área de amortiguamiento del RVSPV. Que, según la población asentada en la zona, el uso del agua para lavandería se remota a más de 40 años.

Estas actividades en la lavandería, como: limpieza de carro, bebida de animales y el uso de detergentes domésticos incrementa la concentración de fosfatos lo que genera un aumento de nutrientes provocando condiciones de Eutrofización (Álvarez 2016: 61).

La conservación de la diversidad biológica depende fundamentalmente de las medidas de conservación que se han adoptado a través del Estado, así como la condición de Refugio de Vida Silvestre como “Área Natural Protegida” brinda las garantías necesarias para la conservación de la diversidad biológica. En el estudio “Estado actual de la conservación de los hábitats de los pantanos de Villa”, se evidencia una pérdida y el deterioro que está asociado al manejo inadecuado del recurso hídrico y a las presiones antropogénicas (Pulido & Bermúdez 2018: 689).
En un estudio realizado por Álvarez en (2016) en los Pantanos de Villa, se concluyó que los niveles de N y P en el agua son tal, que se clasifica dichos cuerpos de agua de los Pantanos de Villa en un estado altamente eutrofizado. Razón por la cual excesiva producción primaria (crecimiento de vegetación) en los canales y en las lagunas, aumentando los costos para la limpieza para el retiro de vegetación (Álvarez 2016: 77).

La población aledaña ante la carencia de los servicios de agua y desagüe, tiene necesidades de agua para sus labores cotidianas. Y aprovechando la gran y libre disponibilidad del agua en los manantiales, utilizan el agua y los canales para actividades como principalmente el lavado de ropa.

Por otro lado, debido a la multi-autoridad en la zona de amortiguamiento específicamente en la lavandería en el (SEERNANP, PROHVILLA y Municipios de Chorrillos, San Juan de Miraflores; la consecuencia es que nadie se hace cargo para controlar el ingreso a dichas instalaciones. En donde la población rompió una malla de reja metálica que PROHVILLA instaló para que la población deje de utilizar la “lavandería”.

Provocando un problema socio-ambiental en donde los actores principales son: SERNANP, PROHVILLA, SEDAPAL, Municipios de Chorrillos y San Juan de Miraflores; y los pobladores que carecen de los servicios de agua y desagüe. Este problema socio-ambiental está en vigencia y durará (o por lo menos bajará su magnitud) por lo menos dos años más, hasta que SEDAPAL termine la obra de los sistemas de agua y desagüe.

De acuerdo a los Objetivos de Desarrollo Sostenible (O.D.S.) propuesto por la Organización de Naciones Unidas (ONU), la problemática antes presentada corresponde a los siguientes objetivos:

- ODS N° 4 – Educación de calidad: Para que todos los pobladores que viven en el área de amortiguamiento de los Pantanos, conozcan la importancia de proteger los afloramientos de agua y los Pantanos.
- ODS N° 6 – Agua limpia y saneamiento: Debido a que dicha habilitación aún no tiene sistema de agua ni desagüe.
- ODS N° 15 – Vida de ecosistemas terrestres: Debido a que es necesario proteger el ecosistema.

1.1 Justificación
El Refugio de Vida silvestre Pantanos de Villa cuenta con muchas investigaciones que involucran sólo las lagunas de los Pantanos, llegando a explorar: áreas de afectación por el proceso de crecimiento urbano hasta los cambios en la biodiversidad por la desaparición o disminución de especies como los protozoarios. Dejando de lado (en la mayoría de estudios) a los canales de abastecimiento de agua a los Pantanos y a los afloramientos de agua que ocurren fuera del área de los Pantanos.

LA RVSPV Está reconocida por la Convención Ramsar, por su importancia como hábitat de aves acuáticas que dependen ecológicamente de esos humedales. Su contenido de agua se debe al afloramiento de la capa freática del continente, así como del mar. La evaporación aumenta la presencia de sales, haciéndola de tipo salobre, que persiste por su proximidad al mar. Existen muchas especies de aves acuáticas migratorias y residentes, peces, algas unicelulares y protozoarios (Guillén 2003: 2).

Por otro lado, pocos estudios realizan investigaciones como un proceso de Eutrofización en sí. Llegando varios estudios a concluir indirectamente que los Pantanos están en un proceso avanzado de eutrofización, no focalizando el estudio como una Eutrofización. Dicho proceso de Eutrofización no sólo se puede verificar en las lagunas sino también en los canales de abastecimiento de agua, debido al crecimiento excesivo de lentejas de agua. Que en algunos tramos obstaculiza la penetración de la luz solar en toda la columna de agua, impidiendo que se realice la fotosíntesis y por ende provocando condiciones anóxicas (carencia de oxígeno) en dichos canales.

La presente investigación recoge: la falta de investigación en los canales y el proceso de Eutrofización (o Nivel trófico del agua) como tal, para relacionarlo con el uso del agua por parte de la población que carece de servicios de agua y desagüe que vive dentro del área de amortiguamiento. Como un instrumento para evaluar y entender mejor al problema socio-ambiental descrito líneas arriba.
CAPÍTULO 2: ESTADO DE LA CUESTIÓN

2.1. Humedales

2.1.1. Características

Según Smith & Smith 2007, Los humedales varían a lo largo de un gradiente desde suelos permanentemente inundados hasta periódicamente saturados y albergan plantas especializadas que se desarrollan cuando las condiciones del suelo permanecen saturadas de agua durante todo el año o la mayor parte de éste.

«Los humedales se producen generalmente en tres situaciones topográficas:

i) Los humedales de cuenca se desarrollan en cuencas poco profundas, que van desde las depresiones de las tierras altas hasta las lagunas y los lagos. ii) Los humedales fluviales se desarrollan a lo largo de ríos y arroyos que, al inundarse periódicamente, rellenan áreas adyacentes separadas de ellos por bancos de tierra. iii) Un tercer tipo, el humedal periférico, se encuentra en los márgenes de los grandes lagos. Lo que diferencia a los tres tipos es, en parte, la dirección del flujo del agua. El flujo de agua de los humedales de cuenca es vertical e incluye precipitaciones e infiltración de agua dentro del suelo. En los humedales fluviales, el flujo del agua es unidireccional. En los humedales periféricos, el flujo se da en dos direcciones, porque incluye el aumento del nivel del lago o la acción de la marea. Estos flujos transportan nutrientes y sedimentos dentro y fuera de los humedales» (Smith & Smith 2007: 576-577).

Según Guillén (2003), para el caso del RVSPV tiene aportación de agua de la parte subterránea y marina, debido a la presencia de sales, haciéndola un agua del tipo salobre, que persiste por su proximidad al mar (Guillén, Morales & Severino 2003: 2).

«La estructura de un humedal está influenciada por los fenómenos que lo producen: su hidrología. La hidrología tiene dos componentes. Uno es el aspecto físico del agua y su movimiento: la precipitación, la superficie y el flujo de la superficie, la dirección y la energía cinética del agua y la composición química de ésta. El otro es el hidro período, que incluye la duración, la frecuencia, la profundidad y la estación de inundación. La duración del hidro período varía según el tipo de humedal. Los humedales de cuenca tienen un hidro período más extenso. Generalmente, se inundan durante los periodos de lluvias grandes y disminuyen en periodos de sequía. Ambos fenómenos parecen ser esenciales para la existencia de humedales de larga duración. Los humedales fluviales
tienen un período de inundaciones corto asociado al flujo de arroyos o ríos que bajan de las montañas. El hidro período de los humedales periféricos, influenciado por las olas del lago y los vientos, puede ser corto y regular, y puede no sufrir oscilaciones estacionales típicas de las marismas de cuenca» (Smith & Smith 2007: 580-581).

Por otro lado: «Los humedales son un conjunto de pantanos que se encuentra conectados entre sí. Los humedales en el Perú son muy importantes ya que sirven de refugio de aves en su trayecto migratorio enlazando de esta manera diversos Ecosistemas. Los humedales se encuentran protegidos por la convención RAMSAR, institución Internacional que los protege. El Refugio de Vida Silvestre Los Pantanos de Villa pertenecen al sistema de protección de Humedales RAMSAR. Si bien el nivel de sus aguas varía considerablemente con cada época del año (estiaje / avenida), el RVSPV está compuesto por pantanos permanentes. Los procesos de respiración son principalmente anaeróbicos. Su importancia radica en la presencia de aves, muchas de ellas migratorias, que utilizan el espacio de los juncos y totoras que rodean el pantano para la anidación» (Sabogal 2013: 132).

Discusión: En cuanto a las características de los humedales, según Smith & Smith (2007) el RVSPV es un humedal “periférico” debido a que el flujo se da en dos direcciones diferentes. Es decir, los Pantanos de Villa tiene un aporte del agua subterránea de la parte continental, así como un aporte de agua marina (debido a su proximidad con el mar). Tal como corrobora Guillén (2003), el aporte marino sobre el humedal hace que las características del agua tengan algo de salaz. Esta condición de doble aporte de agua (salobre), provoca que el agua incremente sus sales disueltas (aumento de la Conductividad eléctrica del agua). Factor en el agua, que hace que diversas especies se desarrollen e inclusive se adapten a este nuevo ambiente. Incrementando así la diversidad de especies que eligen este Ecosistema como transición durante la migración de aves, convirtiendo esta área una de los principales puntos de turismo ecológico de Lima.

2.1.2. **Función y valores**

Según el Manual de la Convención de Ramsar: «Las interacciones de los componentes físicos, biológicos y químicos de un humedal como parte de la “infraestructura natural” del planeta, tales como los suelos, el agua, las plantas y los animales, hacen posible que desempeñe muchas funciones vitales, como por ejemplo, almacenamiento de agua; protección contra tormentas y mitigación de crecidas; estabilización de costas y control de la erosión; recarga y descarga de acuíferos; depuración de aguas; retención de
nutrientes sedimentos y contaminantes; y estabilización de las condiciones climáticas locales, particularmente lluvia y temperatura».

Los humedales reportan a menudo beneficios económicos enormes, como por ejemplo abastecimiento de agua (cantidad y calidad); pesca (más de dos tercios de las capturas mundiales de peces están vinculadas a la salud de las zonas de humedales); agricultura, gracias al mantenimiento de las capas freáticas y a la retención de nutrientes en las llanuras aluviales; madera y otros materiales de construcción; recursos energéticos, como turba y materia vegetal; recursos de vida silvestre; transporte; un amplio espectro de otros productos de humedales, incluidas hierbas medicinales; y posibilidades de recreación y turismo. Además, los humedales poseen atributos especiales como parte del patrimonio cultural de la humanidad – están asociados a creencias religiosas y cosmológicas y a valores espirituales, constituyen una fuente de inspiración estética y artística, aportan información arqueológica sobre el pasado remoto, sirven de refugios de vida silvestre y de base a importantes tradiciones sociales, económicas y culturales locales. En la Evaluación de los Ecosistemas del Milenio (EM), publicada en 2006, se describe a los ecosistemas como el complejo de comunidades vivas (incluidas las comunidades humanas) y del medio ambiente no vivo (Componentes de los Ecosistemas) que interactúan (a través de Procesos Ecológicos) como una unidad funcional que proporciona, entre otras cosas, una variedad de beneficios a los seres humanos -Servicios de los Ecosistemas (Ramsar 2013: 10-11).

«Históricamente los humedales han sido considerados por algunos como terrenos baldíos e insalubres-y en ocasiones aún se les considera así- asociados a malaria y otras enfermedades hídricas, resultando una molestia y peligro para el hombre, el que además ha deseado ocuparlas “sanearlas” para establecer cultivos y para la crianza de ganados, olvidando su importante papel ecológico y como generator de servicios útiles a la sociedad y beneficios económicos, a veces muy notables. El resultado ha sido que desde la antigüedad se lo ha ido destruyendo, rellenándolos o drenándolos, con frecuencia con apoyos e incentivos gubernamentales» (García N. en E. Custodio 2010: 120).

Sin embargo, hay casos contrarios como el caso de “Ducks Unlimited” (www.ducks.org/), la cual es una asociación que se formó en 1937 durante el Dust Bowl cuando las poblaciones de aves acuáticas habian caído a niveles sin precedentes por la sequía de América del Norte. Antes que las poblaciones de aves disminuyan más allá de la recuperación, un pequeño grupo de deportistas se unió para formar una organización que se conoció como Ducks Unlimited. En la cual su misión es conservación del hábitat.
La escasa aceptación social hasta épocas recientes se deriva en parte de antiguas leyendas y mitos, que aún se reflejan en la literatura actual. En muchos países se ha llegado a destruir hasta el 80% de la superficie primitiva de humedales y en otras se va en este camino, como en áreas tropicales donde se busca además una riqueza maderera que en buena parte en no renovables y que lleva a una seria degradación del territorio (E. Custodio 2010: 120).

Discusión: Entre las funciones mencionada por Custodio (2010) y Ramsar (2013), se concluye que su importancia particular del RVSPV radica en que: protege contra tormentas, mitiga las crecidas, estabiliza la costa, depura las aguas, retiene los nutrientes sedimentos y contaminantes; y estabiliza las condiciones climáticas locales. Beneficiando directamente a los distritos de Chorrillos, Villa el Salvador y San Juan de Miraflores, e indirectamente a Lima Metropolitana.

Sin embargo, es deber de estos profesionales que conocen de estos beneficios el de comunicar tanto a la población colindante y no colindante, así como a las autoridades la importancia de la existencia del RVSPV para evitar su constante deterioro.

2.1.3. Preservación

«Durante siglos, hemos visto a los humedales como lugares misteriosos, prohibidos: fuentes de pestilencia, el hogar de insectos peligrosos y portadores de pestes, y la morada de criaturas siniestras y viscosas que surgen de las aguas de los pantanos. Han sido considerados lugares que deben ser drenados para que su uso sea más productivo según los estándares humanos: terrenos agrícolas, vertedero de residuos sólidos, viviendas, desarrollos industriales y calles.

Como ejemplo: en Europa durante la época Romana, se drenaron los grandes pantanos alrededor del río Tíber para hacer sitio a la ciudad de Roma.

Citando otro ejemplo en América de Norte: En 1763 a pesar de la gran cantidad de tierras secas vacías y disponibles en esa época, una empresa llamada Dismal Swamp Land Company, en parte propiedad de George Washington, intentó sin éxito drenar el extremo Oeste del pantano para convertirlo en terrenos agrícolas. Aunque se vio gravemente afectado durante los últimos 200 años, gran parte del pantano todavía se conserva como refugio para la vida silvestre.

Las razones para drenar los humedales son muchas: Las más convincentes están relacionadas con la agricultura.
El drenaje de los humedales permite acceder a muchas hectáreas de suelos orgánicos ricos para la producción de cultivos. En la pradera, los agricultores consideraron las ollas (lagunas) un impedimento para las actividades granjeras eficaces. Actualmente drenarlas permite limpiar los campos y permite el uso sin obstáculos de grandes maquinarias agrícolas. También hay otras razones. Los terratenientes y los gobiernos locales consideran que los humedales son un incordio económico.

No producen ganancias económicas y proporcionan pocos ingresos mediante los impuestos. Muchos consideran que la vida silvestre protegida por los humedales es una amenaza para los cultivos. En cualquier otro lugar, los humedales se consideran terrenos sin valor, como mucho se los rellena y se los utiliza para el desarrollo. Algunos humedales grandes han sido un obstáculo para proyectos de desarrollo de embalses. Por ejemplo, el gran Lago Pymatuning en los estados de Pennsylvania y Ohio cubre lo que alguna vez fuera una turbera Sphagnum-tamarack de 4.200 ha. Las turberas del Norte de los Estados Unidos, Canadá, Irlanda y el Norte de Europa son excavadas para obtener combustible, turbas hortícolas y suelos orgánicos» (Smith & Smith 2007: 578).

«En algunas áreas, esa explotación amenaza con ponerle fin a los ecosistemas de turbera. Muchos de los humedales restantes, en especial los del centro Norte y Sudoeste de los Estados Unidos están contaminados y degradados por pesticidas y metales pesados que han llegado a ellos por el drenaje superficial y subsuperficial y los sedimentos de las tierras cultivables que los rodean. Aunque el aporte de nitrógeno y fósforo aumenta la productividad de los humedales, la concentración de herbicidas, pesticidas y metales pesados envenena el agua, destruye la vida invertebrada y produce efectos debilitantes para la vida silvestre (que incluye deformaciones, menor reproducción y muerte).

Las aves acuáticas en los humedales que se dispersan por las tierras agrícolas para criar o alimentarse también se encuentran expuestas a la depredación y al no poseer acceso a la vegetación natural de las tierras altas no logran alimentarse bien» (Smith & Smith 2007: 578-579).

Según la Comisión Nacional del Medio Ambiente de Chile. «La Estrategia para preservar los humedales (en el caso de Chile) responde entonces, a las necesidades nacionales y a un compromiso del país con la Convención Ramsar. Entre las necesidades nacionales se encuentra la definición de objetivos de calidad ambiental del agua en nuestros principales ríos o norma secundaria de calidad de aguas. La implementación de las normas secundarias estimulará el manejo integrado de cuencas
hidrográficas y bahías, para alcanzar los objetivos de calidad ambiental definidos a través de planes de descontaminación y/o prevención en el medio hídrico. Como parte de las cuencas hidrográficas, los humedales se verán favorecidos por esa gestión» (CONAMA de Chile 2005: 7).

En el caso del Perú, como parte de las estrategias de conservación, se empezaron en 1964 durante el gobierno de Juan Velazco Alvarado, en la cual se creó el Patronato de Parques Nacionales y Zonales (PARNAZ), con el fin de proteger las reservas naturales y los espacios destinados al esparcimiento en las ciudades (SERPAR 2018: 40).

Otras iniciativas para la conservación de los Pantanos de Villa, radica en declarar el Parque Zonal Metropolitano por el Concejo Provincial de Lima. «El área que corresponde a los Pantanos de Villa, tiene la particularidad de ser un área protegida instalada sobre un terreno de propiedad de un organismo distinto al SERNANP. En efecto el Servicio de Parques SERPAR, organismo de la Municipalidad de Lima Metropolitana de Lima es quien tiene la propiedad de la tierra y el SERNANP tiene como responsabilidad la definición de las políticas de manejo de los recursos naturales existentes» (Millet et al., 1997 en Pulido & Bermúdez 2018: 681).

Discusión: La preservación de los humedales debe ser atendido mediante Planes Maestros, debiendo establecer recursos para conseguir los objetivos. A fin de mejorar la eficiencia y eficacia de preservar las áreas naturales protegidas, se recomienda un trabajo conjunto con otras entidades. Al comprometer a otras entidades como por ejemplo la Autoridad Nacional de Agua, ente la cual es un organismo técnico especializado que se encarga de realizar las acciones necesarias para el aprovechamiento multisectorial y sostenible de los recursos hídricos. Este apoyo en conjunto con la ANA podría hacer que el SERNANP pueda contar con más apoyo y recursos dado a que actualmente los recursos del SERNANP son insuficientes para la vigilancia de las 263.27 ha que es sólo el RVSPV y esto se evidencia por el constante deterioro de dicho ecosistema.

2.2. Clasificación del nivel trófico

2.2.1. Ciclo del nitrógeno

Según Odum y Warrett, 2006. Existen dos maneras de distintas de representar las complejidades del ciclo del nitrógeno; cada una ilustra una característica general o fuerza impulsora importante.
«El nitrógeno del protoplasma se descompone partiendo de formas orgánicas a inorgánicas, por una serie de bacterias, cada una especializada en una parte específica del ciclo. Parte del nitrógeno termina como amonio y nitrito, formas que las plantas verdes utilizan más fácilmente. La atmósfera, que contiene aproximadamente 78% del nitrógeno, constituye la mayor reserva y válvula de seguridad del sistema. El nitrógeno entra de manera continua a la atmósfera por acción de las bacterias desnitrificatorias y retorna continuamente al ciclo a través de la acción de los microorganismos fijadores de nitrógeno (bio fijación) y por la acción de los rayos y otros tipos de fijación física. Los pasos que abarcan desde las proteínas hasta los nitritos suministran energía a los organismos que realizan la descomposición, mientras que para los pasos de regreso se requiere energía de otras fuentes, como materia orgánica o luz solar. Por ejemplo: las bacterias quimiosintéticas Nitrosomonas (que transforman amoniaco a nitritos) y Nitrobacter (que convierten nitritos a nitratos) obtienen energía de la descomposición de la materia orgánica, mientras que las bacterias desnitrificadoras y fijadoras de nitrógeno requieren energía de otras fuentes para llevar a cabo sus transformaciones respectivas. También existe un importante ciclo corto del nitrógeno en la biosfera viviente, en el cual los organismos heterótrofos descomponen las proteínas con enzimas y excretan el exceso de nitrógeno como urea, ácido úrico o amonio. Las bacterias especializadas obtienen energía para vivir oxidando el amonio a nitritos, y los nitritos a nitratos. Estos tres compuestos (amonio, nitritos y nitratos) pueden ser utilizados como fuentes básicas de nitrógeno por las plantas. Las plantas que usan nitratos deben producir enzimas para transformarlos de nuevo en amonio, ya que el nitrato es una fuente de nitrógeno más
costosa desde el punto de vista energético que a comparación del amonio, por lo que se refiere a las plantas. De este modo, la mayoría de las plantas utiliza el amonio de manera preferente cuando lo encuentra disponible» (Odum & Warrett 2006: 145).

«Posteriormente se descubrió que la bacteria de color purpura Rhodospirillum y otros representantes de las bacterias fotosintéticas también fijan el nitrógeno y que diversas bacterias del suelo similares a Pseudomonas también cuentan con esa capacidad. Más adelante se descubrió que los actinomicetos (un tipo de bacterias filamentosas) de los nódulos de las raíces de los alisos o aile (Almus), y de algunas otras plantas leñosas no leguminosas. También ocurre fijación del nitrógeno en el océano.

La fijación de nitrógeno por cianobacterias puede ser realizada tanto por las formas que viven en libertad como las formas simbióticas con hongos, como ciertos líquenes, musgos o helechos y por lo menos en una planta con semillas.

En cuanto a los efectos nocivos por el exceso de nitrógeno. En la actualidad una de las principales preocupaciones se refiere a los efectos adversos del exceso de nitrógeno, situación en que encontramos “un exceso de algo bueno”.

La producción y el uso de fertilizantes, las cosechas de las leguminosas y las quemadas de combustibles fósiles a escala mundial, depositan aproximadamente 140 Tg/año (1 Tg = 10^12 gramos o un millón de toneladas métricas) de nitrógeno nuevo en el suelo, agua y aire, lo cual es aproximadamente es igual a lo calculado de nitrógeno fijado en forma natural. Las aguas negras humanas y el estiércol de animales domésticos aportan quizás la mitad de esa cantidad. Muy pocas de estos ingresos se reciclan, ya que se escapan hacia el suelo o a los arroyos o se ven mezclados con metales pesados y otras toxinas» (Odum & Warrett 2006: 146-148).

La mayoría de los ecosistemas naturales, y la mayor parte de las especies nativas, se encuentran adaptadas a entornos con bajos contenidos de nutrientes. El enriquecimiento con nitrógeno y otros nutrientes abre la puerta a la maleza oportunistas, que se encuentran mejor adaptadas a condiciones de nutrientes altos.

Con frecuencia, cualquier cosa que resulta nociva para los ecosistemas naturales, tarde o temprano se hace nociva para el ser humano. El exceso de compuestos nitrogenados en el agua potable, en los alimentos y en particular en la atmósfera, plantea serias amenazas para la salud humana (Odum & Warrett 2006: 149).
2.2.2. Ciclo del fósforo

«El ciclo del fósforo parece ser más sencillo que el del nitrógeno, porque el fósforo se encuentra en menos formas químicas. El fósforo es un constituyente necesario del protoplasma, tiende a circular en compuestos orgánicos en forma de fosfato (PO₄), el cual queda de nuevo disponible para las plantas. La gran reserva de fósforo no está en la atmósfera sino en los depósitos de mineral apatita formados en eras geológicas antiguas (es decir la litosfera). El polvo atmosférico y los aerosoles devuelven 5x10¹² g de fósforo (no de fosfato) a la tierra al año, pero el fosfato regresa continuamente al mar, donde parte del mismo se deposita en sedimentos poco profundos y otra parte se pierde en sedimentos de mayor profundidad.

Figura 2: Ciclo del fósforo

De manera contraria a las creencias populares, las aves marinas solo desempeñan un papel limitado en devolver el fósforo (un testigo son los depósitos de guano ubicados en la costa de Perú). Esta transferencia de fósforo y otros materiales por las aves marinas terrestres aún continúa; sin embargo, estos depósitos de guano han sido cosechados. Aunque los lugares donde procrean las aves marinas producen concentraciones locales de fosfato y de ácido úrico, su importancia mundial es limitada. Actualmente se
recupera fosfato de antiguos lechos óseos ubicados en Florida y Rusia» (Odum & Warrett 2006: 149-151).

Desafortunadamente, las actividades humanas parecen acelerar la velocidad en la pérdida de fósforo y por tanto ocasionan que el ciclo del fósforo no cumpla cabalmente su función.

Aunque se obtienen cantidades abundantes de peces marinos, se estima que sólo cerca de 60,000 toneladas de fósforo al año son devueltas al ciclo por este medio, en comparación con el uno o dos millones de fosfatos que se obtienen de las minas y se emplean como fertilizantes, gran parte de los cuales se lixivan y se pierden (Odum & Warrett 2006: 149).

2.3. Eutrofización

«La “eutrofización” es el enriquecimiento de las aguas superficiales con nutrientes disponibles para las plantas. Si bien la eutrofización se produce en forma natural como un proceso de sucesión, normalmente la eutrofización está asociada a fuentes antropógénicas de nutrientes. El “estado trófico” de los lagos es un concepto fundamental en la gestión de los mismos. En él se describe la relación entre el estado de nutrientes en un lago y el crecimiento de la materia orgánica en el mismo. Eutrofización es el proceso de cambio de un estado trófico a otro de nivel superior por adición de nutrientes» (Moreno & Quintero 2010: 25).

Moreno y Quintero (2010) además mencionan que:

«El vocablo eutrofización inicialmente se utilizó para diferenciar los lagos eutróficos de los oligotróficos y tenía sentido regional o geográfico. Eran oligotróficos, por ejemplo, muchos lagos suecos y eutróficos los de la llanura norte de Alemania. Y en cuanto a su estudio para conocer el transcurso del “envejecimiento” de los lagos inducido por procesos autóctonos que progresa aún sin tener la ayuda del hombre —eutrofización natural—. La contaminación acelera el envejecimiento natural y acorta considerablemente la vida del receptor acuático. Sin embargo, este término se utilizó posteriormente para definir el fenómeno provocado por los vertidos de los desechos de actividades humanas, llamándolo Proceso de eutrofización cultural o simplemente eutrofización; inicialmente se definió como "el abastecimiento excesivo de los nutrientes nitrógeno y fósforo a los cuerpos de agua, con el frecuente crecimiento acelerado de microalgas, que puede producir la muerte de peces al despojarlos del oxígeno que necesitan para vivir" (USEPA, 1997 en Moreno & Quintero 2010: 26).
El término eutrófico, se utiliza para distinguir aquellos lagos en los cuales el nivel nutritivo es particularmente alto y que se caracterizan por el estancamiento de sus aguas además de abundante vegetación litoral, siendo una situación irreversible por los nutrientes acumulados. Margalef (1981) lo denomina como "lago humanizado". “Eutrofo” se llama a un ecosistema caracterizado por una abundancia anormalmente alta de nutrientes. Se dice que dicho ambiente se encuentra forzado, bajo tensión o sometido a stress» (Chalar, 2007 en Moreno & Quintero 2010: 26).

Según Ansari (2014), las causas directas de la eutrofización son: vertimientos de aguas residuales, intensificación del ganado en tierras adyacentes a los cuerpos del agua, combustibles fósiles y energía de consumo, incremento del consumo de fertilizantes y la transformación del uso del suelo. Mientras que las causas indirectas se atribuyen a la expansión de la población, crecimiento económico y la extensión del área agrícola (Ansari 2014, 4-5).

Estas alteraciones químicas (acumulación de nutrientes N y P) tienen un efecto de cascada sobre la biodiversidad de los humedales. Microbios, algas, comunidades de plantas, invertebrados y vertebrados se ven afectadas por Eutrofización del agua. (Bressler & Paul 2015: 2).

«Debido a que existe una estrecha relación entre los ecosistemas terrestre y acuático, los lagos reflejan el carácter del paisaje al que pertenecen. El agua que cae sobre la tierra fluye por la superficie y se mueve a través del suelo para entrar en los manantiales, arroyos y lagos. El agua transporta consigo limo y nutrientes disueltos. Las actividades humanas, incluyendo la construcción de carreteras, la tala de bosques, minería, construcción y agricultura, agregan otra gran carga al limo y a los nutrientes, especialmente nitrógeno, fósforo y materia orgánica. Estos aportes enriquecen los sistemas acuáticos, proceso llamado eutrofización. El término eutrofia (del griego eutrophos, «bien nutrido») hace referencia a una condición de riqueza de nutrientes. A menudo lo rodean tierras de cultivo. Una abundancia de nutrientes, especialmente de nitrógeno y de fósforo, que fluyen hacia el lago, estimulan un fuerte crecimiento de algas y otras plantas acuáticas. El aumento de la producción fotosintética conduce al aumento del reciclado de nutrientes y compuestos orgánicos, estimulando aún más el crecimiento. El fitoplancton se concentra en la capa superior cálida del agua, dándole un aspecto verde oscuro. Las algas, los residuos orgánicos y sedimentos que ingresan y lo restos de plantas enraizadas descenden hasta el fondo, donde las bacterias se alimentan de esta materia orgánica muerta. Sus actividades agotan el suministro de oxígeno de los sedimentos del fondo y del agua profunda hasta el punto en
el que esta región del lago no puede albergar vida aerobia. La cantidad de especies del fondo disminuye, aunque la biomasa y la cantidad de organismos permanecen elevadas» (Smith & Smith 2007: 551-552).

Las concentraciones de N y P en el agua de arroyos y ríos aumentan notablemente conforme las cuencas se domestican (es decir, a medida que el porcentaje de área de la cuenca que se emplea para aplicaciones agrícolas y urbanas aumenta). Las concentraciones de nutrientes en el agua que sale de un paisaje urbano-agricola son siete veces más altas que en arroyos que drenan cuencas totalmente forestadas. El 80% de la producción de fósforo en paisajes agrícolas y urbano es inorgánico (fosfato), mientras que el fósforo orgánico predomina en el agua lixiviada de cuencas ocupadas totalmente por bosques o algún otro tipo de vegetación natural. La mayor parte de los nutrientes restantes y muchos otros productos químicos (incluyendo los de uso tóxico) presentan un patrón de aumento de lixiviación semejante, al aumentar la intensidad de uso de tierra y de la energía por los humanos. La gran producción de nutrientes y otros productos químicos en paisajes domesticados y en particular los industrializados es por supuesto un resultado más o menos directo del abundante suministro de productos químicos, agrícolas e industriales y el abuso en desechos orgánicos humanos y de animales domésticos. De este modo, los procesos del ecosistema como la eutrofización de ríos y la bioamplificación, se incrementan. (Odum & Warrett 2006: 150).

«En resumen, concepto de la Eutrofización o también llamado como eutrofización cultural es la acumulación abundante de productos químicos, agrícolas e industriales y el abuso en desechos orgánicos humanos y de animales domésticos. Siendo las concentraciones de nutrientes en el agua hasta siete veces más altas, las que aguas (y lixiviados) que drenan de un paisaje urbano-agricola con respecto al agua de arroyos que drenan cuencas totalmente forestadas.

Un cuerpo de agua eutrofizado se encuentra forzado, bajo tensión o sometido a stress provocando un efecto de cascada sobre la biodiversidad de los cuerpos de agua.

Un lago eutrófico típico tiene una alta proporción superficie/volumen; es decir, el área de la superficie es grande con respecto a la profundidad, acumulando lodo en la parte inferior producto de la descomposición de la basta materia orgánica produciendo un agotamiento del suministro de oxígeno de los sedimentos del fondo y del agua profunda hasta el punto en el que esta región del lago no puede albergar vida aerobia, Impidiendo la utilización del agua para potabilizarla u otros fines, debido a los altos costos para su tratamiento. Por lo que la Eutrofización y su control son fundamentales para la gestión de los cuerpos de agua.
Los cambios químicos en el humedal pueden tener efectos significativos sobre la vegetación y la fauna, en especial en cuanto al aumento de nutrientes, por lo menos a corto plazo, aunque pueden llegar con mucho retraso respecto al de penetración al terreno. El nitrato es poco alterado (Partnoy en Custodio, 2010), salvo que haya condiciones de disminución del potencial redox que permita su transformación a N₂, que es gaseoso y poco reactivo. El Potasio es diferido por intercambio iónico, y el fósforo puede ser co precipitado y fuertemente retenido en el suelo, aunque sus circunstancias reales no son bien conocidas» (Custodio 2010: 129).

Discusión: Según Moreno (2010) la Eutrofización Cultural es el fenómeno provocado por los vertidos de los desechos de actividades humanas. Entre dichas actividades humanas tenemos a las descritas por Abid (2014) en las cuales los vertimientos de aguas residuales, intensificación del ganado en tierras adyacentes a los cuerpos del agua, combustibles fósiles y energía de consumo, incremento del consumo de fertilizantes y la transformación del uso del suelo son las razones para producir Eutrofición de los cuerpos de agua. Debido a la acumulación abundante de productos químicos, agrícolas e industriales y el abuso en desechos orgánicos humanos y de animales domésticos (Custodio, 2010).

En la cual Bressler (2015) afirma que una Eutrofición tiene un efecto de cascada sobre la biodiversidad de los humedales. Provocando la desaparición y/o la disminución de especies tal como es reportado por una serie de investigaciones en el RVSPV.

Según Odum y Warrett, (2006), en la actualidad una de las principales preocupaciones de la comunidad científica se refiere a los efectos adversos de la Eutrofición la cual es provocada por el exceso de acumulación de nitrógeno. Situación en que encontramos efectos negativos por el “exceso de algo bueno”.

Tal como lo menciona Smith (2007), el efecto de la Eutrofización sobre los humedales radica en el agotamiento del suministro de oxígeno disuelto de los sedimentos del fondo y del agua profunda hasta el punto en el que esta región del lago no puede albergar vida aerobia.

La acumulación de nutrientes y la alta productividad de lodos origina la disminución de la profundidad del lago provocando una alta proporción superficie/volumen; es decir, el área de la superficie es grande con respecto a la profundidad.

2.3.1. Casos de eutrofización
A fin de mencionar ejemplos de Cuerpos de agua Eutrofizados, se presenta un ejemplo en un país lejano y del primer mundo, así como otro ejemplo de un país más cercano al Perú y cercano a su realidad. Para demostrar que el proceso de Eutrofización es una realidad mundial.

En el caso de Japón, «durante el período de rápido crecimiento económico, las concentraciones de nutrientes en estuarios japoneses aumentaron debido al rápido aumento de las cargas de fósforo y nitrógeno de la tierra. Los gobiernos centrales y locales promulgaron la ley de control de cargas de nutrientes totales en 1973 para mares costeros semicerrados como la Bahía de Tokio, la Bahía de Ise, el Seto Inland Sea y Dokai Bay porque el fósforo y el nitrógeno, son los principales químicos que causan eutrofización, no son tóxicos, pero son esenciales para la vida, incluyendo seres humanos. El mismo enfoque adoptado para los materiales tóxicos como el mercurio y el cadmio los cuales no son aplicables a fósforo y nitrógeno» (Yanagi 2015: 2).

En el caso de Chile, «la laguna de Aculeo ubicada a 50 km al suroeste de Santiago, cuya región donde se ubica la laguna es mediterráneo, con una estación seca prolongada en donde las precipitaciones se concentran principalmente en invierno Se considera a este sistema como eutrofizado, dado a que en la laguna: se extrae agua por bombeo para regadío en su área adyacente, (Sancha et al. 1977 en Mühlhauser, Vila, 1987). Las riberas de la laguna han sido desde hace algún tiempo aprovechadas como zona de balneario. Los habitantes de las riberas tienen norias para abastecimiento de agua y pozos negros para eliminación de excretas (Sanche et al. 1977 en Mühlhauser, Vila, 1987). Las zonas aledañas a la laguna principalmente al W, SW, S y SE presentan un desarrollo apreciable de la agricultura. Esto permite inferir un aporte notorio de material nutriente al sistema, principalmente por percolación. Las microalgas confieren color verde pardo a las aguas durante la mayor parte del año. Esta eutrofización resulta de varios factores: sus características geomorfológicas; uso del agua, que ha producido disminución de su volumen original, y actividades agrarias en su entorno. Los cambios inducidos en los ciclos bio geo químicos en todas sus fases (acuáticas y sedimentarias) por el alto aporte a la componente de nutrientes del sistema han contribuido por una parte a una disminución acelerada y progresiva de ciertos tramos claves de la red trófica (poblaciones de peces por ejemplo) y por otra al aumento exagerado de la biomasa Fito planctónica especialmente cianobacterias (Microcystis aeruginosa), cuyo efecto estético contribuye a la disminución del potencial recreativo de la laguna, perjuicio de la reconocida acción tóxica de cianobacterias en invertebrados y vertebrados.»
Al mismo tiempo un intercambio de agua (afluencia, efluencia), escaso e irregularmente distribuido, resulta ser un factor importante en el reciclamiento interno de los nutrientes (N y P) de este sistema» (Mühlhauser & Vila 1987: 117).

Según Ansari (2014), la eutrofización puede minimizarse implementando regulaciones para controlar las fuentes de nutrientes, reducción del uso de fertilizantes, prácticas adecuadas de manejo del suelo, implementación de modelos matemáticos adecuados a las condiciones de cada realidad, fitorremediación, etc. (Ansari 2014: v).

Como un “Plan de Restauración de ambientes eutrofizados” Van & Aronso (2006), proporcionan un «esquema con una secuencia de decisiones a tomar en el desarrollo e implementación de medidas de eutrofización en lagos y reservorios. El esquema toma en cuenta las diferentes inquietudes y rentabilidad.

En la selección de medidas correctivas factibles y prácticas para una gestión de lagos y reservorios tenemos: (i) evaluar la información disponible, (ii) identificar problemas de eutrofización para establecer estrategias de gestión y medidas de control, (iii) analizar los costos y los beneficios esperados de las estrategias de gestión, adecuación de los aspectos institucionales y para la implementación de un determinado marco regulatorios; y (iv) seleccione una estrategia de control y medidas de publicidad y desarrolle mecanismos para minimizar la recurrencia de problemas de eutrofización» (Van & Aronso 2006: 160).

El ácido domoico es una biotoxina que «ocasionalmente pueden contaminar a organismos marinos que se alimentan de ellas por filtración. Estos a su vez pueden intoxicar a lobos marinos y aves marinas que se alimentan de ellos. Los alimentos marinos contaminados pueden además intoxicar al humano ocasionando problemas de salud pública.

Está biotoxina ha estado apareciendo paulatinamente en casi todos los mares del mundo, atribuido a varios factores entre ellos la eutrofización. En América del Sur se le ha encontrado en mares de Argentina, Brasil, Uruguay y Chile» (Álvarez & Santiago 2006: 167).

En el caso del Lago Junín según Sabogal (2013), es el «segundo lago más grande del Perú luego del Lago Titicaca. Tiene numerosos afluentes y de él se origina el río Mantaro. La temperatura del agua varía fuertemente entre el día y la noche, lo que permite el reciclaje de nutrientes. El Lago Junín está altamente contaminado y tiene una alta influencia antrópica. En los alrededores, las aguas provenientes de la agricultura son
unas de las fuentes de contaminación. La otra fuente de contaminación es la minería» (Sabogal 2013: 130)

Según Brack y Mendiola (2004). «A pesar de su importancia ambiental, económica y social, en el lago se han ejecutado obras de infraestructura que afectan el equilibrio ecológico del mismo, y la contaminación es uno de sus problemas más graves.

Para regular las aguas se construyó la represa de Upamayo, en la desembocadura del lago y donde tiene su origen el río Mantaro. La represa origina variaciones de nivel de las aguas, que afectan gravemente la reproducción de las aves acuáticas, porque inundan los totorales y destruye los nidos.

El río San Juan recibe los desechos mineros de las minas y éstos son depositados en la parte norte del lago. Por efecto de la represa estas aguas contaminadas no fluyen hacia el río Mantaro. Se ha detectado que una tercera parte del lago ha sido afectada por estos desechos mineros tóxicos, que han eliminado la mayor parte de los organismos acuáticos y los pastos de la ribera norte» (Brack & Mendiola 2004).

Según Cusiche (2017) en cuanto a la eutrofización del Lago Junín, las técnicas que se emplean en el momento presente para disminuir las concentraciones de fósforo en efluentes, cruzan el límite entre los métodos biológicos y los químicos/físicos. Los dos métodos en uso son: Precipitación química del fósforo en forma de fosfatos mediante sales de aluminio o de hierro y absorción microbiológica del fósforo en una etapa anaeróbica del tratamiento. Ambos métodos alcanzan de 80% a 90% de eliminación, por más que esta eficiencia es función de las condiciones climatológicas y de la naturaleza del agua residual que se sujeta a tratamiento (Cusiche 2017: 171-172).

2.3.2. Sucesión

La sucesión es igualmente aparente en los hábitats acuáticos que terrestres. Sin embargo, el proceso de desarrollo de la comunidad en los ecosistemas de agua poco profundas suele complicarse por fuertes entradas de material y energía procedentes de la cuenca, lo que podría acelerar, detener o invertir la tendencia de desarrollo de la comunidad que ocurriría normalmente en ausencia de estas influencias alógenas tan fuertes (Odum & Warret 2006: 349).

«La sucesión primaria ocurre en un lugar que no ha sido ocupado anteriormente por una comunidad, una superficie recientemente expuesta como los bloques de cemento en un ambiente intermareal rocoso. Al contrario de la sucesión primaria, la sucesión secundaria ocurre en lugares previamente ocupados (con vegetación) después de una perturbación. En este caso, la perturbación se define como todo proceso que produzca como resultado la eliminación (tanto parcial como completa) de la vegetación (comunidad) existente. La sucesión primaria ocurre en un lugar que no ha sido
ocupado anteriormente por una comunidad, una superficie recientemente expuesta como los bloques de cemento en un ambiente intermareal rocoso. Al contrario de la sucesión primaria, la sucesión secundaria ocurre en lugares previamente ocupados (con vegetación) después de una perturbación. En este caso, la perturbación se define como todo proceso que produzca como resultado la eliminación (tanto parcial como completa) de la vegetación (comunidad) existente» (Smith & Smith 2007: 396).

2.4. Actividad antropogénica en cuerpos de agua

2.4.1. Contaminación del agua subterránea

Según el informe de Análisis de la Calidad del Agua Potable en las Empresas Prestadoras del Perú: 1995-2003 elaborado por la Agencia de Cooperación Internacional del Japón (JICA, 2004). «En la naturaleza no existe agua completamente pura. No obstante, dentro de las fuentes con las que contamos para abastecernos, las aguas subterráneas son las que contienen menos impurezas. Por lo general, ellas tienen menos materiales orgánicos, así como una mejor calidad microbiológica, a la vez que son más uniformes que las aguas superficiales; todo ello es producto de la purificación natural que se produce en la estructura geológica que contiene a estas aguas. Aun así, el agua subterránea puede verse seriamente afectada por descuidos humanos o por fenómenos naturales, especialmente en los acuíferos no confinados -o nivel de agua freática-, ya que éstos poseen una sola capa de confinamiento inferior de material impermeable en forma rocosa (arcilla), en comparación con los acuíferos confinados -o artesianos-, que poseen dos. Por lo tanto, la percolación de la precipitación e infiltración de agua proveniente de los arroyos, lagos y reservorios puede transportar una serie de contaminantes a las fuentes subterráneas. Ciertas características de las aguas subterráneas -como la presencia de nitratos en altas cantidades- pueden afectar su calidad y en algunos casos resultar perjudiciales para la salud. Incluso pueden afectar las instalaciones industriales, como es el caso de las aguas con alta dureza, asociada normalmente al alto contenido de sales carbonatadas de calcio y magnesio. a) Nitratos.
Los fertilizantes con alto contenido de nitrógeno (generalmente de naturaleza orgánica) son aplicados en la agricultura para mejorar el rendimiento de las cosechas. El uso del nitrógeno como nutriente que realizan las plantas es posible sólo si éste se encuentra en su forma inorgánica; es decir, como nitrato. El nitrato se obtiene a través de una serie de procesos microbiológicos tanto aeróbicos como anaeróbicos que ocurren en la naturaleza y transforman la urea —nitrógeno en su forma orgánica— en nitrógeno gaseoso. Normalmente, en una de estas etapas se genera el nitrato, que es captado y metabolizado por las plantas para generar proteínas vegetales. La contaminación de las fuentes subterráneas por nitratos se puede deber a dos causas:
- El nitrato se libera cuando la materia orgánica se descompone debido a la acción de las bacterias que están en el suelo. Sin embargo, si no hay cultivos, el nitrato producido por la acción microbiana no será utilizado por las plantas, sino que el agua de lluvia lo arrastrará por el suelo hasta el acuífero y contaminará de esta manera tanto el agua subterránea como las aguas superficiales.

- Cuando la aplicación del nitrato como fertilizante excede las necesidades de la planta o su habilidad para utilizarlo, el exceso se queda pegado al suelo o, lo que es más frecuente, se ve arrastrado por la lluvia y llega tanto a las aguas superficiales como a las subterráneas. Todas las consideraciones sanitarias relativas a los nitratos están relacionadas con su conversión en nitritos. Éstos son moléculas reactivas asociadas a la generación de numerosos problemas, entre los cuales están la formación de compuestos N-nitrosos, que pueden generar tumores, y la formación de metahemoglobina, que impide la circulación de oxígeno en la sangre» (JICA 2004: 40).

«Las aguas subterráneas se originan principalmente por exceso de precipitación que se infiltra directa o indirectamente en la superficie del suelo. Como consecuencia, las actividades humanas en la superficie pueden constituir una amenaza a la calidad del agua subterránea. La contaminación de los acuíferos ocurre cuando la carga de contaminantes sobre el subsuelo generados por descargas o lixiviados de actividades urbanas, industriales, agrícolas o mineras no es controlada adecuadamente, y en ciertos componentes excede la capacidad natural de atenuación del subsuelo y estratos subyacentes (Figura N° 3).

Figura 3: Procesos comunes de contaminación del agua subterránea.

Muy a menudo, en el pasado, los recursos hídricos subterráneos han sido, en efecto, abandonados a su suerte. Con frecuencia, quienes dependen de estos recursos para el suministro de agua potable no han adoptado acción significativa alguna para asegurar la calidad natural del agua, ni han realizado esfuerzos adecuados para evaluar los peligros potenciales de contaminación.

Tales evaluaciones son necesarias para proveer una apreciación más clara de las acciones que se requieren para proteger la calidad del agua subterránea contra el deterioro» (Foster, Hirata, Gomes, D’Elia & Paris 2002: 2-4).

2.4.2. Efectos del consumo de agua con Nitritos/Nitratos

Según el estudio “Contaminación de agua subterránea con nitritos: Fuente y potencial efectos en la salud elaborado por encargo de la AWWA (American Water Works Association)”. «El conocimiento de la distribución de nitrato-nitrito en humanos es crucial para evaluar los efectos sobre la salud. La exposición al nitrito es importante en cualquier discusión a comparación de los efectos del nitrato en la salud porque el nitrato en sí no es tóxico. Las posibles consecuencias para la salud entran en escena solo cuando el nitrato se reduce a nitrito, provocado por un agente. En la figura 4 se muestra un diagrama simplificado de la distribución de nitratos y nitritos en humanos.

Figura 4: Distribución de nitratos y nitritos en humanos.

![Diagrama de distribución de nitratos y nitritos](image)

Una parte del nitrato se convierte en nitrito en los fluidos salivales por la microflora oral, así como en el tracto gastrointestinal por la flora gástrica. La tasa de conversión de nitrato a nitrito en el estómago está estrechamente relacionada con el pH del estómago y asociada con la comunidad microbiana. Un pH más alto permite que las bacterias reductoras de nitrato sobrevivan y crezcan. Los bebés de menos de seis meses de edad generalmente tienden a tener líquido gástrico con un pH más alto, lo que proporciona un
entorno reductor. Las personas con gastroenteritis también tienen una tasa de conversión más alta.

La metahemoglobina (metHb), se produce cuando el hierro ferroso presente en la hemoglobina se oxida a hierro férrico y en la cual esta nueva hemoglobina (metHb) impide el transporte de oxígeno por la sangre. Esta conversión de la hemoglobina a metHb puede lograrse mediante varios compuestos además del nitrito» (Bouchard, Williams & Surampalli 1992: 89).

2.4.3. Lavaderos de ropa

«Los lavaderos tuvieron un papel significativo como lugar de encuentro femenino y espacio de socialización, donde lo vivido se enmarcaba en códigos simbólicos propios que hoy se diluyen en la memoria callada de sus protagonistas. La realidad es que, con el transcurso del tiempo y desde la llegada del agua corriente a los hogares, los lavaderos han ido cayendo en desuso y desapareciendo en muchas poblaciones, aunque lo cierto es que, por ejemplo, en la Península Ibérica, una pequeña proporción de mujeres todavía los utilizan» (Barberá & Pardo 2018: 25).

Con el propósito de conseguir unos ingresos propios, aunque precarios, muchas mujeres se ofrecían a familias acomodadas para, a la par, lavar las ropas de estas. Mal miradas, mal remuneradas y despreciadas por afectar el entorno urbano y contaminar las aguas con detergentes que contienen N y P, muchas mujeres convirtieron el trabajo doméstico en ocio, y algunas hasta se unieron formando un gremio (Tauroni 2019: 4).

2.5. Determinación de análisis de agua

Para determinar los análisis del agua se utiliza los criterios de Eutrofización, es decir se utilizarán los análisis de: Fósforo, clorofila y transparencia. En donde la Transparencia se obtendrá mediante la “Turbiedad”.

Por otro lado, a fin de poder comparar la calidad actual del agua con los datos históricos del SERNANP, se considerarán los datos de pH y STD. A continuación, se detalla el método de determinación de cada parámetro.

2.5.1. pH Potencial de hidrogenación

«El principio básico de la determinación potendométrica del pH es la medida de la actividad de los iones hidrógeno por mediciones potenciométricas utilizando un electrodo patrón de hidrógeno y otro de referencia. La potenciometría consiste en la
medida de la fuerza electromotriz de una célula galvánica, a través de la cual la corriente que pase es virtualmente cero. La variable de interés es la modificación del potencial de un electrodo sencillo o de la semi célula en la que tienen lugar las variaciones de una o de ambos componentes. Como el potencial de un electrodo sencillo no puede medirse directamente, el par de electrodos de la célula consiste en un electrodo de referencia que mantiene un potencial constante y un electrodo indicador, cuyo potencial depende de la composición de la solución electrolítica.

La medida del pH es una de las pruebas más importantes y frecuentes utilizadas en el análisis químico del agua. Prácticamente todas las fases del tratamiento del agua para suministro y residual, como la neutralización ácido-base, suavizado, precipitación, coagulación, desinfección y control de la corrosión dependen del pH.

La escala de pH está usualmente representada en un rango de 0 a 14. Valores por debajo de 7 indican que la concentración del ion hidrogenión es más grande que la concentración del ion hidroxilo y el agua es ácida, condiciones opuestas, indican que el pH excede de 7 y el agua es básica.

Las aguas naturales tienen normalmente valores de pH en la zona de 4 a 9 y la mayoría son ligeramente básicas debido a la presencia de bicarbonatos y carbonates de los metales alcalinos y alcalinotérreos» (Londoño, Giraldo & Gutiérrez 2010: 57).

2.5.2. Conductividad

«La conductividad es una expresión numérica de la capacidad de una solución para transportar una corriente eléctrica. Esta capacidad depende de la presencia de iones y de su concentración total, de su movilidad, valencia y concentraciones relativas, así como la temperatura de la medición. El agua pura tiene muy poca conductividad, por lo que la medida de la conductividad de un agua nos da una idea de los sólidos disueltos en la misma.

La conductividad, k, es una medida de la capacidad de una solución acuosa para llevar una corriente eléctrica. Esta habilidad depende de: presencia de iones; concentración total, movilidad y valencia; y sobre la temperatura de medición.

La mayoría de los compuestos inorgánicos son relativamente buenos conductores. Por el contrario, las moléculas de compuestos orgánicos que no se disocian en solución acuosa conducen una corriente muy pobre.

En el Sistema Internacional de Unidades (SI), el recíproco de Ohmios son los Siemens (S) y la Conductividad se informa como milisiemens por metro (mS / m); 1 mS / m = 10
umhos / cm y 1 uS / cm = 1 umho / cm. Para informar resultados en unidades SI de mS / m se divide mhos / cm entre 10.

El agua destilada producida en un laboratorio generalmente tiene una conductividad en el rango de 0.5 a 3 mhos / cm. La conductividad aumenta poco después de la exposición del agua al aire y al contenido de la misma agua.

Para estimar los sólidos disueltos totales (mg / L) en una muestra, se debe multiplicar la conductividad (en micromhos por centímetro) por un factor empírico. Este factor puede variar de 0.55 a 0.9, dependiendo de los componentes solubles del agua y la temperatura de medición. Los factores relativamente altos pueden ser necesarios para aguas salinas o calderas, mientras que pueden aplicarse otros factores en los que hay hidróxido considerable o ácido libre está presente. Aunque la evaporación de la muestra da como resultado un cambio de bicarbonato a carbonato el factor empírico es derivado para un suministro de agua relativamente constante dividiendo los sólidos disueltos por la conductividad» (AWWA 2017: 2-56 / 2-57).

2.5.3. Sólidos totales disueltos

«La medida de sólidos totales disueltos (TDS) es un índice de la cantidad de sustancias disueltas en el agua, y proporciona una indicación general de la calidad química. TDS es definido analíticamente como residuo filtrable total (en mg/L). Los Sólidos Totales de disueltos (TDS): Es la porción de sólidos totales en una muestra de agua que pasa a través de un filtro con una abertura nominal tamaño de 2.0um (o menor) bajo condiciones específicas» (AWWA 2017: 2-69 / 2-70).

Los principales aniones inorgánicos disueltos en el agua son carbonatos, bicarbonatos, cloruros, sulfatos, fosfatos y nitratos. Los principales cationes son calcio, magnesio, sodio, potasio, amonio, etc. Por otra parte, sólidos disueltos determina la salinidad del medio, y en consecuencia la conductividad del medio acuoso.

2.5.4. Fósforo

«El fósforo está presente en aguas naturales y en aguas residuales casi únicamente como fosfatos. Estos se clasifican como ortofosfatos, fosfatos condensados (pirofosfato, meta y otras polifosfatos) y moléculas orgánicas de fosfatos.»
Métodos de digestión: debido a que el fósforo puede estar en combinación con materia orgánica, es necesario considerar un método de digestión para poder oxidar la materia orgánica de manera efectiva y así determinar el fósforo total libre como ortofosfato» (AWWA 2017: 4-156 / 4-157).

2.5.5. Clorofila

«Las concentraciones de Clorofila (pigmento fotosintético) se usan ampliamente para estimar la biomasa de fitoplancton. Todas las plantas verdes contienen clorofila “a”, que constituye aproximadamente 1 a 2% del peso en seco de algas planctónicas. Otros pigmentos en fitoplancton incluyen clorofilas “b” y “c”, xantofilas, ficobilinas y carotenos. En el medio ambiente acuático se encuentran importantes productos de degradación de clorofila como: clorofilidas, feofórbitas y feofi tinas. La presencia o ausencia de varios pigmentos fotosintéticos se utilizan, entre otras características, para identificar los principales grupos de algas.

Los tres métodos para determinar la clorofila a en el fitoplancton son los espectrofotométrico, el fluoro métrico y el cromatográfico con líquido de alto rendimiento (HPLC). La fluorometría es más sensible que la espectrofotometría y requiere menos muestra, y puede usarse para mediciones en vivo. Estos métodos ópticos pueden significativamente subestimar o sobreestimar las concentraciones de clorofila tipo “a”, en parte debido a la superposición de bandas de absorción y fluorescencia de pigmentos accesorios y clorofila concurrentes productos de degradación.

La feo forbida tipo “a” y la feo fitina tipo “a”, son dos productos comunes de la degradación de la clorofila tipo “a”, y ambos pueden interferir con la determinación de clorofila a porque absorben luz y la fluorescencia en la misma región del espectro que la clorofila tipo “a”. Si estos fenopigmentos están presentes, se producirán errores significantes en los valores de clorofila “a”. Los feo pigmentos se pueden medir ya sea por espectrofotometría o fluorometría, pero en ambientes marinos y de agua dulce la fluorometría es el método no es confiable cuando se produce clorofila tipo “b”. Tras la acidificación de la clorofila tipo “b”, los resultados de la emisión de fluorescencia de feo fitina tipo “b” es coincidente con la de feo fitina tipo “a”, por lo tanto, produce una subestimación y sobreestimación de clorofila tipo “a” y feo pigmentos, respectivamente.
El cromatográfico con líquido de alto rendimiento (HPLC), es un método útil para cuantificar pigmentos fotosintéticos, que incluye clorofila tipo “a”, pigmentos accesorios (por ejemplo, clorofilas tipo “b” y “c”) y degradación de clorofila productos (clorofilidas, feofórbdas y feofitinas). La distribución de pigmentos es útil para evaluación cuantitativa de la composición de la comunidad de fitoplancton y la actividad del pastoreo de zooplancton» (AWWA 2017: 10-22 / 10-23).

2.5.6. Transparencia

La transparencia del agua sirve como índice del estado trófico de un cuerpo de agua. Refleja la eutrofización a través de cambios en la abundancia de fitoplancton. El aumento de los nutrientes en el agua conduce a una mayor biomasa de Fitoplancton que disminuye la propagación de la luz en el agua (Helcom 2015: 1).

«La transparencia del agua se aborda por la profundidad de Secchi (Cialdi y Secchi 1865, Whipple 1899). La profundidad de Secchi es influenciada por sustancias inorgánicas y orgánicas disueltas y/o coloidales, así como por sólidos suspendidos totales. Por lo tanto, también se ve afectado por sustancias no relacionadas con la eutrofización. Es decir, el cuerpo donde Las concentraciones de sustancias productoras de color (por ejemplo, fitoplancton, partículas inorgánicas y DQO) varían independientemente uno del otro. Esas estimaciones de profundidad de Secchi deben tratarse con especial precaución de que se recogen en las subcuencas que poseen una alta absorción cromófora de la materia orgánica disuelta.

La profundidad de Secchi se relaciona con la producción primaria al ser un proxy del grosor de la zona eutrófica donde la mayor parte de la producción bruta tiene lugar. En principio, la profundidad eufótica es dos veces la profundidad de Secchi, pero esta relación varía en gran medida en la práctica (French et al. 1982 en Helcom 2015: 1).

A fin de clasificar el estado trófico se utilizará el parámetro de transparencia, sin embargo, debido a que dicho parámetro no es un indicador usualmente utilizado para la determinación de la calidad del agua, se utilizará la correlación del estudio realizado por W Effler, en la cual relaciona la Transparencia (m) mediante el Disco de Secchi con la Turbiedad – NTU» (Effler 1988: 1439).

Para lo cual el autor presenta el siguiente gráfico:
Gráfico N°1: Funcionalidad predictiva entre Transparencia (SD Secchi Disc) y Turbiedad (Tn)

2.6. Área de estudio: Pantanos de Villa

«Los Pantanos de Villa se ubican en el Departamento y Provincia de Lima (Perú), en el distrito de Chorrillos, entre los kilómetros 18 y 21 de la antigua carretera panamericana sur (12°13’18” N y 76°59’42” E). El área se encuentra rodeada de zonas urbanas, clubes campestres, un club hípico y una universidad. El ecosistema comprende una superficie de 263.27 ha (D.S. Nº 055-2006-AG) y se ubica en una depresión rodeada de colinas que alcanzan los 100 y 300 m de altitud frente al Océano Pacífico, adquiriendo características micro climáticas propias (INRENA, 1998). Debido a que el humedal es un refugio de aves migratorias, fueron reconocidos internacionalmente a partir del 20 de febrero de 1997 como un humedal de importancia internacional o sitio RAMSAR. En el 2006 fue re categorizado a nivel nacional como Refugio de Vida Silvestre Los Pantanos de Villa (RVSLPV). El ecosistema está conformado por 6 espejos de agua de diferentes tamaños (Laguna Mayor, Laguna Génesis, Laguna ANAP, Laguna Marvilla, Laguna Las Garzas, Laguna La Pampa), dos canales principales que abastecen de agua a todo el humedal, un afloramiento "puquio" y zonas pantanosas con abundante materia orgánica de origen vegetal y terrenos calcáreos arenosos» (Ramírez & Aponte 2018: 349).

«Actualmente la administración y conservación de los Pantanos de Villa (RVSLPV) son coordinados entre SERPAR (Servicios de Parques de Lima Metropolitana), administrado por PROHVILLA (Autoridad Municipal de los Pantanos de Villa, de la Municipalidad Metropolitana de Lima), SERNANP (Servicio Nacional de Áreas Naturales Protegidas) y...»
las municipalidades de Chorrillos, Surco, San Juan de Miraflores y Villa el Salvador» (Ramírez & Cano 2010: 2).

La importancia de los Pantanos de Villa radica en que es un área amplia para la recreación de la población limeña y para conservar algo del ambiente natural del valle del Rímac. Este concepto debería estar por encima de cualquier otro uso posible y ser la base para la conservación de ese ecosistema (Brack & Mendiola 2004).

«Todo el humedal pantanos de Villa está condicionado a la presencia de agua subterránea y superficial que es alimentado por la cuenca del valle del Rímac mediante los ríos Rimac y Surco. Este flujo de agua subterránea y superficial esta direccionado hacia el mar. Su componente superficial, esquemáticamente hablando, se inicia a partir de los puquios o manantes, ubicadas en cotas ligeramente más altas, donde el agua subterránea aflora y se convierte en superficial, tales como Villa Baja, La Pampa, etc., de los cuales el más representativo lo constituye el afloramiento de Villa Baja, todo el humedal pantanos de Villa presenta un sistema de canales que por gravedad y en una dirección general Suroeste se dirige al mar» (SERNANP 2010: 2).

El puquio ubicado en Villa Baja ha estado siendo utilizado como lavandería por parte de la población, aprovechando la disponibilidad gratuita del agua y aprovechando los espacios de distracción y socialización que se da mientras realizan las actividades del lavado de ropa.

2.6.1. Eutrofización en los pantanos de Villa

Otero (2011), menciona que: Las zonas residenciales de los alrededores de los Pantanos de Villa, sobre todo la zona este de los pantanos, se han convertido en una seria amenaza para el bienestar de sus especies. Además, los pobladores usan los puquiales y acequias para bañarse y lavar su ropa con detergente, contaminando las lagunas (García Teves, 2003 en Otero 2011: 8), arrojan basura en la zona norte y sureste de los pantanos y se dedican a la pesca y extracción del pasto de manera ilegal debido a la débil protección que rodea a los pantanos, mientras que el ruido de los autos y paraderos
no permitidos en la frontera con los pantanos afectan directamente este refugio silvestre (Otero 2011: 8).

«Los humedales de la costa central se encuentran sometidos a una fuerte presión antrópica, y varios han sido altamente modificados o reducidos, alterando sus procesos funcionales y afectando su biodiversidad. Múltiples impactos son reconocidos en estos ambientes como la reducción de su área por urbanismo, drenaje y contaminación de sus acuíferos, arrojo de residuos sólidos, expansión de la matriz agrícola e incendios».

Foto N°1: Vista de los canales de agua en donde la lentejada des agua han cubierto toda la superficie del canal.

Por otro lado, Figueroa (2017), hace mención que: «las estaciones que aparecen más contaminadas están relacionadas a que sus aguas se ven afectadas por la falta de servicios de desagüe en las viviendas y tienen conexiones de tuberías por donde descargan los efluentes domésticos hacia la vía pública y a los espejos de agua del Área Natural; sumado a ello, la crianza de ganado porcino y presencia de recicladores de residuos sólidos domiciliarios. En el monitoreo realizado, sólo el 54.17 % de las estaciones establecidas en los Humedales de Villa están dentro de los LMP (Límite máximo permisible) establecidos por la R.J. No 0291-2009-ANA para la Clase VI» (MINSA, 2015 en Figueroa 2017:71).

El 2016 el SERNANP por su parte desarrolló el Plan Maestro del Refugio de Vida Silvestre Los Pantanos de Villa 2016 – 2020, Plan que no contempla a la eutrofización como una realidad. Ni siquiera nombrando el proceso de eutrofización como tal.

1 Incendios en el humedal Ramsar Los Pantanos de Villa (Lima-Perú): Avances en su conocimiento y perspectivas futuras, Journal of High Andean Research, 2018; 20(3): 347 - 360
¿Quizás una de las razones es que las fuentes de contaminación se encuentran fuera del área protegida y por ende fuera de la jurisdicción del SERNANP?

Discusión: Tal como mencionan Figueroa (2017), Otero (2011) y Ramírez (2018), el Refugio de Vida Silvestre Los Pantanos de Villa y sus canales, se encuentran en un estado de Eutrofización. Cuestión que se puede verificar con tan solo apreciar el crecimiento de lenteja de agua, la cual cubre gran parte del área superficial, dificultando la introducción de la luz solar e impidiendo la fotosíntesis en la parte profunda.

La limitación de fotosíntesis en la parte profunda de los canales provoca la disminución del oxígeno disuelto, lo que a su vez provoca condiciones anaerobias, desprendiendo H$_2$S (que fue reconocido en campo por el olor a huevo podrido).

Para incluir este tema de Eutrofización en el RVSPV se necesita fortalecer al SERNANP para que pueda gestionar su trabajo y coordinar con otras entidades para que puedan cubrir esta necesidad que continúa destruyendo silenciosamente el área natural protegida.

2.7. Base legal

En cuanto la base legal aplicable a esta investigación se presenta los siguientes:

«Aprueban Texto Único de Procedimientos Administrativos – TUPA del Servicio Nacional de Áreas Naturales Protegidas Por el Estado-SERNANP
Decreto Supremo Nº 002-2012-MINAM” en donde se menciona lo siguiente:

“Artículo 1°. Aprobación del TUPA del SERNANP
Apruébese el texto Único de procedimientos administrativos – TUPA del Servicio nacional de Áreas Naturales Protegidas por el Estado-SERNANP, así como los formularios que contiene, que como anexo forman parte integrante del presente Decreto supremo.

Reglamento del Procedimiento Administrativo Sancionador por Afectación a las Áreas Naturales Protegidas de Administración Nacional».

CAPÍTULO I DISPOSICIONES GENERALES
Artículo 1°. Finalidad El presente Reglamento tiene como finalidad establecer el procedimiento administrativo sancionador para la determinación de infracciones e imposición de sanciones por incumplimiento a la legislación referida a las Áreas Naturales Protegidas de Administración Nacional que se encuentran bajo la competencia del Servicio Nacional de Áreas Naturales Protegidas por el Estado – SERNANP.

Artículo 2°. Principios Los principios que rigen el presente Reglamento son los establecidos en la Ley General del Ambiente – Ley N° 28611; la Ley del Procedimiento Administrativo General - Ley N° 27444; el Decreto Legislativo N° 1079; y, los establecidos en el Reglamento de la Ley de Áreas Naturales Protegidas, aprobado con Decreto Supremo N° 038-2001-AG y sus modificatorias.

Artículo 4°. Infracciones Para los efectos del presente Reglamento, constituyen infracciones las acciones u omisiones de las personas naturales o jurídicas que contravengan las normas establecidas por la Ley N° 26834 - Ley de Áreas Naturales Protegidas, su Reglamento aprobado por Decreto Supremo N° 038-2001-AG, el Decreto Supremo N° 004-2009- MINAM que precisa la obligación de solicitar la opinión técnica previa vinculante en defensa del patrimonio natural de las Áreas Naturales Protegidas, sus normas de desarrollo, y otros documentos de gestión.

CAPÍTULO III DE LAS SANCIONES

Artículo 11°. Tipos de sanciones administrativas Las personas naturales o jurídicas infractoras de las normas establecidas en el presente Reglamento son sujetos pasibles de una o más de las siguientes sanciones: a) Amonestación; b) Multa; c) Comiso; d) Clausura temporal o definitiva, del local o establecimiento donde se lleve a cabo la actividad que ha generado la infracción; y/o; e) Suspensión del permiso, licencia, concesión o cualquier otra autorización, según sea el caso.

CAPITULO IV DE LAS MULTAS

Artículo 15°. Expresión y cancelación La multa se expresa en Unidad Impositiva Tributaria (U.I.T.) y es cancelada conforme al valor vigente de la misma en la fecha de pago, o en la fecha en que se haga efectiva la cobranza coactiva. Todas las multas deben ser canceladas dentro de los quince (15) días hábiles, computados desde el día siguiente de la notificación de la Resolución que la impone. La cancelación de los montos producto de la imposición de multas se realiza en los lugares que se determine mediante Resolución Presidencial del SERNANP.

Artículo 16°. Imposición de multas Las multas se aplicarán conforme a la siguiente escala, no pudiendo ser mayor a 10,000 UIT: Infracciones leves: Desde 1% de la UIT
hasta 1 UIT. Infracciones graves: Desde 1.1 UIT hasta 100 UIT. Infracciones muy graves: Desde 100.1 UIT hasta 10,000 UIT.

Artículo 18°.- Destino de los montos recaudados vía multas. El 50% de la multa será asignado a las actividades de control y vigilancia del Área Natural Protegida donde se cometió la infracción, el 20% será destinado a las labores de control y seguimiento complementarias en el ámbito de la misma Área Natural Protegida; y, el 30% restante será destinado a otras actividades que determine el SERNANP.

DISPOSICIONES FINALES

Tercera. - De las coordinaciones para el cobro de multas impuestas El Ministerio del Ambiente promoverá las acciones necesarias para que el SERNANP pueda hacer efectivas las acciones de cobro de las multas impuestas al amparo del presente Reglamento».

Tabla 1: Cuadro de Infracciones Administrativas

<table>
<thead>
<tr>
<th>Código</th>
<th>Infracciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-10</td>
<td>Destruir o alterar linderos, señales y avisos instalados por el área natural protegida.</td>
</tr>
<tr>
<td>I-11</td>
<td>Extraer, cazar, pescar, colectar, transportar, comercializar especímenes y/o productos y sub productos de flora y/o fauna silvestre del ANP, sin autorización y en zonas prohibidas.</td>
</tr>
<tr>
<td>I-14</td>
<td>Diseminar o arrojar sustancias tóxicas, basura, residuos sólidos o desmonte al interior del ANP.</td>
</tr>
<tr>
<td>I-16</td>
<td>Modificar el uso del suelo sin autorización correspondiente.</td>
</tr>
<tr>
<td>I-23</td>
<td>Utilizar productos químicos, sustancias biológicas prohibidos, ó, realizar emisiones, vertidos, ó derramar residuos que alteren el ecosistema al interior de un ANP, y que no sea sancionable por legislación específica.</td>
</tr>
<tr>
<td>I-24</td>
<td>Destrucción o alteración de los ecosistemas del ANP</td>
</tr>
<tr>
<td>I-26</td>
<td>Realizar actividades orientadas a la habilitación de infraestructura en ANP, sin contar con la opinión técnica previa vinculante.</td>
</tr>
</tbody>
</table>

Fuente: DS Nº 002-2012-MINAM.

Luego de haber revisado el Reglamento del Procedimiento Administrativo Sancionador por Afecración a las Áreas Naturales Protegidas de Administración Nacional, se aprecia que existen multas y sanciones por la afectación de las Áreas Naturales Protegidas. Se aprecia que las multas y sanciones se encuentran definidas para los diferentes tipos de afectación a las áreas naturales protegidas.

Sin embargo, pese a que según el artículo Nº18 del reglamento, menciona que los montos de las multas recaudadas se destinarán al SERNANP para vigilancia y control de las ANP. Por la falta de personal, equipos, movilidad y presupuesto; es muy difícil para el SERNANP realizar las actividades de vigilancia y/o control y/o patrullaje y por ende
aplicar multas por la afectación en un área equivalente al 17% del área del Perú y con las deficiencias mencionadas.

Siendo un círculo vicioso que parte del presupuesto para control y vigilancia de las ANP provenga de multas y sanciones.
Recomendando una intervención por parte de Estado para repotenciar el control y vigilancia de las ANP.
CAPÍTULO 3: METODOLOGÍA

3.1. Objetivo

- Restauración de los canales de abastecimiento de agua a los Pantanos de Villa.

Objetivos específicos

- Analizar la relación entre el uso del agua por parte de la población que carece de servicio de agua y alcantarillado, ubicados en Villa baja, con el estado trófico de los canales de abastecimiento de agua a los pantanos de Villa.

- Analizar la relación entre el uso del agua por las industrias informales y el estado trófico de los canales de abastecimiento de agua a los pantanos de Villa.

3.2. Hipótesis

- Las dos fuentes principales de contaminación son: las industrias informales aledañas a los pantanos, como los pobladores que carecen del servicio de agua y desagüe, estas contribuyen a la eutrofización del agua de los canales de abastecimiento de agua a los pantanos de Villa.

- Debido al “hábito” de la población del uso gratuito del agua en la lavandería como espacio de socialización y distracción, inicialmente podría haber una fuerte resistencia a dejar este “hábito” a pesar de la llegada de los servicios de agua de desagüe por parte de SEDAPAL, lo que implica un costo adicional por el uso del agua y contribuye a la contaminación.

3.3. Preguntas de investigación

Se presentan las siguientes preguntas a fin de desarrollar la investigación:

¿Cuál es el USO de los canales de abastecimiento por parte de los pobladores del AH Villa Baja ante la falta del servicio de agua y desagüe?

¿Cuál es el USO de los canales de abastecimiento por parte de las industrias ante la falta del servicio de agua y desagüe?
¿Cuál es el estado trófico del agua en los manantiales antes de su afectación?

¿Cuál es la relación de los usos de los canales con el estado trófico de los canales de abastecimiento?

Sujetos de estudio:
 Usuarios del asentamiento humano Villa Baja e industrias aledañas a los canales de abastecimiento de agua a los pantanos.

Objetos de estudio:
 La relación entre las actividades de las industrias y los usos y costumbres de los pobladores de bajos recursos del asentamiento humano Villa Baja que carecen del servicio de agua y desagüe, con el estado trófico de los canales de abastecimiento de agua a los pantanos de Villa.

3.4. Selección del lugar de estudio
 La presente investigación se centrará en el Asentamiento Villa Baja por las siguientes razones:
- Allí se concentran 2 de los 3 manantiales que alimentan a los Pantanos de Villa.
- En el sitio se concentran 4 de las 5 industrias de la zona.
- En ese sitio es el único sitio en la cual aún no cuenta con el servicio de agua y desagüe.

A fin de definir la metodología y gestionar la obtención de información y organizar las acciones para la investigación. Se elaboró una matriz de consistencia, en donde inicia con investigar los usos que la población y las industrias dan a los canales de abastecimiento, para luego evaluar la calidad del agua en los manantiales antes de afectación; y finalmente correlacionar estos usos y la calidad del agua en el manantial con el estado trófico.
Tabla 2: Matriz de consistencia.

<table>
<thead>
<tr>
<th>Pregunta general</th>
<th>Preguntas específicas</th>
<th>Información</th>
<th>Fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuál es el USO de los canales de abastecimiento por parte de los pobladores del AH Villa Baja ante la falta del servicio de agua y desagüe?</td>
<td>¿Cuántos son los pobladores que carecen de agua y desagüe en Villa Baja?</td>
<td>202 Lotes</td>
<td>Proyecto: Sectorización del Sistema de Agua Potable y Alcantarillado de la Parte Alta de Chorrillos: Matriz Próceres – Chorrillos, Distrito de Chorrillos</td>
</tr>
<tr>
<td></td>
<td>¿Cuáles son las actividades en relación al agua que realizan los pobladores con los canales de abastecimiento?</td>
<td>Encuestas</td>
<td>Otero 2011, Figueroa 2017 y Ramírez 2018</td>
</tr>
<tr>
<td></td>
<td>¿Cuáles son las actividades en relación al agua?</td>
<td>Encuestas</td>
<td>Encuestas realizadas en la presente investigación</td>
</tr>
<tr>
<td></td>
<td>¿Quiénes realizan dichas actividades en relación al agua?</td>
<td>Encuestas</td>
<td>Barbera & Pardo 2018 y Otero 2011</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es el USO de los canales por las industrias formales?</td>
<td>Sólo es una Industria que realiza el tratamiento de sus aguas residuales, pero no se descarta el aporte de N y P a los canales de abastecimiento.</td>
<td>Ministerio de la Producción, Autoridad Nacional del Agua y Tesis: "EVALUACIÓN DE LA EFICIENCIA DE LA REMOCIÓN DE NUTRIENTES DEL EFLUENTE DE LA PTAR DE LA EMPRESA ESMERALDA CORP S.A.C. MEDIANTE EL USO DE HUMEDALES ARTIFICIALES, EMPLEANDO LA ESPECIE Typhadomingensis Pers. (TOTORA)"</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es el USO de los canales por las industrias informales?</td>
<td>Análisis de agua a realizar</td>
<td>American Water Works Association, Water Environment Federation</td>
</tr>
<tr>
<td></td>
<td>¿Qué procesos productivos realizan estas empresas formales e informales en relación al agua?</td>
<td>Realizar la actividad relacionadas a los canales: matanza, extracción de viseras, comercialización, etc.</td>
<td>Organización Panamericana de la Salud (OPS)</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es el estado trófico del agua en los manantiales antes de su afectación?</td>
<td>Análisis de agua obtenidos</td>
<td>Informe de Ensayo R-LAB S.A.C. N° 1911691A y N° 1911692A</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es la relación de los usos de los canales con el estado trófico de los canales?</td>
<td>Análisis de agua a realizar / Clasificación del nivel trófico de la OECD</td>
<td>Pavluk & Bij 2017 y Carlson 1996</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es la relación entre el estado trófico de los canales con el uso del agua por parte de la población?</td>
<td>Análisis de agua obtenidos</td>
<td>Informe de Ensayo R-LAB S.A.C. N° 1911691A y N° 1911692A</td>
</tr>
<tr>
<td></td>
<td>¿Cuál es la relación entre el estado trófico de los canales con el uso del agua por parte de las industrias?</td>
<td>Análisis de agua obtenidos</td>
<td>Informe de Ensayo R-LAB S.A.C. N° 1911691A y N° 1911692A</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Por ello, la metodología se incluirá dos partes cualitativa y cuantitativa:

3.5. **Análisis Cualitativo**

Para la obtención de datos de la población se realizarán encuestas. El objetivo de la elaboración de encuestas es conocer los usos del agua en la lavandería sabiendo que sólo un grupo cuenta con servicio de agua.

Para ello, según la matriz de consistencia presentada en el Tabla N°1 se tienen preguntas que son respondidas con los resultados de las encuestas mediante las siguientes preguntas:

3.5.1. **Pregunta general:**

¿Cuál es el USO que se le da a los canales de abastecimiento por parte de los pobladores de Villa Baja ante la falta del servicio de agua y desagüe?

3.5.2. **Preguntas específicas:**

¿Cuántos son los pobladores que carecen de agua y desagüe en Villa Baja?
¿Cuáles son las actividades que realizan los pobladores con los canales de abastecimiento?
¿Qué días y horas realizan dichas actividades?
¿Quiénes realizan dichas actividades?

Para poder realizar investigación en el Refugio de Vida Silvestre según lo estipulado en el DS N° 002-2012-MINAM se solicitó el apoyo al SERNANP mediante el TUPA 4A, en donde se emite la Resolución del jefe del Refugio de Vida Silvestre los Pantanos de Villa N° 009-2019-SERNANP-JEF, emitido el 12 de noviembre del 2019, la misma que se adjunta en el Anexo 1.

Debido a que para planificar las encuestas se requiere el dato de la población total, dato en la cual se calculará la muestra. Por lo tanto, para tal fin, se utiliza el siguiente dato: SEDAPAL, conjuntamente con el Ministerio de Vivienda Construcción y Saneamiento (VIVIENDA) han elaborado el proyecto “**Sectorización del Sistema de Agua Potable y Alcantarillado de la Parte Alta de Chorrillos: Matriz Próceres – Chorrillos Distrito de Chorrillos**” código SNIP 95668, en la cual incluye a 242 Asentamiento humanos de Chorrillos con una población beneficiada directa de 40,466 habitantes. Proyecto en la cual incluye a 6 sectores (Asoc. de Viv. Sr. de Luren, A.H. Andrés Avelino Cáceres, A.H. Nuevo Amanecer, la Asoc. de Viv. Nueva Esperanza, A.H. Palmeras de Villa Baja y Asoc. de Viv. Los Girasoles de Villa Baja) que afectan directamente a los Pantanos de Villa por la carencia de los servicios básicos de agua y desagüe.
Instalaciones de Lavandería: Las instalaciones de la lavandería, es un lugar donde existe un ojo de agua (manantial) en la cual esta acondicionado para que la población tenga acceso y tenga facilidades para realizar actividades para el lavado de ropa. Esta lavandería está situada en el Asentamiento Humano Palmeras de Villa Baja en una zona de triple frontera distrital (San Juan de Miraflores-Chorrillos-Villa El Salvador).

La zona presenta un cerco metálico construido por PROHVILLA para evitar el ingreso de la población. Sin embargo, el ingreso fue roto por los propios pobladores para poder volver a ingresar a dichas instalaciones y seguir usando el agua de las instalaciones de la lavandería. Representando un área de conflicto dado a que la mayoría de la población que lo utiliza es de zonas alejadas y sólo una parte de la población aledaña lo utiliza.

Este ojo de agua que es utilizado como lavandería es el inicio de uno de los canales de abastecimiento de agua que alimenta a los Pantanos de Villa.

Foto N°2: Vista de las instalaciones de la lavandería.

Fuente: Elaboración propia.
3.5.3. Variables identificadas:

Para recoger la información de los pobladores, en cuanto al uso del agua, que viven en los alrededores de los canales de abastecimiento de agua dentro del área de amortiguamiento del Refugio de Vida Silvestre Pantanos de Villa. Se consultaron 12 variables en las cuales se presentan a continuación:

- Parentesco con el jefe de hogar.
- Sexo.
- Edad.
- Disponibilidad de agua y desagüe en su domicilio.
- Uso de la lavandería.
- Productos a utilizar en la lavandería.
- Uso en recreación.
- Uso en el lavado de carros.
- Conocimiento a donde van las aguas de la lavandería.
- Conocimiento de la afectación a los pantanos de Villa.
- Conocimiento de las obras de SEDAPAL.
- Continuidad del uso de la lavandería, luego de las obras de SEDAPAL.

3.5.4. Cálculo de la muestra:

«Al seleccionar la muestra debemos evitar tres errores que pueden presentarse: 1) desestimar o no elegir a casos que deberían ser parte de la muestra (participantes que deberían estar y no fueron seleccionados), 2) incluir a casos que no deberían estar
porque no forman parte de la población y 3) seleccionar casos que son verdaderamente inelegibles» (Mertens en Hernández, Fernández y Baptista 2010: 175).

Según la Metodología de Investigación Sampieri y Baptista 5a edición, para obtener una muestra representativa y asumiendo un error de 5% y un nivel de confianza del 90%, el tamaño de muestra por habilitación se presenta en la siguiente tabla:

Tabla 3: Cálculo de la muestra por habilitación.

<table>
<thead>
<tr>
<th>Habilitación</th>
<th>Tamaño de muestra</th>
<th>Tamaño de muestra (viviendas)</th>
<th>Número de encuestas realizadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>166 A.H. Las Palmas de Villa Baja</td>
<td>448</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>162 Asoc. Viv. Los Girasoles de Villa Baja</td>
<td>157</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>163 Asoc. Viv. Nueva Esperanza de Villa Baja</td>
<td>113</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>164 Asoc. Viv. Señor de Luren</td>
<td>200</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>161 Asoc. Prop. Nuevo Amanecer</td>
<td>346</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>158 A.H. Andrés Avelino Cáceres</td>
<td>1247</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>328</td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir del proyecto “Sectorización del Sistema de Agua Potable y Alcantarillado de la Parte Alta de Chorrillos: Matriz Próceres – Chorrillos Distrito de Chorrillos”.

3.5.5. Número de encuestas:

Según el Tabla N°3, el tamaño de la muestra es de 328 encuestas, sin embargo, en el trabajo de campo se realizaron 150 encuestas. Debido a que durante el trabajo de campo se verificó que la Asociación Andrés Avelino Cáceres ya contaba sólo con servicio de agua mas no con desagüe y por ende no utiliza el agua de las instalaciones de la lavandería.

En la siguiente tabla se presenta los resultados del tamaño de muestra y las encuestas realizadas por habilitación.

Tabla 4: Tamaño de muestra y encuestas realizadas por habilitación.

<table>
<thead>
<tr>
<th>Habilitación</th>
<th>Tamaño de muestra (viviendas)</th>
<th>Número de encuestas realizadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>166 A.H. Las Palmas de Villa Baja</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>162 Asoc. Viv. Los Girasoles de Villa Baja</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>163 Asoc. Viv. Nueva Esperanza de Villa Baja</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>164 Asoc. Viv. Señor de Luren</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>161 Asoc. Prop. Nuevo Amanecer</td>
<td>56</td>
<td>29</td>
</tr>
<tr>
<td>158 A.H. Andrés Avelino Cáceres</td>
<td>125</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>328</td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

3.5.6. Programa para procesamiento de datos:
Para el mejor manejo de la información (más de 2400 datos obtenidos en las encuestas) y por ser un programa de fácil acceso, se utilizó Microsoft Excel para procesar los datos de las encuestas. En donde utilizando la herramienta “filtro” se puede contabilizar las encuestas en función a la cantidad de variables filtradas.

3.5.7. Fechas que se elaboró las encuestas:
Las encuestas se efectuaron entre las 9:00 am hasta 4:00pm, los días lunes 28.10.19, jueves 31.10.19 y martes 05.11.19. Lapso de tiempo en la cual se pudo encontrar a la población objetivo.
Cabe señalar que las encuestas se realizaron los días laborables, debido a que las actividades de lavandería se realizan cualquier día a la semana y a que el apoyo de los colaboradores del SERNANP es en días útiles.

3.5.8. Características de los encuestados:
Para la presente investigación las encuestas se aplicaron a los pobladores en general que tienen conocimiento del uso del agua en sus domicilios, así como de la compra de agua en camiones cisterna.

3.5.9. Área cubierta por la encuesta:
Las habitaciones en donde se elaboraron las encuestas son las áreas circundantes a la zona de uso común como la lavandería y a los canales de abastecimiento de agua a los Pantanos de Villa y que forman parte del proyecto “Sectorización del Sistema de Agua Potable y Alcantarillado de la Parte Alta de Chorrillos: Matriz Próceres – Chorrillos Distrito de Chorrillos”. Dichas habitaciones son las siguientes: Asociación de Vivienda Señor de Luren, Asentamiento Humano Andrés Avelino Cáceres, Asentamiento humano Nuevo Amanecer, la Asociación de Vivienda Nueva Esperanza, Asentamiento humano Palmeras de Villa Baja y Asociación de Vivienda Los Girasoles de Villa Baja.
3.5.10. Plan de cruces de variables:

Antes de presentar los criterios para el cruce de variables, se presentan los resultados para caracterizar la población encuestada.

El primer cruce de variables se realizará en función a caracterizar a la población encuestada clasificándolos por rango de edades 18-35, 36-51, 52-67 y 68-90 y por sexo. Debido a que en esos rangos se tiene una mejor distribución más homogénea de los encuestados.

Un segundo cruce de variables se realiza para responder la primera pregunta específica de la matriz de consistencia. Es decir, cuántos son los pobladores que carecen de agua y desagüe.

Para conocer los usos del agua por parte de la población que no posee servicio de agua ni desagüe. Se realizará un tercer cruce de variables: población de encuestados que no tienen agua ni desagüe versus el tipo de uso que le dan al agua de la lavandería. Para así conocer cuál es el mayor uso del agua que se da en la lavandería. Para luego conocer sus horarios y los días a la semana que usan el agua.

A fin de seleccionar el grupo de encuestados con un mayor nivel de conciencia ambiental hacia el Refugio de Vida Silvestre Pantanos de Villa, se cruzarán las variables que actualmente NO usan el agua de la lavandería versus a la disponibilidad del servicio de agua y desagüe en sus domicilios.

A fin de determinar los usos del agua de la lavandería, se cruzarán las variables de uso versus género.

Para poder saber las horas y cuantos días a la semana utilizan las instalaciones de la lavandería, se cruzarán los datos de horas y días a la semana de uso por género.
Foto N°4: Proceso de encuesta durante primer día.

Fuente: Elaboración propia.

Foto N°5: Proceso de encuesta con apoyo del personal voluntario del SERNANP.

Fuente: Elaboración propia.
Tabla 5: Modelo de encuesta aplicado.

Parte N° 1: Datos generales

<table>
<thead>
<tr>
<th>Código de encuesta N°</th>
<th>AH-PVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.H Las Palmeras de Villa Baja</td>
<td>AV-GVB</td>
</tr>
<tr>
<td>Asoc. de vivienda Los Girasoles de Villa Baja</td>
<td>AV-NEVB</td>
</tr>
<tr>
<td>Asoc. de vivienda Nueva Esperanza de Villa Baja</td>
<td>Ex-VB</td>
</tr>
<tr>
<td>Ex fundo Villa Baja</td>
<td>Miembro en la familia (P: padre, M: madre, T: tío(a), A: abuelo, H: Hijo(a))</td>
</tr>
<tr>
<td>Edad aproximada del encuestado</td>
<td>¿Su vivienda tiene servicio de agua y desague por parte de SEDAPAL?</td>
</tr>
</tbody>
</table>

Parte N° 2: Usos del agua del manantial Villa Baja

<table>
<thead>
<tr>
<th>Uso personal del agua del manantial Villa Baja</th>
<th>Uso familiar (de otros componentes de la familia) del agua del manantial Villa Baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abastecimiento de agua</td>
<td>Lavandería</td>
</tr>
<tr>
<td>Preparación de alimentos</td>
<td>Cuantos días a la semana</td>
</tr>
<tr>
<td>Aseo personal</td>
<td>En que horarios lo utilizan</td>
</tr>
<tr>
<td>Para crianza de animales domésticos</td>
<td>Productos que usan</td>
</tr>
<tr>
<td>Recreación</td>
<td>¿A la par, lavan las ropas de terceros, como trabajo remunerado?</td>
</tr>
<tr>
<td>Lavandería</td>
<td>¿Considera que las actividades en la lavandería originan socialización y distracción?</td>
</tr>
</tbody>
</table>

Parte N° 3: Percepción al jefe de hogar (encuestado) de Villa Baja

| ¿A donde va estas aguas del manantial? |
| ¿Han recibido ayuda o apoyo de alguna entidad para mejorar las instalaciones de la lavandería? |
| ¿Tienen conocimiento de la afectación a los Pantanos de Villa? |

Parte N° 4: De las obras de SEDAPAL

| ¿Tiene conocimiento de las obras de SEDAPAL? |
| Si uds tuvieran agua por parte de SEDAPAL ¿Para que y porque la usarían? |
| Seguirán usando el área de la lavandería? |

Fuente: Elaboración propia.
3.6. **Análisis Cuantitativo**

Una vez recogida las respuestas de la población de Villa Baja en cuanto a usos, días y horas de uso, de los canales de abastecimiento de agua, se define el día y hora del muestreo de la calidad del agua en cada uno de los puntos, para determinar su uso por parte de la población y relacionarlo con la calidad del agua.

3.6.1. **Selección de los puntos de Muestreo de Agua:**

Según la “Vigilancia Sanitaria de los Recursos Hídricos: Pantanos de Villa elaborados por el MINSA en el 2011, 2012 y 2013” se reportan tres ojos de agua.

Para el “Estudio Hidrogeológico del Refugio de Vida Silvestre de los Pantanos de Villa”, elaborado por la Dirección de Geología Ambiental y Riesgo geológico del INGEMET (Instituto Geológico, Minero y Metalúrgico). Se reconocen también tres manantiales permanentes.

Los manantiales Miramar y Las Terrazas se encuentran dentro del asentamiento humano de las Terrazas de Villa. Mientras que las instalaciones de la Lavandería, se encuentra en el asentamiento humano de las Palmeras de Villa Baja.

Por lo que se plantea realizar tres muestras en los tres afloramientos (ojos de agua) en donde aún no sufre una afectación (MA-1, 4 y 7), para luego tomar una muestra en el mismo instante luego de la afectación y finalmente tomar una muestra antes de su entrega a las lagunas de los Pantanos de Villa, según la siguiente figura:
Definiéndose un total de 08 (ocho) puntos de muestreo de agua, en la cual se identificará la calidad del agua antes y después de la afectación.

En cuanto a las descargas industriales, para la presente investigación se tomará como uno sólo debido a:

- De tres canales sólo uno es formal y tiene un tratamiento de sus aguas residuales.
- Dos canales son informales y realizan vertimientos de sus aguas residuales en la madrugada cuando la vigilancia es nula en la zona.
- Por el carácter informal de las industrias, es imposible recolectar datos reales sobre sus descargas de efluentes en los canales de agua.
- Dichas descargas industriales se localizan aguas abajo del uso poblacional en Villa Baja.

Sin embargo, debido a la baja velocidad de escurrimiento del agua y debido a que las descargas informales son en la madrugada, es posible calcular la hora en que el agua llegaría a las lagunas.

Para cual se tomarán las velocidades calculas por el equipo del SERNANP durante los aforos periódicos que realizan en los canales de abastecimiento de agua. Tomando como referencia los datos del aforo del año 2018 y 2019 por ser los más recientes.
Debido a que la toma de muestras de agua para la presente investigación se realiza en noviembre del 2019, se tomará como referencia 0.31m/s como dato de velocidad de Noviembre del 2018 para determinar el tiempo en que una descarga llega hasta la entrada a las lagunas.

Tabla 6: Resumen de velocidades en puntos de control en el área de amortiguamiento del RVSPV.

<table>
<thead>
<tr>
<th>Sección de control</th>
<th>Velocidades (m/s) obtenidas para el aforo del agua superficial 2018 y 2019</th>
<th>V promedio (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Ene-19</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Feb-19</td>
<td>0.16</td>
<td>0.58</td>
</tr>
<tr>
<td>Ene-18</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Feb-18</td>
<td>0.13</td>
<td>0.11</td>
</tr>
<tr>
<td>Mar-18</td>
<td>0.16</td>
<td>0.14</td>
</tr>
<tr>
<td>Abr-18</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>May-18</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>Jun-18</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Jul-18</td>
<td>0.07</td>
<td>0.36</td>
</tr>
<tr>
<td>Ago-18</td>
<td>0.07</td>
<td>0.36</td>
</tr>
<tr>
<td>Set-18</td>
<td>0.05</td>
<td>0.41</td>
</tr>
<tr>
<td>Oct-18</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Nov-18</td>
<td>0.46</td>
<td>0.11</td>
</tr>
<tr>
<td>Dic-18</td>
<td>0.24</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Fuente: SERNANP.

Cabe señalar que los caudales (velocidad) del agua en los canales varía en los diferentes meses del año, ya que son un reflejo inverso del periodo de lluvias en la sierra. Es decir, durante la época de lluvias el acuífero se recarga en las alturas, pero para llegar hasta el acuífero en la costa toma meses porque depende de la formación geológica que el agua debe pasar a través de la cuenca.

Por ello, en los Pantanos de Villa se presenta más agua en época de invierno en Lima (estiaje), mientras que en verano (época de lluvias en la sierra) se presenta poca agua.

Luego de la distribución de las muestras, se obtiene la siguiente tabla resumen de puntos de muestras:
<table>
<thead>
<tr>
<th>Estación</th>
<th>Coordenada Este</th>
<th>Coordenada Norte</th>
<th>Descripción del Punto de Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1 (E-5)</td>
<td>284,829</td>
<td>8,649,775</td>
<td>Lavandería, en el afloramiento de agua antes de su primera contaminación en Villa Baja.</td>
</tr>
<tr>
<td>MA-2</td>
<td>-</td>
<td>-</td>
<td>Luego de la lavandería y antes de descargas industriales.</td>
</tr>
<tr>
<td>MA-3 (E-10)</td>
<td>284,181</td>
<td>8,649,037</td>
<td>Antes de su descarga a los Pantanos de Villa en el Canal Principal Zona Sur frente Hito 8.</td>
</tr>
<tr>
<td>MA-5 (cerca a E-3)</td>
<td>283,900</td>
<td>8,649,823</td>
<td>Canal Margen derecha Kimberly.</td>
</tr>
<tr>
<td>MA-6 (E-21)</td>
<td>-</td>
<td>-</td>
<td>Antes de su descarga a los Pantanos de Villa.</td>
</tr>
<tr>
<td>MA-7 (E-1)</td>
<td>283,242</td>
<td>8,650,291</td>
<td>Entrada Laguna la Pampa.</td>
</tr>
<tr>
<td>MA-8 (E-2)</td>
<td>283,424</td>
<td>8,649,990</td>
<td>Pozo Culebra.</td>
</tr>
</tbody>
</table>

MA-X: Muestra de agua elaborado para esta investigación.
E-X: Estación de muestreo de agua establecido por MINSA.

En donde se realizará un primer monitoreo de los 8 puntos descritos y al realizar el procesamiento de los resultados, se planteará realizar tres contras muestras (muestras adicionales) en cada uno de los puntos de monitoreo para afinar conclusiones.

A fin de realizar las coordinaciones respectivas que incluyen permisos y acompañamiento del SERNANP, las tomas de muestras de agua en los manantiales se deberían de realizar a las 6am hora en que el agua no es utilizada. Debido a que entre 9am y 12pm, son las horas en donde se visualizó el lavado de ropa en la lavandería. Por lo que los monitoreos del agua luego de la afectación se podrán realizar cuando la población esta en pleno lavado de ropa.

Dicha distribución de puntos de muestreo de análisis de agua a realizar, se encuentran mostrados en la figura N°8.
Figura 8: Mapa de Los Pantanos de Villa (Adaptado de SERNANP-RVSLPV, 2010)

MA-X: Muestras de agua ubicados en las Estación de muestreo de agua establecido por el MINSA.
3.6.2. Determinación de los parámetros a evaluar para la calidad de agua

A fines de seleccionar los parámetros a evaluar, se procedió a realizar una revisión bibliográfica para la clasificación del nivel trófico de cuerpos de agua.

El concepto de estado trófico se basa en el hecho de que los cambios en los niveles de nutrientes (medidos como fósforo total) que causan cambios en biomasa de algas (medida como clorofila “a”) que a su vez causa cambios en la claridad del lago (medida como transparencia del disco Secchi). El índice de estado trófico (TSI) es una forma de cuantificar esta relación. La TSI se calcula independientemente de la profundidad del disco Secchi, clorofila “a” y concentración total de fósforo. Debe tenerse en cuenta que TSI se desarrolló para su uso con lagos que tienen pocas plantas acuáticas enraizadas y poca turbidez no algal (Pavluk & Bij 2017: 2).

Encontrando los siguientes métodos de la OCDE (1982) y Carlson (1996) como los más usados, debido a que otros métodos en donde intervienen más de variables además de los valores de clorofila, fósforo y transparencia los siguientes valores como: Valor absoluto de desviación del porcentaje de saturación del oxígeno disuelto, factores nutricionales, factores de productividad hasta métodos que utilizan el Sistema de Información Geográfica par estudiar la distribución espacial de las condiciones de eutrofia.

A continuación, se presenta un análisis de dichos métodos de OECD 1982 y Carlson 1996.

a) El nivel trófico del agua según el estudio ejecutado por el “Programa Cooperación sobre la Eutrofización”, de la OCDE (Organización para la Cooperación y el Desarrollo Económico) realizado en la década de 1970 con la participación de connotados científicos de 18 países y coordinados por Vollenweider (OCDE, 1982). En donde establecieron una secuencia de categorías tróficas cimentado en las concentraciones de Fósforo, Clorofila, nitrógeno total (Nt) y transparencia medida con el Ds. Este estudio define cinco categorías tróficas estableciendo límites para los valores promedio anuales, así como los valores máximos y
mínimos para el Fósforo total, clorofila y transparencia del agua (Moreno & Quintero, 2010: 28).

Tabla 8: Esquema de Clasificación trófica de lagunas propuesta por la O.E.C.D. en 1982 (Organización para la Cooperación y el Desarrollo Económico).

<table>
<thead>
<tr>
<th>Categoría del Lago</th>
<th>Fósforo total (mg/m³)</th>
<th>Clorofila (mg/m³)</th>
<th>Transparencia (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Ultra-oligotrófico</td>
<td><4</td>
<td><1.0</td>
<td><2.5</td>
</tr>
<tr>
<td>Oligotrófico</td>
<td><10</td>
<td><2.5</td>
<td><8.0</td>
</tr>
<tr>
<td>Mesotrófico</td>
<td>10-35</td>
<td>2.5-8</td>
<td>8-25</td>
</tr>
<tr>
<td>Eutrófico</td>
<td>35-100</td>
<td>8-25</td>
<td>25-75</td>
</tr>
<tr>
<td>Hiper eutrófico</td>
<td>>100</td>
<td>>25</td>
<td>>75</td>
</tr>
</tbody>
</table>

b) Otros métodos se basan en la productividad de la masa de agua relacionada con la biomasa. “Índice de estado trófico o Trofic State Index (TSI), desarrollado por Carlson, R.E. Simpson, J. en 1996”. El índice de estado trófico de Carlson (TSI) es un método común para caracterizar el estado trófico de un lago en general. Este método utiliza la transparencia del disco de Secchi, clorofila-a, y medida del fósforo total. El estado trófico se define como el peso total de la biomasa en un cuerpo de agua en un sitio y en una hora específica. El estado trófico es la respuesta biológica para las adiciones de nutrientes a los cuerpos de aguas. Pero estos efectos de nutrientes pueden ser modificados por parámetros tales como variaciones estacionales, pastoreo de fitoplancton por zooplancton y profundidad de mezcla del agua, etc (Prasad & Siddaraju 2012: 2992).

En la siguiente tabla se presenta la clasificación según Carlson de 1996:
<table>
<thead>
<tr>
<th>Valor del TSI</th>
<th>Clorofila (ug/L)</th>
<th>Transparencia (m)</th>
<th>Fósforo Total (ug/L)</th>
<th>Estado trófico</th>
<th>Atributos</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
<td><0.95</td>
<td>>8</td>
<td><6</td>
<td>Oligotrófico</td>
<td>Agua limpia, oxígeno durante todo el año en el hipolimnion</td>
</tr>
<tr>
<td>30-40</td>
<td>0.95-2.6</td>
<td>8-4</td>
<td>6-12</td>
<td>Oligotrófico</td>
<td>Un lago presenta oligotrofia, pero algunos lagos poco profundos se volverán anóxicos durante el verano</td>
</tr>
<tr>
<td>40-50</td>
<td>2.6-7.3</td>
<td>4-2</td>
<td>12-24</td>
<td>Mesotrófico</td>
<td>Agua moderadamente clara, pero con mayor probabilidad de anoxia durante el verano.</td>
</tr>
<tr>
<td>50-60</td>
<td>7.3-20</td>
<td>2-1</td>
<td>24-48</td>
<td>Eutrófico</td>
<td>Límite inferior de la eutrofia clásica: Disminución de la transparencia, sólo en aguas cálidas en donde hay peces.</td>
</tr>
<tr>
<td>60-70</td>
<td>20-56</td>
<td>0.5-1</td>
<td>48-96</td>
<td>Eutrófico</td>
<td>Dominio de las algas verde azuladas, probables acumulaciones de restos de algas, problemas macrófitos extensos</td>
</tr>
<tr>
<td>70-80</td>
<td>56-155</td>
<td>0.25-0.5</td>
<td>96-192</td>
<td>Hipertrófico</td>
<td>Posibles floraciones de gran cantidad de algas durante todo el verano, que a menudo son hipertróficas.</td>
</tr>
<tr>
<td>>80</td>
<td>>155</td>
<td><0.25</td>
<td>192-384</td>
<td>Hipertrófico</td>
<td>Aumento de restos de algas, matanza de peces en el verano, pocas macrófitas</td>
</tr>
</tbody>
</table>

Fuente: Carlson, R.E. Simpson (en Pavluk & Bij 2017: 2).

Obteniendo como conclusión que, para los fines de la presente investigación, se tomará como referencia Carlson, R.E. Simpson, J. en 1996 y el concepto de la clasificación se asemeja del nivel trófico del Organización para la Cooperación y el Desarrollo Económico (OECD 1982).

Para determinar el nivel trófico de los canales de abastecimiento de agua a los pantanos de Villa, se analizará el Fósforo Total, Clorofila y transparencia. Y para correlacionar los valores con la información existente se analizará Conductividad y Sólidos Totales disueltos.

En la Tabla N° 9 se realiza el cálculo del número total de muestras, para lo cual se tiene en cuenta:
- Los 8 puntos de muestreo (MA-1, 2, 3, 4, 5, 6, 7 y 8).
- Los tres (03) parámetros que ayudarán para definir el nivel trófico: (Fósforo Total, Clorofila y transparencia).
- Los dos (02) parámetros que ayudarán a comparar con la información existente (Conductividad y Sólidos Totales disueltos).

En la siguiente tabla se presenta un resumen de las muestras y análisis que se realizarán en la investigación:

Tabla 10: Resumen de toma de muestras de agua.

<table>
<thead>
<tr>
<th>Ojo de agua</th>
<th>Estación</th>
<th>Descripción del Punto de Muestreo</th>
<th>P total (mg/L)</th>
<th>Clorofila (mg/L)</th>
<th>Transparencia (m)</th>
<th>Conductividad (mS/cm)</th>
<th>STD (mg/L)</th>
<th>Parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA-1 (E-5)</td>
<td>Lavandería, en el afloramiento de agua antes de su primera contaminación en Villa Baja.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MA-2</td>
<td>Luego de la lavandería y antes de descargas industriales.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MA-3 (E-10)</td>
<td>Antes de su descarga a los Pantanos de Villa en el Canal Principal Zona Sur frente Hito 8.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>MA-4 (E-4)</td>
<td>Afloramiento antes de su primera contaminación. Ubicado intersección Jr. Ganaderos con Jr. Los Agricultores</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MA-5 (cerca a E-3)</td>
<td>Canal Margen derecha Kimberly</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MA-6 (E-21)</td>
<td>Antes de su descarga a los Pantanos de Villa</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>MA-7 (E-1)</td>
<td>Entrada Laguna la Pampa</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>MA-8 (E-2)</td>
<td>Pozo Culebra</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>TOTAL DE MUESTRAS</td>
<td></td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Por otro lado, para fines de evaluar la calidad del agua de los canales de abastecimiento de agua a los pantanos en el tiempo, la información obtenida en los análisis del agua de los canales será comparada con la siguiente información existente:

- Información del monitoreo que realizó la DISA los mismos que se presentan en el INFORME-DISA-II-LS-MINSA 2011-2011-2012.
- Información de monitoreo de agua realizado los años 2013 y 2014 para la elaboración de la tesis “Determinación analítica de detergentes en las aguas de los Pantanos de Villa” (Álvarez, 2016).
- “Estudio Hidrogeológico del Refugio de Vida Silvestre de los Pantanos de Villa”, elaborado por la Dirección de Geología Ambiental y Riesgo geológico del INGEMET.
- Dichos análisis de las muestras de agua que se realizaron en la presente investigación se ejecutaron con recursos propios y serán donados al SERNANP para sus archivos y para los fines que ellos crean convenientes.
Luego de la comparación se realizarán las conclusiones en cuanto al estado trófico del agua de los canales de abastecimiento de agua al RVSPV.

Debido a que los análisis del agua se realizarán con financiamiento propio, se procedió a realizarlo con el laboratorio “R-Lab” el cual posee la acreditación respectiva por INACAL.

Llegando a cotizar la toma de muestras de agua y su procesamiento, para la cual emitieron un informe con los resultados. Ver Anexo 2.
CAPÍTULO 4: RESULTADOS OBTENIDOS DE LAS ENCUESTAS

A fin de facilitar el manejo y procesamiento de la información recolectada durante las encuestas, de proceder a introducirla en modo de base de datos, para poder agilizar la obtención de resultados. Es decir, con unos atributos que fueron predeterminados por el resultado de la encuesta.

Para el procesamiento de la data se utilizará Microsoft Excel mediante la herramienta “filtro”, en la cual facilita la selección de una muestra que cumpla una, dos o más atributos preseleccionados.

A continuación, se presenta la base de datos cruda (sin ningún tipo de procesamiento) en donde se aprecia la cantidad total de datos que se recogieron en la encuesta.
<table>
<thead>
<tr>
<th>N°</th>
<th>Identificación</th>
<th>Sexo</th>
<th>Edad</th>
<th>Uso del agua del manantial</th>
<th>Camión cisterna</th>
<th>Horarios de uso en lavandería</th>
<th>Días a la semana de uso</th>
<th>Fuente de agua</th>
<th>Lavandería</th>
<th>Lavado de carros</th>
<th>Percepción del jefe de hogar</th>
<th>Suposición acerca del uso de la agua</th>
<th>Acciones para evitar el desperdicio</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>147 AH-GVB-P-38-M</td>
<td>Hombre</td>
<td>38</td>
<td>Sin agua ni desague</td>
<td>No</td>
<td>Si</td>
<td>1 días/semana</td>
<td>RVSPV</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>102</td>
<td>140 AH-GVB-M-52-F</td>
<td>Mujer</td>
<td>52</td>
<td>Sin agua ni desague</td>
<td>No</td>
<td>Si</td>
<td>2 días/semana</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>103</td>
<td>129 Avelino-P-70-M</td>
<td>Hombre</td>
<td>70</td>
<td>Sólo agua</td>
<td>Antes iba</td>
<td>No</td>
<td>2 días/semana</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>104</td>
<td>127 AH-PVB-M-30-F</td>
<td>Mujer</td>
<td>30</td>
<td>Sin agua ni desague</td>
<td>No</td>
<td>Si</td>
<td>2 días/semana</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>Si, para ahorrar dinero</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>105</td>
<td>105 Sr Luren-H-35-F</td>
<td>Mujer</td>
<td>35</td>
<td>Sin agua ni desague</td>
<td>No</td>
<td>Si</td>
<td>3 días/semana</td>
<td>RVSPV</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>106</td>
<td>96</td>
<td>Hombre</td>
<td>66</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>4pm</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>107</td>
<td>92</td>
<td>Mujer</td>
<td>70</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>4pm</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>108</td>
<td>88</td>
<td>Hombre</td>
<td>72</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>4pm</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>109</td>
<td>80</td>
<td>Mujer</td>
<td>78</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>2pm</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>110</td>
<td>78</td>
<td>Hombre</td>
<td>80</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>8am</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>111</td>
<td>77</td>
<td>Mujer</td>
<td>82</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>8am</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>112</td>
<td>76</td>
<td>Hombre</td>
<td>84</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>8am</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>113</td>
<td>66</td>
<td>Mujer</td>
<td>86</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>8am</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>114</td>
<td>64</td>
<td>Hombre</td>
<td>88</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>8am</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
<tr>
<td>115</td>
<td>62</td>
<td>Mujer</td>
<td>90</td>
<td>No</td>
<td>No</td>
<td>Si</td>
<td>2pm</td>
<td>Municipalidad</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No sabe</td>
<td>No</td>
</tr>
</tbody>
</table>

Tabla 11: Matriz general de datos crudos, obtenidos en la encuesta con más de 2400 datos procesados.

Fuente: Elaboración propia.
4.1. Caracterización de la población encuestada

Uno de los principales hallazgos en la primera visita de campo es que dado a que el área de los Pantanos de Villa (área natural y área de amortiguamiento) se encuentra entre cuatro diferentes jurisdicciones municipales cuyos límites aún no están definidos (Villa el Salvador, Chorrillos, San Juan de Miraflores y Surco). El resultado, es la falta de control y fiscalización para evitar la contaminación a los pantanos de Villa. Por no tener una delimitación clara de los límites de responsabilidad de cada distrito.

Cabe señalar que la selección la muestra de pobladores a encuestar se realizó al “azar”, es decir se encuesto a los pobladores que se encontraban en sus casas en ese instante y a los pobladores que estaban en ese momento utilizando las instalaciones de la lavandería.

A continuación, se presentan la caracterización de la población encuestada:

Tabla 12: Género y rango de edad de la población de encuestados.

<table>
<thead>
<tr>
<th>Rango de edad</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Porcentaje</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 18 a 35</td>
<td>14</td>
<td>31</td>
<td>30%</td>
<td>45</td>
</tr>
<tr>
<td>De 36 a 51</td>
<td>23</td>
<td>33</td>
<td>37%</td>
<td>56</td>
</tr>
<tr>
<td>De 52 a 67</td>
<td>9</td>
<td>20</td>
<td>19%</td>
<td>29</td>
</tr>
<tr>
<td>De 68 a 90</td>
<td>12</td>
<td>8</td>
<td>13%</td>
<td>20</td>
</tr>
<tr>
<td>Total encuestados</td>
<td>58</td>
<td>92</td>
<td>-</td>
<td>150</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En el siguiente gráfico de barras se muestra la distribución de la población por rango de edades.

Fuente: Elaboración propia.
De la tabla anterior se observa que la población de mujeres encuestadas representa un 61% de la población total encuestada. Mientras que los hombres representan el 39% de los encuestados.

Tabla 13: Población de encuestados por sexo y por habilitación.

<table>
<thead>
<tr>
<th>Habilitación</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Total</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asentamiento humano Palmeras de Villa Baja</td>
<td>22</td>
<td>30</td>
<td>52</td>
<td>35%</td>
</tr>
<tr>
<td>Asentamiento humano Los Girasoles de Villa Baja</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>10%</td>
</tr>
<tr>
<td>Asentamiento Humano Andrés Avelino Cáceres</td>
<td>9</td>
<td>9</td>
<td>18</td>
<td>12%</td>
</tr>
<tr>
<td>Asentamiento humano Nuevo Amanecer</td>
<td>7</td>
<td>22</td>
<td>29</td>
<td>19%</td>
</tr>
<tr>
<td>Asentamiento humano Señor de Luren</td>
<td>9</td>
<td>14</td>
<td>23</td>
<td>15%</td>
</tr>
<tr>
<td>Asociación de Vivienda Nueva Esperanza</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>9%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58</td>
<td>92</td>
<td>150</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En el siguiente gráfico de barras se muestra la distribución de los encuestados por habilitaciones:

![Gráfico N°3: Número de encuestados por habilitación](image)

Fuente: Elaboración propia.

De la tabla anterior se observa que el AH. Palmeras de Villa representa el 35% de los encuestados, debido a que las instalaciones de la lavandería quedan en dicho asentamiento humano y son los que en primera instancia utilizarían el agua de dicho lugar.
Tabla 14: Género de los encuestados versus disponibilidad de agua y desagüe en sus viviendas.

<table>
<thead>
<tr>
<th>Por servicios de SEDAPAL</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Porcentaje</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sólo tienen agua</td>
<td>12</td>
<td>12</td>
<td>16%</td>
<td>24</td>
</tr>
<tr>
<td>Sin agua ni desagüe</td>
<td>44</td>
<td>79</td>
<td>82%</td>
<td>123</td>
</tr>
<tr>
<td>Tienen agua y desagüe</td>
<td>2</td>
<td>1</td>
<td>2%</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>92</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Porcentaje</td>
<td>39%</td>
<td>61%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En la tabla se aprecia que 123 de los encuestados (equivalente al 82% del total de la muestra) no cuentan con servicio de agua ni desagüe en sus viviendas.

4.2. Resultados de las respuestas de la población encuestada

Según las encuestas y las preguntas formuladas en el Tabla N°1, se presentan los resultados en cuanto al uso del agua de la lavandería por parte de la población.

Tabla 15: Uso del agua de la lavandería por género.

<table>
<thead>
<tr>
<th>Usos del agua</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Total</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para aseo personal y lavandería</td>
<td>22</td>
<td>25</td>
<td>47</td>
<td>31%</td>
</tr>
<tr>
<td>Sólo para el lavado de ropa</td>
<td>18</td>
<td>44</td>
<td>62</td>
<td>41%</td>
</tr>
<tr>
<td>No usan la lavandería</td>
<td>16</td>
<td>25</td>
<td>41</td>
<td>27%</td>
</tr>
<tr>
<td>Lavado de vehículos</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>56</td>
<td>94</td>
<td>150</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En la tabla se aprecia que sólo el 27% de los encuestados no utilizan las instalaciones de la lavandería.

Fuente: Elaboración propia.
En cuanto al horario de uso y los días a la semana que utilizan el agua de las instalaciones de la lavandería, se presentan los siguientes datos:

<table>
<thead>
<tr>
<th>Periódiedad de uso del agu en la lavandería</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Total</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 día a la semana</td>
<td>11</td>
<td>25</td>
<td>36</td>
<td>32%</td>
</tr>
<tr>
<td>2 días a la semana</td>
<td>20</td>
<td>27</td>
<td>47</td>
<td>42%</td>
</tr>
<tr>
<td>3 días a la semana</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>14%</td>
</tr>
<tr>
<td>4 días a la semana</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>7 días a la semana</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42</td>
<td>69</td>
<td>111</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Los resultados muestran, que 74% de los encuestados (32%+42%) sólo lavan de 1 a 2 días a la semana. Mientras que sólo el 5% lavan los 7 días de la semana.

A fin de conocer los horarios en la cual utilizan el agua de la lavandería se presenta la siguiente tabla:

<table>
<thead>
<tr>
<th>Horario de uso</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Total</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00 hrs</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3%</td>
</tr>
<tr>
<td>8:00 hrs</td>
<td>20</td>
<td>25</td>
<td>45</td>
<td>41%</td>
</tr>
<tr>
<td>10:00 hrs</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>15%</td>
</tr>
<tr>
<td>12:00 hrs</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4%</td>
</tr>
<tr>
<td>14:00 hrs</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>16:00 hrs</td>
<td>10</td>
<td>24</td>
<td>34</td>
<td>31%</td>
</tr>
<tr>
<td>18:00 hrs</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>67</td>
<td>111</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

De la tabla se puede observar que la mayoría 41% y 31% de los encuestados que utilizan el agua de la lavandería, lo realizan a las 8am y a las 4pm respectivamente.

Por otro lado, para la presentación de los datos en cuanto a uso del agua de la población que vive sin agua ni desagüe. Se recoge los resultados del Tabla N°14, en donde la población de encuestados que carecen de los servicios de agua y desagüe es de 123 familias equivalente al 82% del tamaño de la muestra.

De aquellas 123 encuestados que carecen de los servicios de SEDAPAL, 56 de ellos (equivalente al 37% del tamaño de la muestra) sí seguirán usando las instalaciones de la lavandería pese a la llegada del servicio de agua y desagüe.
De los 56 de ellos se distribuirá según las razones por la cual ellos seguirán utilizando las instalaciones de la lavandería pese a la llegada del servicio de agua y desagüe.

Tabla 18: Razones por lo que las familias seguirán utilizando la lavandería pese a la llegada de los servicios de SEDAPAL.

<table>
<thead>
<tr>
<th>Razones para seguir usando la lavandería pese a la llegada de los servicios de SEDAPAL</th>
<th>Nº encuestas</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para ahorrar dinero</td>
<td>36</td>
<td>64%</td>
</tr>
<tr>
<td>Para lavar carros</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Para lavar frazadas y colchas</td>
<td>15</td>
<td>27%</td>
</tr>
<tr>
<td>Porque es agua natural</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Porque hay más espacio</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>Total, de familias que SI seguirán utilizando la lavandería</td>
<td>56</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Se observa que el 64% de los encuestados que no tienen agua ni desagüe, seguirán utilizando las instalaciones de la lavandería para poder “ahorrar dinero”. Siendo una segunda razón el “lavado de frazadas y colchas” en la cual los encuestados argumentan que es más fácil y rápido lavar frazadas y colchas en las instalaciones de la lavandería.

Del total de 150 encuestas, sólo 38 (equivalente al 25% del tamaño de la muestra), responden que no utilizan las instalaciones de la lavandería.

De aquellos 38, se procede a dividirlos según la disponibilidad de agua y desagüe, para visualizar la proporción de consciencia sobre la importancia del agua en el área de amortiguamiento pese a la carencia de estos servicios.

Tabla 19: Familias que no usan la lavandería según disponibilidad de servicios por SEDAPAL.

<table>
<thead>
<tr>
<th>Servicio de agua y desagüe</th>
<th>Nº encuestados</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familias que no cuentan con agua ni desagüe</td>
<td>26</td>
<td>68%</td>
</tr>
<tr>
<td>Sólo Agua</td>
<td>9</td>
<td>24%</td>
</tr>
<tr>
<td>Tienen agua y desagüe</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

De las 38 que reportaron que no usan las instalaciones de la lavandería, 30 piensan que SI afecta el Refugio de Vida Silvestre Pantanos de Villa.

En la siguiente tabla se presentan los resultados en cuanto al destino final de las aguas de las instalaciones de la lavandería y de los canales de agua.
Tabla 20: Conocimiento de destino final del agua.

<table>
<thead>
<tr>
<th></th>
<th>Nº encuestados</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hacia el mar</td>
<td>34</td>
<td>23%</td>
</tr>
<tr>
<td>RVSPV</td>
<td>76</td>
<td>51%</td>
</tr>
<tr>
<td>No sabe</td>
<td>40</td>
<td>27%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En los resultados, se visualiza que el 51% de los encuestados sabe que el agua que sale en las instalaciones de la lavandería se dirige al Refugio de vida silvestre Pantanos de Villa. Por otro lado, a fin de identificar el porcentaje de encuestados que pese a que saben que están afectando al RVSPV seguirán utilizando las instalaciones de la lavandería se presenta la siguiente tabla:

Tabla 21: Conocimiento de destino final del agua y continuidad del uso del agua por género.

<table>
<thead>
<tr>
<th>Afectación a RVSPV</th>
<th>Hombres</th>
<th>Mujeres</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saben que afectan a RVSPV y seguirán usando la lavandería</td>
<td>13</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>Porcentaje</td>
<td>33%</td>
<td>68%</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Es decir, de un total de 150 encuestados, 40 de ellos (que representa un 27% del total) saben que afectan a los Pantanos de Villa y pese a ello seguirán utilizando las instalaciones de la lavandería. Debido a que: las instalaciones poseen un acceso y una infraestructura acondicionada para dicha actividad, en dichas casas aún no poseen servicio de agua ni de desagüe; y el lavado de ropa representa un espacio de distracción y socialización.

4.3. Resultados del uso industrial del agua

Según la información del SERNANP y del trabajo de campo efectuado, las industrias aledañas a los canales de abastecimiento de agua a los pantanos, son: a los Camales (frigoríficos) Frisana S.A.C y Esmeralda CORP S.A.C. Además, en el sitio se establecen grandes almacenes y locales de alquiler como Corporación SAVAR y Eckerd Perú S.A.- Inretail Pharma S.A (en donde antiguamente funcionó la Planta Lucchetti).

Entre las cuatro industrias identificadas, Frisana SAC es un camal informal que carece de tratamiento de sus aguas residuales y que afectaría en forma directa al canal de las Calles Agricultores/ Ganaderos debido al uso que da a los canales de agua.

La empresa Esmeralda CORP SAC, cuenta con una planta de tratamiento de sus efluentes, sin embargo, pese a que realiza tratamiento de la carga orgánica (Demanda Bioquímica de Oxígeno y Demanda Química de Oxígeno) de sus aguas residuales no significa que no aporte “N” y “P” por medio de sus efluentes.

Debido a que el “N” y “P” son elementos que fueron degradados por micro organismos a partir de compuestos más complejos que son procesados en la planta de tratamiento de aguas residuales.

Corporación SAVAR y Almacén Eckerd, si bien es cierto su rubro principal es de almacenes, se desconoce la real actividad que llevan a cabo dentro de sus instalaciones. Toda vez que en campo se pudo verificar, que SAVAR realiza descargas puntuales de efluentes a los canales de abastecimiento de agua de los pantanos.

Los datos de razón social, actividad, dirección y afectación de cada una de ellas se presenta la siguiente tabla resumen:
Tabla 22: Identificación de las empresas aledañas a los canales de abastecimiento de agua.

<table>
<thead>
<tr>
<th>Razón social</th>
<th>Actividad industrial (información comercial en la web)</th>
<th>Afectación al área de amortiguamiento RVSPV</th>
<th>Dirección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisana S.A.C.</td>
<td>Camal Informal</td>
<td>Canal Agricultores/ Ganaderos</td>
<td>Calle Los Horticultores 149 – Chorrillos.</td>
</tr>
<tr>
<td>ESMERALDA CORP S.A.C.</td>
<td>Camal formal</td>
<td>Canal Horticultores</td>
<td>Av. Autop. Panamericana Sur Km. 18.5 Mza. G Lote. 01 Z.I. la Concordia.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Entre los principales hallazgos en cuanto el uso industrial del agua de los canales por parte de las empresas aledañas, se pudo comprobar en el trabajo de campo que:

Primer hallazgo: Las empresas ubicadas aledañas a los Pantanos de Villa (área de amortiguamiento), están ubicadas en terreno en el que algún tiempo le pertenecía a los Pantanos de Villa. Por ende, estos terrenos presentan variación del nivel freático, en donde en ciertos meses del año (julio / agosto) el agua subterránea se convierte en superficial afectando a las instalaciones de las industrias. Originando que estas industrias construyan drenes para evacuar periódicamente las aguas que afloran del suelo hacia los canales de abastecimiento de agua a los Pantanos de Villa, para evitar más problemas a las obras civiles ejecutadas por estas empresas. Estos drenajes hacia los canales de abastecimiento de agua, realizan un efecto de dilución del contenido de sustancias presentes en el agua de los canales. Este efecto de dilución es aprovechado por las industrias para verter efluentes industriales a los canales.

Segundo hallazgo: Debido a que según el Tabla Nº 22, existe una empresa de Camal informal, dicha empresa realiza descargas de sus aguas residuales industriales en los canales por la madrugada. Hora en que la vigilancia es casi nula.

Tercer hallazgo: Debido a que estas empresas afectan directa y/o indirectamente al Refugio de Vida Silvestre de los Pantanos de Villa, éstas no están dispuestas a responder una entrevista o encuesta a fin de conocer el uso del agua de los canales de abastecimiento.
Para poder estimar el tiempo en el cual cualquier descarga llega hasta los Pantanos de Villa, se utiliza los resultados de velocidades del agua en los canales medidos en los aforos periódicos en los canales mostrados el Tabla N°6.

La longitud más corta de los canales es de 800m considerando una velocidad de 0.31m/s, se calcula que el agua demore alrededor de 43 minutos para llegar hasta las lagunas.

 Debido a que el agua demora sólo 43 min en atravesar los canales de abastecimiento, es prácticamente imposible poder tomar muestras del agua de los vertimientos industriales en si o la mezcla del agua con los vertimientos, debido a que éstos son vertidos en las horas de la madrugada.

Estos vertimientos son confirmados por dos razones:

- En los cercos perimetrales, se pueden visualizar pases en la pared de aproximadamente 0.20m x 0.20m equivalentes a una tubería de Ø6” de diámetro. Que son partes del acceso a las mangueras de descarga de los vertimientos que serían de Ø6” ó Ø4”.

En la siguiente foto, se pueden visualizar los pases que existen en los cercos perimetrales de las industrias, detectados en el trabajo de campo. Utilizados no sólo para realizar las descargas industriales sino también para realizar descargas cuando aparecen afloramientos de agua en el interior.

Foto N°7: Vista de los pases en la pared para las descargas a los canales.

Fuente: Elaboración propia.
Según los Valores Máximos Admisibles (V.M.A.) de las descargas de aguas residuales no domésticas en el sistema de alcantarillado sanitario D.S. N° 021-2009-VIVIENDA, las descargas de aguas residuales industriales en el sistema de alcantarillado está prohibida. Por lo que, este decreto multa a la industria que realiza el vertimiento en función al grado de contaminación. Siendo en Lima la empresa SEDAPAL responsable de cuidar sus instalaciones, para lo cual realizan un constante trabajo de monitoreo en los colectores de las zonas industriales de Lima para que dicho decreto se cumpla.

En el caso de las industrias informales aledañas a los canales de agua, saben que: si realizan descargas al sistema de alcantarillado de SEDAPAL, estas serán reconocidas tarde o temprano. Sin embargo, realizando las descargas en horas de la madrugada a los canales de abastecimiento de agua a los Pantanos de Villa, será muy difícil ser reconocidas por cualquier autoridad, debido los altos costos y a la logística que ello conlleva.

Por otro lado, en la tesis "Evaluación de la eficiencia de la remoción de nutrientes del efluente de la planta de tratamiento de aguas residuales (PTAR) de la empresa Esmeralda CORP S.A.C. mediante el uso de humedales artificiales, empleando la especie *Typha domingensis* Pers. (Totora)". Presenta la caracterización del agua residual tratada de la Planta de Tratamiento de aguas residuales de la empresa Esmeralda Corp (Camal formal). Cuyos efluentes de la PTAR son utilizados para el riego de áreas verdes de la zona que por sí tiene un alto nivel freático. (Pareja 2015: 59).

En el estudio mencionado líneas arriba, se busca complementar el tratamiento del agua residual con humedales artificiales (totora) a fin de remover nutrientes.

La acción de las macrófitas (enraizadas sobre un lecho de grava impermeabilizado), hace posible una serie de complejas interacciones físicas, químicas y biológicas a través de las cuales el agua residual es depurada progresiva y lentamente (Delgadillo, Camacho, Pérez & Andrade 2010: 7).

Cabe señalar que la concepción del tratamiento de aguas residuales utilizando humedales artificiales, simula las condiciones naturales en donde se aprovecha la capacidad de fitodepuración o asimilación de nutrientes en la cual se refleja como el crecimiento de la totora tanto en altura como en densidad.

Es decir, esta tecnología simula el tratamiento de un cuerpo de agua eutrofizado (alto contenido de “N” y “P”) utilizando la capacidad de fitodepuración de la totora para la remoción de nutrientes antes de su reutilización.
El empleo de la totora como un humedal artificial en el estudio de Pareja 2015, ha sido eficiente para la remoción de nitrógeno en términos de nitrógeno total (Nt), nitrógeno amoniacal (NNH₄⁻) y de nitratos (N-NO₃⁻), luego de un período de funcionamiento de 9 meses. Presentando los siguientes valores de remoción: 87.8% para el Nt; 90% para el N-NH₄⁺ y 99.6% para el N-NO₃⁻ (Pareja 2015: 107).

En la siguiente foto se presenta una vista aérea de la PTAR cercana al Asentamiento humano Palmeras de Villa Baja.

Foto N°8: Vista aérea de la planta de tratamiento de aguas residuales (PTAR) Esmeralda Corp.

Fuente: Página web Esmeralda Corp.

En la siguiente tabla se presenta la caracterización del efluente de dicha PTAR en donde se visualiza los valores de N amoniacal y P total (responsables de la Eutrofización de cuerpos de agua) que sobrepasan lo normado en los ECA.
Tabla 23: Resultados de los parámetros evaluados en la caracterización del agua residual tratada PTAR Esmeralda Corp. y métodos asociados.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor obtenido</th>
<th>ECA agua (Cat 4/Lagunas y lagos)</th>
<th>Método/equipo de medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.5</td>
<td>6.5 - 8.5</td>
<td>Potenciómetro digital marca HANNA HI 98128</td>
</tr>
<tr>
<td>T°C</td>
<td>25.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sólidos suspendidos (SST)</td>
<td>8 mg/L</td>
<td><25mg/L</td>
<td>Método Estándar 2540 D APHA, A'I/INI/A, WEF 21º Ed, 2005 Sólidos suspendidos totales secados a 103 - 105°C</td>
</tr>
<tr>
<td>Sólidos volátiles en suspensión (SVS)</td>
<td>5 mg/L</td>
<td>-</td>
<td>Método Estándar 2540 E APHA, A'I/INI/A, WEF 21º Ed, 2005 Sólidos fijos y volátiles totales a 550°C</td>
</tr>
<tr>
<td>Demanda bioquímica de oxígeno (DBO)</td>
<td>26mg/L</td>
<td><5mg/L</td>
<td>Método EPA 405.1 600/4-79-020 Revisado Marzo, 1983 Demanda bioquímica del oxígeno (5 días, 20°C)</td>
</tr>
<tr>
<td>Nitrógeno amoniacal (N-amoniacal)</td>
<td>248.3mg/L</td>
<td><0.02mg/L</td>
<td>Método Estándar 4500-NH3-F APHA, A'I/INI/A, WEF 21º Ed, 2005 Método del Fenato.</td>
</tr>
<tr>
<td>Nitratos (N-nitroto)</td>
<td>0.23mg/L</td>
<td>5mg/L</td>
<td>Método EPA 352.1 600/4-79-020 Revisado Marzo, 1983 Nitrógeno, Nitrato (Colorimétrico Brucina)</td>
</tr>
<tr>
<td>Nitrógeno orgánico (N-orgánico)</td>
<td>9.07mg/L</td>
<td>-</td>
<td>Método Estándar 4500-NH3-C APHA, A'I/INI/A, WEF 21º Ed 2005 "Método Volumétrico"</td>
</tr>
<tr>
<td>Fósforo total (P-total)</td>
<td>19.77mg/L</td>
<td>0.4mg/L</td>
<td>Método Estándar 4500 PE APHA, A'I/INI/A, WEF, 21º Ed, 2006</td>
</tr>
</tbody>
</table>

Debido a que el agua residual de un camal tiende a estar muy cargada de nutrientes (por el alto contenido de restos de sangre y grasas), su tratamiento es muy complejo y costoso. Originando que estas descargas de la empresa formal contribuyen también a la eutrofización. Cuestionando lo siguiente:

Si el único camal formal de la zona contribuye a la Eutrofización de los Pantanos. ¿Qué se esperaría de los canales informales de la zona?

Sin embargo, los numerosables afloramientos que hay en todo el recorrido de los canales realizan un proceso de dilución de las concentraciones de los vertimientos favoreciendo la capacidad de asimilación o buffer de los Pantanos de Villa.
A fin de controlar estas descargas se propone que con un esfuerzo conjunto tanto la ANA, SERNANP y PRODUCE intervengan periódica e inopinadamente tanto a las industrias formales como las informales de tal manera de obligar y fiscalizar el tratamiento a sus efluentes industriales hasta realizar la remoción de nutrientes como el “N” y “P”.

Además de encontrarse una aplicación de multa, este ingreso deberá ser manejado por el SERNANP para su control de esta área natural protegida.
CAPÍTULO 5: RESULTADOS OBTENIDOS EN LA CALIDAD DEL AGUA

5.1. Trabajo de Campo para recolección de muestras de agua

El trabajo para la recolección de muestras de agua se realizó el día miércoles 20 de noviembre y se iniciaron en las instalaciones de la lavandería y se culminó en el Pozo Culebra.

Durante la recolección de muestra, el laboratorio “R-Lab” recolectó muestras en frascos para procesar en sus instalaciones Fósforo Total y Clorofila, tomando muestras por triplicado en cada punto, a fin de detectar tendencias (en caso se obtengan valores diferentes).

En donde se utilizó frascos de plástico de 100ml de capacidad para almacenar las muestras de agua para determinación del Fósforo, el cual se añadió 4 gotas de ácido sulfúrico (H₂SO₄).

Para almacenar las muestras para la determinación de Clorofila, se utilizó frascos de 1000mL de capacidad, de vidrio oscuro para impedir que la luz externa pueda interferir en el proceso fotosintético de las algas en la muestra de agua recolectada.

Por otro lado, a fin de complementar los análisis del agua, se procedió a medir en campo los Sólidos Disueltos Totales (TDS), así como el pH, datos que ayudarán a correlacionar con los datos obtenidos en otras investigaciones. Para lo cual se utilizó los siguientes instrumentos mostrados en la foto. N° 19.
Foto N°9: Recolección de muestras de agua.

Fuente: elaboración propia.

Foto N°10: Preservación de muestras para determinación de Fósforo total.

Fuente: elaboración propia.
Foto Nº 11: Ubicación de la toma de muestra MA-1.

Fuente: elaboración propia.

Foto Nº 12: Ubicación de la toma de muestra MA-2.

Fuente: elaboración propia.

Foto Nº14: Ubicación de la toma de muestra MA-4.

Fuente: elaboración propia.
Foto Nº15: Ubicación de la toma de muestra MA-5.

Fuente: elaboración propia.

Foto Nº16: Ubicación de la toma de muestra MA-6.

Fuente: elaboración propia.
Foto N°17: Ubicación de la toma de muestra MA-7.

Fuente: elaboración propia.
5.2. Resultados de los análisis de agua

A continuación, se presentan los resultados obtenidos en campo de TDS y pH:

Tabla 24: Resultados de medición de TDS y pH de las muestras de agua.

<table>
<thead>
<tr>
<th>Ojo de agua</th>
<th>Estación</th>
<th>Descripción del Punto de Muestreo</th>
<th>TDS (mg/L)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA-1 (E-5)</td>
<td>Lavandería, en el afloramiento de agua antes de su primera contaminación en Villa Baja.</td>
<td>1172</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>MA-2</td>
<td>Luego de la lavandería y antes de descargas industriales.</td>
<td>1218</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td>MA-3 (E-10)</td>
<td>Antes de su descarga a los Pantanos de Villa en el Canal Principal Zona Sur frente Hito 8</td>
<td>1668</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>MA-5 (cerca a E-3)</td>
<td>Canal Margen derecha Kimberly</td>
<td>2444</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td>MA-6 (E-21)</td>
<td>Antes de su descarga a los Pantanos de Villa</td>
<td>2226</td>
<td>6.82</td>
</tr>
<tr>
<td>3</td>
<td>MA-7 (E-1)</td>
<td>Entrada Laguna la Pampa</td>
<td>4944</td>
<td>6.82</td>
</tr>
<tr>
<td></td>
<td>MA-8 (E-2)</td>
<td>Pozo Culebra</td>
<td>4796</td>
<td>6.75</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

De la tabla anterior se puede apreciar como la cantidad de TDS aumenta desde el afloramiento de agua (1172 mg/L) hasta su alteración por la actividad antropogénica y por la cercanía a la franja costera (1668 mg/L).
También se pudo observar en campo que el afloramiento en la Laguna La Pampa no se tiene alteración por intervención del hombre, salvo por algunas cantidades pequeña de residuos sólidos. Esto se puede corroborar en los valores de TDS en donde se aprecia que prácticamente no tiene una variación (2.99%) en los valores del afloramiento y la entrega del agua a los Pantanos.

Comparando estos resultados con los INFORME-DISA-II-LS-MINSA 2011-2012 y con los datos de la tesis de C. Álvarez 2016, se obtiene la siguiente tabla:

<table>
<thead>
<tr>
<th>Estación de monitoreo</th>
<th>INFORME-DISA-II-LS-MINSA 2011-2012</th>
<th>Tesis de referencial (*)</th>
<th>Tesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1 (E-5)</td>
<td>6.48 - 1.46 1.31 1.41 2.52 1.204 1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-2</td>
<td>- - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-3 (E-10)</td>
<td>3.27 2.82 2.33 2.02 2.31 1.72 1.68 1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-4 (E-4)</td>
<td>3.47 2.38 3.76 3.37 1.25 3.03 1.97 3.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-5 (cerca a E-3)</td>
<td>6.85 4.67 5.16 4.03 - - - 2.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-6 (E-21)</td>
<td>4.06 3.87 4.46 3.64 23.3 4.94 1.57 2.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-7 (E-1)</td>
<td>3.51 6.84 8.34 7.13 5.17 - - - 4.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-8 (E-2)</td>
<td>4.51 4.3 7.01 5.11 1.96 - - - 4.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-13</td>
<td>12.71 11.16 17.66 10.29 8.04 - - -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
(*) Datos obtenidos de tesis: Determinación Analítica de Detergentes en las aguas de los Pantanos de Villa, Álvarez, 2016.
(E-x): Estaciones de monitoreo establecidos por la DISA en los Pantanos.

De la siguiente tabla 24, se aprecia que el contenido de sólidos disuelto mide directamente el contenido de sales en el agua, siendo esta medida directamente relacionada por la introducción del agua de mar al acuífero.

Sin embargo, debido a que el caudal de los canales está directamente relacionado con la época de avenidas y estiaje de la cuenca del Rímac.

A continuación, se presentan los resultados de los análisis del agua de los parámetros de Fósforo Total, Clorofila y turbiedad. Los Informes de ensayo N° 1911691A y 1911692A como parte de los resultados del laboratorio se presentan él en Anexo 2.
Tabla 26: Resultados de los monitoreos de la calidad del agua en los canales

<table>
<thead>
<tr>
<th>Estación</th>
<th>Fósforo Total (mg/L)</th>
<th>Clorofila (mg/L)</th>
<th>Turbiedad (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muestra a</td>
<td>Muestra b</td>
<td>Muestra c</td>
</tr>
<tr>
<td>MA-1 (E-5)</td>
<td>0.324</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>MA-2</td>
<td>0.04</td>
<td>0.027</td>
<td>0.032</td>
</tr>
<tr>
<td>MA-3 (E-10)</td>
<td>0.3</td>
<td>0.232</td>
<td>0.248</td>
</tr>
<tr>
<td>MA-4 (E-4)</td>
<td>1.106</td>
<td>0.238</td>
<td>0.041</td>
</tr>
<tr>
<td>MA-5 (cerca a E-3)</td>
<td>0.242</td>
<td>0.596</td>
<td>0.241</td>
</tr>
<tr>
<td>MA-6 (E-21)</td>
<td>0.057</td>
<td>0.175</td>
<td>0.068</td>
</tr>
<tr>
<td>MA-7 (E-1)</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>MA-8 (E-2)</td>
<td>0.299</td>
<td>0.289</td>
<td>0.053</td>
</tr>
</tbody>
</table>

CAPÍTULO 6: DISCUSIÓN DE RESULTADOS

6.1. Resultados sobre el uso del agua

Según los resultados de las encuestas (72% de los encuestados) reporta el lavado de ropa como principal uso del agua. Debido a que:

- Las instalaciones de la lavandería poseen un acceso y una infraestructura acondicionada para realizar dicha actividad.
- En la zona las casas aún no poseen servicio de agua y desagüe y el lavado de ropa son una de las actividades que demanda mucha cantidad de agua.
- El lavado de ropa representa un espacio de distracción y socialización.

En las instalaciones de la lavandería se puede observar el colapso del cerco perimétrico, producto que en algún momento se impidió el ingreso. Pero por la falta de seguridad en la zona y por falta de conocimiento en la afectación de los Pantanos, la presión poblacional impide el cierre de las instalaciones de la lavandería. Por lo tanto, en base a la experiencia antes detallada, la solución para evitar el uso de la lavandería no radica sólo en colocar un cerco perimétrico. Esta falta de conocimiento y compromiso con el medio ambiente sobre el destino final del agua en la lavandería y la afectación de los Pantanos, se evidencia en las encuestas, ya que sólo 23 encuestados (de los 150) reportan dichos conocimientos.

Según los resultados de las encuestas se visualiza que la población seguirá utilizando las instalaciones de la lavandería. Debido a que las instalaciones de la lavandería: no representa una afectación económica, facilita lavar frazadas y colchas de forma rápida y eficiente; y la lavandería es considerada como una actividad de distracción o esparcimiento donde hasta los niños juegan.

El 25% de los encuestados reportan que no utilizan el agua de la lavandería, lo que representan como aliados para la estrategia de protección a los afloramientos de agua a los Pantanos.

Un 27% del total de encuestados no posee interés en proteger el ambiente. Esto se identificó cruzando las siguientes variables: que conocimiento de afectación a los Pantanos de Villa y que pese a ello seguirán utilizando las instalaciones de la
lavandería. Esta proporción representa el público objetivo para realizar una serie de acciones que favorezca el cuidado de los RVSPV y a la vez genere un ingreso de dinero.

6.2. Resultados del nivel trófico del agua

A fin de correlacionar la calidad del agua dentro de la clasificación del nivel trófico, primero se determinará la transparencia a partir de la turbiedad presentada en la Tabla 25 y en el estudio de W. Effer presentado en el gráfico N° 1.

<table>
<thead>
<tr>
<th>Tabla 27: Determinación de los valores de transparencia a partir de turbiedad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estación</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MA-1 (E-5)</td>
</tr>
<tr>
<td>MA-2</td>
</tr>
<tr>
<td>MA-3 (E-10)</td>
</tr>
<tr>
<td>MA-4 (E-4)</td>
</tr>
<tr>
<td>MA-5 (cerca a E-3)</td>
</tr>
<tr>
<td>MA-6 (E-21)</td>
</tr>
<tr>
<td>MA-7 (E-1)</td>
</tr>
<tr>
<td>MA-8 (E-2)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Debido a que los valores de clorofila detectados son bajos; y a que son tres variables o condiciones para clasificar el estado trófico, se procederá a determinar el TSI (Troficc State Index) para cada parámetro independientemente (fósforo, clorofila y transparencia) y por cada muestra, para luego obtener un TSI promedio, para finalmente clasificar ese TSI dentro de la clasificación de Carlson.

Clasificando la calidad de agua de los canales en la teoría de Carlson (1996), se presenta la siguiente tabla:
Tabla 28: Valores de TSI (Trofic State Index) en las muestras de agua Carlson (1996).

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Fósforo</th>
<th>Clorofila</th>
<th>Transparencia</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1 a</td>
<td>>80</td>
<td><30</td>
<td>45</td>
<td>TSI=39 Oligotrófico</td>
</tr>
<tr>
<td>MA-1 b</td>
<td><30</td>
<td><30</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>MA-1 c</td>
<td><30</td>
<td><30</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>MA-2 a</td>
<td>57</td>
<td><30</td>
<td>53</td>
<td>TSI=54 Eutrófico</td>
</tr>
<tr>
<td>MA-2 b</td>
<td>53</td>
<td><30</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>MA-2 c</td>
<td>55</td>
<td><30</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MA-3 a</td>
<td>>80</td>
<td><30</td>
<td>40</td>
<td>TSI=47 Mesotrófico</td>
</tr>
<tr>
<td>MA-3 b</td>
<td>>80</td>
<td><30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>MA-3 c</td>
<td>>80</td>
<td><30</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MA-4 a</td>
<td>>80</td>
<td><30</td>
<td>32</td>
<td>TSI=36 Oligotrófico</td>
</tr>
<tr>
<td>MA-4 b</td>
<td>>80</td>
<td><30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>MA-4 c</td>
<td>>80</td>
<td><30</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>MA-5 a</td>
<td>>80</td>
<td><30</td>
<td>33</td>
<td>TSI=35 Oligotrófico</td>
</tr>
<tr>
<td>MA-5 b</td>
<td>>80</td>
<td><30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>MA-5 c</td>
<td>>80</td>
<td><30</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>MA-6 a</td>
<td>61</td>
<td><30</td>
<td>45</td>
<td>TSI=54 Eutrófico</td>
</tr>
<tr>
<td>MA-6 b</td>
<td>76</td>
<td><30</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>MA-6 c</td>
<td>66</td>
<td><30</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>MA-7 a</td>
<td>30</td>
<td><30</td>
<td>45</td>
<td>TSI=36 Oligotrófico</td>
</tr>
<tr>
<td>MA-7 b</td>
<td>30</td>
<td><30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>MA-7 c</td>
<td>30</td>
<td><30</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>MA-8 a</td>
<td>>80</td>
<td><30</td>
<td>68</td>
<td>TSI=61 Eutrófico</td>
</tr>
<tr>
<td>MA-8 b</td>
<td>>80</td>
<td><30</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>MA-8 c</td>
<td>61</td>
<td><30</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

A fin de corroborar el nivel trófico del agua de los canales de abastecimiento de agua utilizando el Método OCDE (1982).
Tabla 29: Clasificación del nivel trófico utilizando el método OCDE (1982) las muestras de agua.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Fósforo (mg/m³)</th>
<th>Clorofila (mg/m³)</th>
<th>Transparencia (m)</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1 a</td>
<td>324.0</td>
<td>3.0</td>
<td>3.5</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-1 b</td>
<td>5.0</td>
<td>3.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>MA-1 c</td>
<td>5.0</td>
<td>3.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>MA-2 a</td>
<td>40.0</td>
<td>3.0</td>
<td>1.8</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-2 b</td>
<td>27.0</td>
<td>3.0</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>MA-2 c</td>
<td>32.0</td>
<td>3.0</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>MA-3 a</td>
<td>300.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>MA-3 b</td>
<td>232.0</td>
<td>3.0</td>
<td>3.5</td>
<td>Mesotrófico</td>
</tr>
<tr>
<td>MA-3 c</td>
<td>248.0</td>
<td>3.0</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>MA-4 a</td>
<td>1106.0</td>
<td>3.0</td>
<td>7.0</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-4 b</td>
<td>238.0</td>
<td>3.0</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>MA-4 c</td>
<td>41.0</td>
<td>3.0</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>MA-5 a</td>
<td>242.0</td>
<td>3.0</td>
<td>7.0</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-5 b</td>
<td>596.0</td>
<td>3.0</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>MA-5 c</td>
<td>241.0</td>
<td>3.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>MA-6 a</td>
<td>57.0</td>
<td>3.0</td>
<td>3.2</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-6 b</td>
<td>175.0</td>
<td>3.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>MA-6 c</td>
<td>68.0</td>
<td>3.0</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>MA-7 a</td>
<td>5.0</td>
<td>3.0</td>
<td>2.5</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-7 b</td>
<td>5.0</td>
<td>3.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>MA-7 c</td>
<td>5.0</td>
<td>3.0</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>MA-8 a</td>
<td>299.0</td>
<td>3.0</td>
<td>0.9</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-8 b</td>
<td>289.0</td>
<td>3.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>MA-8 c</td>
<td>53.0</td>
<td>3.0</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

A fin de comparar los resultados de ambos métodos, se presenta el siguiente cuadro:

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Carlson</th>
<th>OCDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1 a</td>
<td>TSI=39</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-1 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-1 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-2 a</td>
<td>TSI=54</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-2 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-2 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-3 a</td>
<td>TSI=47</td>
<td>Mesotrófico</td>
</tr>
<tr>
<td>MA-3 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-3 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-4 a</td>
<td>TSI=36</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-4 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-4 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-5 a</td>
<td>TSI=35</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-5 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-5 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-6 a</td>
<td>TSI=54</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-6 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-6 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-7 a</td>
<td>TSI=36</td>
<td>Oligotrófico</td>
</tr>
<tr>
<td>MA-7 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-7 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-8 a</td>
<td>TSI=61</td>
<td>Eutrófico</td>
</tr>
<tr>
<td>MA-8 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA-8 c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En el cuadro, se visualiza que ambos métodos tienen resultados similares, concluyendo que el agua de los canales está eutrofizada.

6.3. Relación entre los usos del agua con el estado trófico

En los resultados sobre el estado trófico del agua de los canales, se puede apreciar que en los manantiales se tiene un nivel oligotrófico, es decir es limpia, durante todo el año, con oxígeno disuelto en todas sus capas que se forman según su densidad (causada por las variaciones térmicas, químicas, o ambas). Esto se comprueba en campo con la presencia de peces cuando no existe gente utilizando el agua de los manantiales.
Es decir, un estado oligotrófico representa un enriquecimiento de todos los nutrientes en proporciones naturales, sin la prevalencia de ningún nutriente sobre otro. Permitiendo el desarrollo de la vida acuática.

Por otro lado, en la parte central y final de los canales de abastecimiento se muestra una elevada concentración que representa un TSI (Trofic State Index) Eutrófico hasta su entrega a los Pantanos. Que se demuestra que toda afectación del agua se produce luego de que el agua se hace superficial, debido a que en ese estado facilita su uso que, según los resultados de las encuestas, el agua es utilizada para: aseo personal, para el lavado de ropa y lavado de vehículos.

Para efectuar dichas actividades la población utiliza detergente que es uno de los principales responsables de aporte de nutrientes al agua. Representando un aporte constante durante todos los años que han estado funcionando estos manantiales. Que produce una afectación tal como menciona Gisella Guillén en el 2002 en la Tesis: “Diversidad protozoo lógica de los Pantanos de Villa” y que reafirman Pulido Víctor / Bermúdez Ludisleydis, en el 2018 en su trabajo “Estado actual de la conservación de los hábitats de los Pantanos de Villa”.

Por otro lado, la fuente de nutrientes se atribuye a dos razones:

- Las infiltraciones de aguas residuales domésticas (sin tratamiento) desde los silos de los domicilios, debido a la carencia de sistema de alcantarillado.
- El aporte de aguas residuales de las industrias (camales) que en algunos casos no recibe tratamiento alguno. Cabe señalar que el agua residual de camales posee una altísima Demanda Bioquímica de Oxígeno (DBO) y contenido de nitrógeno por el alto contenido de sangre en el agua residual. Siendo este tipo de agua residual muy difícil y costoso de tratar.

Por lo que se espera que el agua residual tratada proveniente de camales contenga Nitrógeno en mayor proporción a los demás nutrientes, representando un riesgo las descargas de estos efluentes en un Área Natural Protegida.

Sin embargo, con el proyecto “Sectorización del Sistema de Agua Potable y Alcantarillado de la Parte Alta de Chorrillos: Matriz Próceres – Chorrillos Distrito de Chorrillos”, el mismo que culminará aproximadamente el año 2022. Se espera que se minimicen las infiltraciones de agua residual doméstica e indirectamente se minimice el aporte de nutrientes.
En cuanto al uso de la lavandería se espera que, con la llegada del servicio de agua y desagüe a los domicilios, el uso de la lavandería disminuya. Sin embargo, se necesitará trabajar en la educación ambiental con una porción de la población (equivalente al 37% de los encuestados) que seguirá utilizando las instalaciones de la lavandería pese a la llegada de los servicios de SEDAPAL.

Esta educación ambiental se trabajaría también desde los niños como la nueva generación que estará a cargo el cuidado de los manantiales, de los canales y de los mismos Pantanos en sí. En donde la temática sería dar a conocer la importancia de los Pantanos de Villa desde el punto de vista como poblador local.

Para minimizar el aporte de nutrientes por parte de las industrias se recomienda la ausencia del sector industrial (formal e informal) desde el área de amortiguamiento de toda Área Natural Protegida por el estado. En el caso de los Pantanos de Villa la afectación es por el vertimiento de efluentes (en algunas veces tratado) que aportan a la eutrofización.

Otra de las propuestas sería buscar el apoyo de SEDAPAL y el ANA las cuales cuentan con la logística para poder monitorear la calidad del agua en los canales de abastecimiento a los Pantanos de Villa, previo convenio con el SERNANP. Y en el caso de la vigilancia de la calidad de agua de los canales aledaños a las industrias se debe comprometer también a PRODUCE.
CAPÍTULO 7: CONCLUSIONES

- En las habilitaciones cercanas a las instalaciones de la lavandería, se tiene que el 37% de los encuestados se resiste a dejar de utilizar dichas instalaciones pese a la llegada de los servicios de SEDAPAL. Porque lavando allí ahorrará dinero y porque el lavado de ropa y frazadas se hace más rápido y mejor; por el espacio amplio y por la gran cantidad de agua disponible que hay en el lugar.

- Un 27% del total de encuestados prioriza las actividades económicas del lavado sobre el cuidado del medio ambiente, debido a que sabiendo que afecta a los Pantanos de Villa ellos seguirán utilizando las instalaciones de la lavandería.

- Los valores de TDS (Sólidos Totales Disueltos) en el afloramiento de la Laguna La Pampa con el punto de entrega a los Pantanos no tiene cambio sustancial, sin embargo, según los reportes de los análisis de agua, presenta eutrofización.

- Según la tesis de Eduardo Pareja (2015) el único camal formal de la zona, contribuye también a la eutrofización de los Pantanos de Villa. Sin embargo, se aprecia la preocupación de dicha empresa por incentivar la investigación para que sus efluentes cumplan con los ECA.

- Si un camal formal aporta a la eutrofización del Ecosistema. Se podría deducir que los canales informales también aporten a la eutrofización.

- El estado trófico del agua en los manantiales (lavandería), presenta un estado oligotrófico, lo que se concluye que toda afectación del agua se realiza durante el traslado del agua en el curso superficial.

- Con la correlación de Carlson (1996) y el OCDE (1982) y los resultados de los análisis de agua, se concluye que las partes de los canales que entregan a los Pantanos está Eutrofizados. Lo que conlleva a una acumulación de nutrientes en las lagunas de los pantanos, provocando un efecto en cascada sobre la diversidad en los Pantanos.

- El constante aporte de nitrógeno y fósforo a las lagunas de los Pantanos, origina que esta acumulación sea tan alta que represente hasta un estado Hipertrófico de dichas lagunas. Lo que se confirma el hallazgo de Álvarez Gutiérrez Carmen Celia en el 2016.
con su Tesis: “Determinación analítica de detergentes en las aguas de los pantanos de Villa”.

- Se verifica que tanto el método de Carlson como de la OCDE, se obtienen los mismos resultados para el estado trófico de un cuerpo de agua.

- La eutrofización conlleva a mayores costos por mantenimiento y limpieza de canales, debido a la excesiva producción primaria. En donde las empresas aledañas apoyan al SERNANP para la limpieza de los canales, debido a las limitaciones de dicha entidad.
CAPÍTULO 8: RECOMENDACIONES PARA CONTROLAR DETENER Y/O MINIMIZAR EL USO DEL AGUA EN LOS CANALES

- Debido a que se han desarrollado cercos perimétricos en la lavandería y que han sido destruidos por la misma población para su continuidad en el uso, la solución a la eutrofización no es sólo colocar obstáculos para impedir el ingreso y evitar el uso como lavandería. Sino la solución radica en capacitar y comprometer con el medio ambiente a los pobladores aledaños sobre la afectación e importancia del Refugio de Vida Silvestre Pantanos de Villa, para que ellos mismos cuiden los canales e impidan que otras personas usen el agua. De darse una capacitación y educación efectiva, ya no sería necesario colocar barreras físicas para impedir el ingreso a las instalaciones de la lavandería.

- SERNANP debe buscar apoyo de SEDAPAL y el ANA las cuales cuentan con la logística suficiente para poder monitorear la calidad del agua en los canales de abastecimiento a los Pantanos de Villa.

- Modificar la infraestructura en la lavandería, en todos los ojos de agua y en los canales, para que no impedir o minimizar el uso del agua.

- SERPAR tiene también altos costos de por mantenimiento y limpieza de lagunas por la excesiva producción primaria. Se recomienda a SERPAR que estos costos sean derivados para prevenir la Eutrofización desde su fuente (ubicados en el área de amortiguamiento es decir fuera del área de su administración). Manejando el problema desde la misma raíz y no manejarlo como actualmente se hace.

- El uso de la tecnología de “humedales artificiales” para la remoción de nutrientes en un agua residual, aprovecha la capacidad de fitodepuración de la totora. Por lo cual se podría recomendar que para detener o disminuir la constante eutrofización de los pantanos de Villa se podría construir o acondicionar humedales artificiales antes que el agua ingrese a las lagunas de los pantanos. Estos humedales artificiales (tecnología de bajo costo de operación & mantenimiento) haría que los costos de limpieza de canales y lagunas se minimice.
CAPÍTULO 9: BIBLIOGRAFÍA

1) ANSARI, Abid
 Tabuk (Saudi Arabia): Springer Dordrecht Heidelberg.

2) ÁLVAREZ, Pedro & SANTIAGO, Carlos
 2006 “Ausencia de Biotoxina Ácido Domoico en los Pantanos de Villa.

3) AGENCIA DE COOPERACIÓN INTERNACIONAL DEL JAPÓN - JICA

4) APHA (American Public Health Association), AWWA (American Water Works Association) & WEF (Water Environment Federation)

5) ÁLVAREZ, Carmen

6) BARBERÁ, Carlos & PARDO, Rosa

7) BRESSLER, David & PAUL, Michael
 2015 *Effect of Eutrophication on wetland ecosystems*. Tetra Tech, Inc.

8) BRACK Antonio & MENDIOLA, Cecilia
9) BOUCHARD, Dermont, WILLIAMS Mary & SURAMPALLI, Rao

10) COMISIÓN NACIONAL DEL MEDIO AMBIENTE DE CHILE
 2005 Estrategia Nacional para la Conservación y Uso Racional de los Humedales en Chile. Santiago de Chile.

11) CUSICHE, Leoncio

12) CUSTODIO, Emilio

13) DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO DEL INGEMET

14) DELGADILLO, Oscar, CAMACHO, Alan, PEREZ, Luis & ANDREADE, Mauricio.
 2010 Depuración de aguas residuales por medio de humedales artificiales. Cochabamba (Bolivia): Centro Andino para gestión y uso del agua.

15) EDUARDO, Alicia del Carmen,
 2015 Evaluación de la eficiencia de la remoción de nutrientes del efluente de la PTAR de la empresa Esmeralda CORP S.A.C. mediante el uso de humedales artificiales, empleando la especie Typha domingensis Pers. (Totora). Tesis para Optar el Grado

16) EFFLER S. W.

17) FIGUEROA, Rocio

18) FOSTER, Stephen, HIRATA, Ricardo, GOMES, Daniel, D’ELIA, Mónica & PARIS, Marta

19) GUILLÉN, Gisella

20) GUILLÉN Gisella, MORALES Elizabeth. & SEVERINO Ruperto

21) HERNÁNDEZ, Roberto, FERNÁNDEZ, Carlos & BAPTISTA, María del Pilar

22) HELCOM
2015 *Guidelines for monitoring of water transparency (Secchi depth).* Finland: The Helsinki Commission

23) MORENO, Daniela, QUINTERO, Jacqueline & LÓPEZ, Armando.
2010 *Métodos para identificar, diagnosticar y evaluar el grado de eutrofia.* Editorial ContactoS.

24) MÜHLHAUSER, Hermann & VILA, Irma

25) LONDOÑO, Adela, GIRALDO, Gloria & GUTIÉRREZ, Ádamo
2010 *Métodos analíticos para la evaluación de la calidad fisicoquímica del agua.* Colombia: Universidad Nacional de Colombia, Facultad de Ingeniería y Arquitectura.

26) ODUM, Eugen & y BARRETT, Gary

27) OTERO, Raúl
2011 *Actitudes hacia el medio ambiente en un grupo de pobladores de las inmediaciones de los Pantanos de Villa.* Tesis para Optar el título de licenciatura en Psicología con mención en Psicología Social. Lima: Pontificia Universidad Católica del Perú, Facultad de Letras y Ciencias Humanas.

28) PAVLUK, Timur & BIJ, Abraham
2017 “*Trophic Index and Efficiency*”. Environmental Sciences: Elsevier Inc.

29) PRASAD, Devi & SIDDARAJU
2012 “*Carlson’s Trophic State Index for the assessment of trophic status of two Lakes in Mandya district*”. Pelagia Research Library. India: Department of Environmental Sciences, University of Mysore.
30) PULIDO, Víctor & BERMÚDEZ, Ludisleydis.

31) RAMÍREZ, Damasco, APONTE, Héctor, LERTORA, Gustavo & GIL, Fernando.

32) RAMÍREZ, Damasco & CANO, Asunción

33) RAMSAR
 2013 Manual de la conservación de Ramsar, 6ta edición. Lima.

34) SABOGAL Ana

35) SEDAPAL & MVCS

36) SERNANP
 2010 Compendio de los análisis de la calidad de agua por fenómeno de coloración rojiza en espejo de agua ubicado en la zona de Amortiguamiento del Refugio de Vida Silvestre Los Pantanos de Villa. Lima: Ministerio del Ambiente.
 2012 Texto Único de Procedimientos Administrativos del SERNANP

37) SERPAR- Servicio de Parques de Lima
2018 *Clubes y parques para todos.* Oficina de Publicaciones de la Municipalidad Metropolitana de Lima. Lima.

38) SMITH Thomas & SMITH Robert

39) TAURONI, Esther
2019 *Los antiguos lavadores y la socialización de las mujeres.* Tribuna Feminista.

40) TETSUO, Yanagi,

41) VAN, Jelte & ARONSO, James
ANEXO 1
RESOLUCIÓN JEFE DEL REFUGIO DE VIDA SILVESTRE LOS PANTANOS DE VILLA Nº 009-2019-SERNANP-JEF
RESOLUCIÓN DEL JEFE DEL REFUGIO DE VIDA SILVESTRE LOS PANTANOS DE VILLA N° 009-2019-SERNANP-JEF

Chorrillos, 12 de noviembre de 2019

VISTO:

La solicitud presentada por el Sr. Álvaro Holger Sánchez Sánchez, tesis, de la escuela de Postgrado Maestría en Desarrollo Ambiental de la Pontificia Universidad Católica del Perú, por el período de dos años.

CONSIDERANDO:

Que, según lo previsto en los incisos g) e i) del artículo 2° de la Ley N° 26834, Ley de Áreas Naturales Protegidas, unos de sus principales objetivos de protección es servir de sustento y proporcionar medios y oportunidades para el desarrollo de la investigación científica;

Que, en concordancia con ello, en el artículo 29° de la precitada Ley, se establece que el Estado reconoce la importancia de las Áreas Naturales Protegidas para el desarrollo de la investigación científica básica y aplicada, siempre que no afecte los objetivos de conservación, se respeta la zonificación y las condiciones establecidas en el Plan Maestro;

Que, la actualización del Plan Director de las Áreas Naturales Protegidas, aprobada por Decreto Supremo N° 015-2009-MINAM, refiere que la investigación científica constituye una herramienta básica para la generación de información que permita mejorar el conocimiento sobre la diversidad biológica, así como para el manejo de recursos naturales y la gestión de riesgos y amenazas;

Que, mediante la Resolución Presidencial N° 250-2013-SERNANP, publicado el 26 de diciembre del 2013, se aprobó el Certificado de Procedencia de los recursos naturales renovables forestales, flora y fauna silvestre provenientes de las Áreas Naturales Protegidas de administración nacional;

Que, mediante Decreto Supremo N° 010-2015-MINAM, publicado el 23 de setiembre de 2015, se declara de interés nacional el desarrollo de investigaciones al interior de las Áreas Naturales Protegidas de administración nacional, determinándose su gratuidad, así como los procedimientos de aprobación automática y evaluación previa para su otorgamiento;

Que, en el artículo 4° del mencionado Decreto Supremo, se prevé cinco supuestos en los que la autorización de investigación requiere de evaluación previa: a) Ingreso a ámbitos de acceso restringido, b) la colecta o extracción de muestras biológicas, c) se prevea la alteración del entorno o instalación de infraestructura en el caso de áreas
naturales protegidas de administración nacional, d) el uso de equipo o infraestructura perteneciente a las ANP de administración nacional, e) investigación en predios privados;

Que, mediante Resolución Presidencial N° 287-2015-SERNANP, publicada el 20 de enero de 2016, se aprueban las Disposiciones Complementarias al Reglamento de la Ley de Áreas Naturales Protegidas en materia de investigación, las mismas que establecen las normas y lineamientos que regulan las investigaciones realizadas al interior de las Áreas Naturales Protegidas de administración nacional;

Que, en el artículo 23° de las citadas Disposiciones Complementarias se establecen los criterios de evaluación del Plan de Investigación;

Que, a través del documento del visto, el investigador Álvaro Holger Sánchez Sánchez solicita autorización para realizar la investigación denominada "Componentes para el Plan de Restauración; Eutrofización de los Canales de Abastecimiento de Agua a los Pantanos de Villa", al interior del Refugio de Vida Silvestre Los Pantanos de Villa, por el periodo de dos años contados desde el 12 de noviembre del 2019 a 12 de noviembre del 2020;

Que, mediante Informe Técnico N° 033-2019-SERNANP-RVSLPV-MDS de fecha 30 de octubre de 2019 se evalúa la solicitud presentada, concluyendo que el expediente cumple con los requisitos establecidos en el artículo 18° de las Disposiciones Complementarias al Reglamento de la Ley de Áreas Naturales Protegidas en materia de investigación, y que el Plan de Investigación se encuentra conforme a los criterios establecidos en el artículo 23° de las Disposiciones Complementarias en mención;

En uso de las atribuciones conferidas por el numeral 2.1 del artículo 2° del Decreto Supremo N° 010-2015-MINAM, el artículo 14° de las Disposiciones Complementarias al Reglamento de la Ley de Áreas Naturales Protegidas en materia de investigación, aprobadas por Resolución Presidencial N° 287-2015-SERNANP, y el artículo 27° del Reglamento de Organización y Funciones del SERNANP, aprobado mediante Decreto Supremo N° 009-2008-MINAM.

SE RESUELVE:

Artículo 1°.- Autorizar el ingreso al área para realizar investigación científica registrada con expediente TUPA RVSLPV N° 006-2019 denominada "Componentes para el Plan de Restauración: Eutrofización de los Canales de Abastecimiento de Agua a los Pantanos de Villa", al interior del Refugio De Vida Silvestre Los Pantanos De Villa, por el periodo de dos años, contados a partir de la fecha de emisión de la presente Resolución.

Artículo 2°.- Autorizar el ingreso al Área Natural Protegida Refugio de Vida Silvestre Los Pantanos de Villa, de:

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Nacionalidad</th>
<th>DNI/Pasaporte</th>
<th>Cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SÁNCHEZ SÁNCHEZ</td>
<td>Peruana</td>
<td>07524615</td>
<td>Investigador/tesista</td>
</tr>
<tr>
<td>ÁLVARO HOLGER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Artículo 3°.- La autorización no convalida la necesidad del investigador de obtener los permisos adicionales requeridos por otras entidades acorde a sus competencias.

Artículo 4°.- La presente autorización no otorga derechos sobre los recursos genéticos o productos derivados de las muestras colectadas.

Artículo 5.- El investigador Alvaro Holger Sánchez Sánchez es responsable de conocer y cumplir las disposiciones contenidas en la Ley N° 26834, Ley de Áreas Naturales Protegidas, y su Reglamento, aprobado mediante Decreto Supremo N° 039-2001-AG, modificado por Decreto Supremo N° 010-2015-MINAM, así como en la Resolución Presidencial N° 287-2015-SERNANP. Asimismo, los investigadores deberán cumplir con las normas que la Jefatura y su personal dispóngan durante el desarrollo de la investigación.

Artículo 6°.- El investigador Alvaro Holger Sánchez Sánchez, en su calidad de responsable de la investigación se compromete a:

a. Presentar copia de la presente autorización al personal del ANP que lo solicite.

b. Tramitar con carácter obligatorio los permisos adicionales que se requieran para la investigación.

c. Comunicar al SERNANP cualquier descubrimiento nuevo para la ciencia, debiendo entregar una copia del depósito del holotipo del nuevo taxon en una institución científica nacional.

d. Entregar una vez publicado los resultados de la investigación, una copia digital de la publicación al SERNANP y autorizar su registro en la biblioteca digital del SERNANP.

e. Entregar a la jefatura del ANP un informe, en el caso de investigaciones que generen información prioritaria para la gestión del ANP y que justificó el apoyo del SERNANP.

f. Realizar previamente las coordinaciones de las actividades en campo para realizar la investigación, tanto con la Jefatura del Refugio de Vida Silvestre Los Pantanos de Villa.

g. No generar altercados con la población local que puedan desencadenar un conflicto social.

h. Entregar a la jefatura del ANP un informe y el material generado en campo (material audiovisual, cartográfico, entre otros) al cumplir un (01) año de la investigación.

i. Realizar una presentación a la JANP concluida la investigación.

El incumplimiento injustificado de estos compromisos producirá el ingreso del investigador en la lista de investigadores inhabilitados para próximas autorizaciones emitidas por el SERNANP.

Artículo 7°.- La autorización a la que se refiere el Artículo 1° caducará automáticamente al vencer el plazo concedido, por el incumplimiento injustificado de los
compromisos adquiridos o por cualquier daño al patrimonio natural, sin perjuicio de las responsabilidades administrativas, civiles o penales que pudieran originarse.

Artículo 8º.- El SERNANP se abstiene de toda responsabilidad por los accidentes o daños que puedan sufrir los integrantes del equipo de investigación durante el desarrollo del proyecto de investigación, con el conocimiento al responsable de la investigación sobre el contexto social del RVSLPV.

Artículo 9º.- Regístrese la presente Resolución en el Módulo de Seguimiento a las autorizaciones de investigación del SERNANP, en el archivo de autorizaciones del Refugio de Vida Silvestre Los Pantanos De Villa y publíquese en la página web del SERNANP (www.sernanp.gob.pe).

Regístrese y comuníquese,

[Signature]

Ing. Omar Antonio Ubillus Tolentino
JEFE RVSLPV
Servicio Nacional de Áreas Naturales
Protegidas por el Estado - SERNANP
ANEXO 2

RESULTADOS DE LOS ANÁLISIS DE AGUA DEL LABORATORIO “R-LAB”
INFORME DE ENSAYO N° 1911691A

Cliente: MATCH INGENIEROS SOCIEDAD ANONIMA CERRADA – MATCH INGENIEROS S.A.C.

Dirección del cliente: AV. ABIGAIL NRO. 1346 DPTO. 907 INT. A URB. SANTA HELENA LIMA – LIMA – LIMA

Usuaria: ALVARO SANCHEZ

Lugar de Muestra: CHOQUELLO

Tipo de Muestra y/o Producto: AGUA NATURAL SUPERFICIAL Río

Muestra Realizado por: R-LAB S.A.C.

Protocolo de Muestras: P-RIM-01 “Muestras y Mediciones de Parámetros Río”, Versión 06

Referencia al Plan de Muestras: N° 3911621

Número de Muestras: 1A

Fecha de Recepción: 20-11-2019

Fecha de Inicio y Términos de Ensayo: 20-11-2019 al 23-11-2019

INFORME DE ENSAYO N° 1911691A

<table>
<thead>
<tr>
<th>Código de Laboratorio</th>
<th>Identificación de la Muestra</th>
<th>Descripción del Punto de Muestra</th>
<th>Fecha e hora de muestreo</th>
<th>Ubicación Geográfica (WGS-84)</th>
<th>Tipo de Muestra y/o Producto</th>
<th>Límites</th>
<th>L.E.M.</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA-1E-S1-A</td>
<td>1911691A-01</td>
<td>Lavandera, en el afioramiento de agua antes de su primera contaminación en Villa Roca</td>
<td>20-11-2019 (09:40)</td>
<td>N: 8549767, E: 8246858</td>
<td>AGUA NATURAL SUPERFICIAL Río</td>
<td>0,020</td>
<td>0,005</td>
<td><0,005</td>
</tr>
<tr>
<td>MA-1E-S1-B</td>
<td>1911691A-02</td>
<td>Lavandera, en el afioramiento de agua antes de su primera contaminación en Villa Roca</td>
<td>20-11-2019 (09:44)</td>
<td>N: 8549767, E: 8246858</td>
<td></td>
<td>0,020</td>
<td>0,005</td>
<td><0,005</td>
</tr>
<tr>
<td>MA-1E-S1-C</td>
<td>1911691A-03</td>
<td>Lavandera, en el afioramiento de agua antes de su primera contaminación en Villa Roca</td>
<td>20-11-2019 (09:58)</td>
<td>N: 8549767, E: 8246858</td>
<td></td>
<td>0,020</td>
<td>0,005</td>
<td><0,005</td>
</tr>
<tr>
<td>MA-2-A</td>
<td>1911691A-04</td>
<td>Lavandera, y antes de desagües industriales</td>
<td>20-11-2019 (10:10)</td>
<td>N: 8549767, E: 8246858</td>
<td></td>
<td>0,020</td>
<td>0,005</td>
<td><0,005</td>
</tr>
</tbody>
</table>

Notas:
- Cumulación y estado de las muestras (o) Ensayado (a): Las muestras llegaron refrigeradas y preservadas al laboratorio.
- La(s) muestra(s) se dejaron en estado de galolismo y validación.
- La(s) muestra(s) se mantuvieron guardadas en condiciones controladas por un período de 30 días calendáriamente luego que haya sido entregada el informe de ensayo a excepción de las muestras pertenecientes.
- La(s) muestra(s) se mantuvieron guardadas en condiciones controladas por un período de 30 días calendáriamente luego que haya sido entregada el informe de ensayo a excepción de las muestras pertenecientes.
- N/A: No Aplica, por ser resultado menor al límite de detección del método de ensayo.

Página 111 de 114
INFORME DE ENSAYO N° 1911691A

<table>
<thead>
<tr>
<th>Código de Laboratorio</th>
<th>MA-1-C</th>
<th>MA-2-E</th>
<th>MA-2-F</th>
<th>MA-3-D</th>
<th>MA-3-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación de la Muestra</td>
<td>Lago de la laverana</td>
</tr>
<tr>
<td>Descripción del Punto de Muestras</td>
<td>Lago de la laverana</td>
</tr>
<tr>
<td>Fecha y Hora de Muestreo</td>
<td>20-11-2012 (17:30)</td>
<td>26-11-2012 (17:30)</td>
<td>26-11-2012 (17:30)</td>
<td>26-11-2012 (17:30)</td>
<td>26-11-2012 (17:30)</td>
</tr>
<tr>
<td>Tipo de Matriz y/ o Producto</td>
<td>AGUA NATURAL SUPERFICIEL (60)</td>
</tr>
</tbody>
</table>

TÍTULOS TOTAL

<table>
<thead>
<tr>
<th>Unidad</th>
<th>L.C.M.</th>
<th>L.D.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>0,020</td>
<td>0,005</td>
</tr>
<tr>
<td>mg/L</td>
<td>0,022</td>
<td>0,005</td>
</tr>
</tbody>
</table>

CLORO

<table>
<thead>
<tr>
<th>Unidad</th>
<th>L.C.M.</th>
<th>L.D.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>0,009</td>
<td>0,024</td>
</tr>
<tr>
<td>mg/L</td>
<td>0,080</td>
<td>0,003</td>
</tr>
</tbody>
</table>

SULFATACIÓN

<table>
<thead>
<tr>
<th>Unidad</th>
<th>L.C.M.</th>
<th>L.D.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mg/L</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTAS

- Condición y estado de la muestra: (N) Normal, (E) Excepcional. (N) Las muestras llegaron refrigeradas y preservadas al laboratorio.
- La(s) muestra(s) llegaron en buen estado y estaban intactas.
- Los datos de muestreo se mantuvieron en condiciones controladas por un período de 12 horas calendario hasta que fueron entregados en el laboratorio.
- L.C.M.: Límite de cuantificación del método.
- L.D.M.: Límite de detección del método.
- N/A: No Aplica, por encima o por debajo del límite de detección del método

Firmado:
Fecha: 03-06-2013
INFORME DE ENSAYO N° 1911691A

<table>
<thead>
<tr>
<th>Código de Laboratorio</th>
<th>1911691A-13</th>
<th>1911691A-14</th>
<th>1911691A-15</th>
<th>1911691A-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación de la Muestra</td>
<td>MA-5-A</td>
<td>MA-5-E</td>
<td>MA-5-C</td>
<td>MA-6-A</td>
</tr>
<tr>
<td>Descripción del Punto de Muestra</td>
<td>Canal M. de Izquierda</td>
<td>Canal M. de Izquierda</td>
<td>Canal M. de Izquierda</td>
<td>Antes de su descarga a los pantanos de Villa</td>
</tr>
<tr>
<td>Fecha y Hora de muestreo</td>
<td>01-10-2019 (11:30)</td>
<td>01-10-2019 (11:30)</td>
<td>01-10-2019 (11:30)</td>
<td>01-10-2019 (11:30)</td>
</tr>
<tr>
<td>Ubicación Geográfica</td>
<td>N°: 33369357</td>
<td>N°: 33369357</td>
<td>N°: 33369357</td>
<td>N°: 33369357</td>
</tr>
<tr>
<td>Tipo de Material y Producto</td>
<td>AGUA NATURAL SUPERFICIAL RSO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Ensayo</th>
<th>Unidad</th>
<th>L.C.M.</th>
<th>I.D.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrógeno Total</td>
<td>mg/L</td>
<td>0.005</td>
<td>0.212</td>
</tr>
<tr>
<td>mg/L</td>
<td>0.027</td>
<td>0.027</td>
<td>0.027</td>
</tr>
<tr>
<td>Clorofila</td>
<td>mg/L</td>
<td>0.008</td>
<td>0.002</td>
</tr>
<tr>
<td>Turbides</td>
<td>UNI</td>
<td>1.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Nota:
- Las muestras fueron refrigeradas y preservadas al laboratorio.
- Las muestras se mantuvieron en las mismas condiciones durante el transporte.
- El laboratorio no se responsabiliza por los resultados obtenidos.
- Los resultados están expresados en mg/L.
- N/A: No Aplica.

INFORME DE ENSAYO N° 1911691A

<table>
<thead>
<tr>
<th>Código de Laboratorio</th>
<th>1911691A-17</th>
<th>1911691A-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación de la Muestra</td>
<td>MA-6-R</td>
<td>MA-6-C</td>
</tr>
<tr>
<td>Descripción del Punto de Muestra</td>
<td>Antes de su descarga a los pantanos de Villa</td>
<td></td>
</tr>
<tr>
<td>Ubicación Geográfica</td>
<td>N°: 5545673</td>
<td>E: 0245222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Ensayo</th>
<th>Unidad</th>
<th>L.C.M.</th>
<th>I.D.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrógeno Total</td>
<td>mg/L</td>
<td>0.025</td>
<td>0.005</td>
</tr>
<tr>
<td>mg/L</td>
<td>0.011</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>Clorofila</td>
<td>mg/L</td>
<td>0.038</td>
<td>0.001</td>
</tr>
<tr>
<td>Turbides</td>
<td>UNI</td>
<td>1.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Nota:
- Las muestras fueron refrigeradas y preservadas al laboratorio.
- Las muestras se mantuvieron en las mismas condiciones durante el transporte.
- El laboratorio no se responsabiliza por los resultados obtenidos.
- Los resultados están expresados en mg/L.
- N/A: No Aplica.