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Abstract 

People with deafness or hearing disabilities who aim 
to use computer based systems rely on state-of-art 
video classification and human action recognition 
techniques that combine traditional movement pat- 
tern recognition and deep learning techniques.  In 
this work we present a pipeline for semi-automatic 
video annotation applied to a non-annotated Peru- 
vian Signs Language (PSL) corpus along with a novel 
method for a progressive detection of PSL elements 
(nSDm). We produced a set of video annotations in- 
dicating signs appearances for a small set of nouns 
and numbers along with a labeled PSL dataset (PSL 
dataset). A model obtained after ensemble a 2D CNN 
trained with movement patterns extracted from the 
PSL dataset using Lucas Kanade Opticalflow, and a 
RNN with LSTM cells trained with raw RGB frames 
extracted from the PSL dataset reporting state-of-art 
results over the PSL dataset on signs classification 
tasks in terms of AUC, Precision and Recall. 
Keywords— Video Classification, Human Actions De- 

tection, Peruvian Signs Language, Optical Flow, 2D 

CNN, LSTM. 

 
1 Introduction 

The World Health Organization (WHO) stated that 
466 million people world wide have disabling hearing 
loss, estimating that by 2050 over 900 million people 
will have disabling hearing loss that will represent a 

global cost of 750 million dollars annually [1]. 

The Peruvian Institute of Informatics and Statis- 
tics (INEI) conducted a national disabilities survey 
with the objective of segmenting and acquiring a bet- 

ter understanding about disabilities that a↵ect the 
Peruvian population [2]. Results showed that 1.8% of 

the Peruvian population su↵er at least partial when 
not permanent deafness or hearing limitations. 

Peruvians with deafness or hearing limitations use 
the Peruvian Signs Language (PSL) as their main 
communication medium. PSL is of mandatory usage 
at universities and certain public institutions, hence- 
forth the importance of designing systems that are 
capable to support PSL inputs and outputs. Fur- 
thermore, in the same way as spoken languages, signs 
languages also present local variations e.g. people 
who live in Lima metropolitan area are not expected 
to use the same set of signs as people in other parts 
of the territory. This work uses the PSL variation 

used in Lima due to the difficulty or inability to find 
datasets for other PSL variations. 

The Grammar and Signs research group of the 
Pontifical Catholic University of Peru (PUCP)  built 
the first PSL corpus [3]  which  is  publicly  available 
at the university digital archives. It is important to 
highlight that the corpus is neither labeled or an- 
notated and cannot be used as it is for training or 
testing a model. 

In this work we are approaching signs detection as 
a supervised learning task. Supervised learning re- 
quires labeled datasets to achieve satisfactory results 
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during training and inference tasks. At the time of 
writing this work there were no labeled datasets avail- 

able for PSL [4]. It configures a gap that could pre-  
vent or hinder research work on Human-Computer- 
Interaction at the Peruvian or Latin American space. 

Current advances in Computer Vision (CV) and 
Natural Language Processing (NLP) make it possible 

to conceive systems that are capable of detecting and 
transcribing elements of sign languages thereby im- 

proving systems accessibility for people with physical 
limitations. This work reports results of a research 
conducted with the goal of producing a labeled PSL 
dataset for a set of signs limited to nouns and num- 

bers as well as a novel method for detecting PSL signs 
by answering the following research questions: 

(i) What are the currently available techniques for 
producing a labeled dataset for a set of signs 
limited to nouns and number from the non- 
annotated PSL corpus? 

(ii) What are most relevant and currently available 
techniques for training a model with the labeled 
dataset described in the question above for de- 
tecting PSL nouns and numbers? 

(iii) How precise and exhaustive is the model de- 
scribed in the above question on the detection 
of PSL nouns and numbers? 

This work has the main objective of producing a 
simple method that can be used as a baseline for other 
researchers interested on studying signs language and 

their di↵erent applications on the Human-Computer- 
Interaction field, we believe this work will produce a 
positive impact on the artificial intelligence commu- 
nity towards an increase in the number of research 
works using PSL which can contribute to increasing 
the number of people with deafness or hearing dis- 
abilities that can use computer based systems. We 
have divided this work main objective into following 
specific objectives for better traceability: 

(i) Produce a labeled PSL dataset limited to nouns 
and numbers 

(ii) Design and train a novel signs detection model 
(nSDm) for detecting signs at the labeled PSL 
dataset 

(iii) Determine what is the performance of nSDm in 
terms of precision and recall 

The rest of the article is organized as follows. In 
section 2 we review the related work on video classi- 
fication for human actions recognition using network 
architectures that combine CNNs, 3D CNNs and 
movement patterns for better features learning, we 
also review state-of-art pose estimation techniques. 
In section 3 we introduce nSDm describing its design 
and architecture. In section 4 we evaluate nSDm pre- 
cision and recall and answer research questions i,ii,iii. 
In section 4.1 we describe the PSL dataset produced 
at PUCP. In section 3.1 we describe the video anno- 
tation and data pre-processing techniques applied to 
produce the labeled PSL dataset and finally in sec- 
tion 6 we present our conclusions and future work. 

 
2 Related Work 

2.1 Action Recognition 

Human action recognition is  an  extensively  stud- 
ied field. Action recognition dataset like UCF101, 
HMDB51, THUMOS14 are available, researches tried 
to solve the human action recognition problem using 

di↵erent approaches including Optical Flow and 3D 
CNN [5]. 

Optical Flow, is defined as the pattern obtained 
fromthe motionofobjects, surfacesandedges inavi- 
sual scene caused by the relative motion between the 
observer and a scene. It is computed by distributing 
movement velocities and brightness across frames. It 
isakey conceptinaction recognition fromvideos [6]. 
Optical flow estimation is treated as an image recon- 
struction problem. Given a frame set, the optical 
flow is generated and allows to reconstruct one frame 
from the others [7]. Formally, taking the optical flow 
displacement field as input and training a CNN with 
it, then the network should have learned useful rep- 
resentations of the underlying motions. Even though 
Optical Flow represents the movement between a set 
of frames, if camera motion is considered as an ac- 
tion motion, it may corrupt the action classification 
[8]. Various types of camera motion can be observed 
in realistic videos, e.g., zooming, tilting, rotation, etc. 
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Motion   Boundary   Histogram   (MBH)   is   a 

simple an efficient way to achieve robustness dur- 
ing human action detection when camera movements 
are mixed within the recorded actions by computing 
derivatives separately for the horizontal and vertical 
components of the optical flow. Since MBH repre- 
sents the gradient of optical flow, locally constant 
camera motion is removed and information about 
changes in the flow field is kept. MBH is more ro-  
bust to camera motion than optical flow, thus more 
discriminative for action recognition.[8]. 3D CNN are 

not as e↵ective as optical flow to detect human ac- 
tions on its own, 3D CNN can be trained to learn 
optical flow so we can avoid costly computation and 
storage and obtain task-specific motion representa- 
tion [7] and increase models performance, precision 
and recall on human action recognition. 

 
2.2 Pose Estimation 

Pose estimation is also an extensively studied field. 
Techniques based on key points have shown state-of- 
art results on human pose estimation. An approach 
on key points estimation [9] uses Point of View De- 
termination and Key Points Prediction components. 
Point of View Determination is formulated by the 
prediction of three Euler angles (azimut, elevation 
and cyclotation) generating a global position esti- 
mate, then a local appearance is modeled by obtain- 
ing a heat map that corresponds to the spatial distri- 
bution likelihood for each key point, finally key points 
predictions are obtained by combining heat maps ob- 
tained in a previous stage with a conditioned likeli- 
hood at the point of view predicted in the previous 
stage. 

Key points detection methods based CNNs have re- 
ceived an special attention in Human Pose Detection 
problems. CNNs methods are divided in bottom-up 
and top-down. Bottom-up methods process images 
from low resolution to high resolution, focusing first 
on detecting joints before associating them to human 
actions. Top-down methods focus first on detecting 
human subjects and then estimating the human pose 
to predict key points. 

The datasets MPII and COCO have been used in 
state-of-art methods obtaining good results[10] and 

establishing a framework for future work in combi- 
nation with classic approaches like optical flow for 
recognizing patterns movement between frames by 
increasing accuracy on key points detection. 

 
2.3 Video Classification 

Bag of Words (BoW) or Bag of  Visual  Words 

(BoVW) based on natural language processing tech- 
niques is one of the simplest and oldest local de- 
scriptor encoding strategies. In its simplest form, it 
consists of (i) clustering with k-means a collection 
of descriptor vectors from the training set to build 
so-called visual vocabulary, (ii) as signing each de- 
scriptor to its nearest cluster center from the visual 
dictionary, and (iii) aggregating the one-hot assign- 
ment vectors via average pooling [6], when applied to 
Computer Visionisa technique used to create images 
representations or features vectors used that can be 
learned by CNNs, resulting on improved images clas- 
sification and video classification. Feature trajectory 
detection are much improved using statistical meth- 
ods like Fisher Vectors obtaining better results over 

traditional  BoW   Fussing   parallel  CNN..   The  Bag 

of Visual Words representation su↵ers from sparsity 
and high dimensionality, in the other hand represen- 
tations obtained using the Fisher Vectors kernel are 
more compact and dense which results on better re- 
sults for image and video classification problems. 

 

3 Method 

3.1 Video Annotation 

The PSL dataset is non-annotated because there is 
not a direct relation between the instant when a sign 
is emitted and when its translation to Spanish is de- 
livered. We propose a semi-automatic video anno- 
tation pipeline described in Figure 1 for cleaning, 
pre-processing and analyzing PSL videos in order to 
produce an labeled PSL dataset  that  can  be  used  
for training nSDm using supervised learning. The 
pipeline is described in detail in sections 3.1.1, 3.1.2, 
3.1.3 and 3.1.4 

We used the PSL dataset to train and test a set 
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of neural networks described in detail in sections 3.2, 
3.3 and 3.4 

Implementation details can be found at 

Video Start End Alignment 

00:30    00:55 center 

https://github.com/erichuizapucp/signs-recognition 

 
3.1.1 Manual Automatic Video Clean Up 

The PSL recordings described on 4.1 contain a con- 
siderable amount of noise introduced during record- 

ing sessions. It makes difficult to easily find video 
intervals that clearly show a relation between signs 
emitted by the informant and the translation deliv- 

consultant-01- 
session-01- 
part-01.mp4 

 
consultant-02- 
session-01- 
part-01.mp4 

01:15    01:29 center 
00:53    01:07 center 
08:12    09:01 center 

00:15    00:21 center 
00:15    00:21 center 
00:53    01:07 center 
02:43    02:47 center 
17:33    18:01 left 

ered by the translator. Noise factors are the follow- Table 1: Noise free video segments extract 

ing:    
Center Aligned Left Aligned 

• Multiple  participants  speaking  during  the  ses-    
sion. 

 

• Conversations between participants that are not 
relevant to emitted sings. 

• High frequency of large silent periods. 

A manual video cleanup process is required to find 
noise free video intervals. This process requires 
watching all videos available at the PSL corpus for 
manually annotate the instant when an informant 
started emitting sings along with the instant when 
the translator delivered a translation, Table 1 shows 
a manual annotation example. 

The recordings show the informant in two align- 
ments (centered and left), the manual video clean up 
process also stores the informant alignment, table 2 
showsthetwoavailable alignments, we use the align- 
ment annotation later in the processduring the video 
frames extraction to create the labeled PSL dataset. 

 
3.1.2 Video Pre-Processing 

Non-annotated PSL videos require processing before 
any metadata can be extracted, we propose a se- 
quence of pre-processing tasks that take advantage  
of the annotation generated on 3.1.1. A video split- 
ting processor generates a set of  video  chunks us- 

ing the ↵mpeg multimedia framework and stores pro- 
duced  video  chunks  in  Amazon  S3  for  later usage. 
Audio within video chunks  is then transcribed  by an 

Table 2: Informant Alignment 

 
 

audio  transcription  processor,  using  the  Ama- 
zon Transcription service, we selected the Amazon 
Transcription service because it provides an accurate 
mapping between audio participants and transcribed 
words along with useful metadata that describes the 
start and end time when words are pronounced by 
the translator. 

At the moment of writing this work Amazon Tran- 
scription service only supported Spain and US Span- 
ish. This caused certain words that are specific for 
Peruvian Spanish not being fully recognized, in or- 
der to improve transcription accuracy we built a 
custom vocabulary containing Peruvian expressions 
which improved Peruvian words recognition, for the 
matters of this work Peruvian words that remained 
unrecognized were omitted and not processed. 

 
3.1.3 Audio Transcription Analysis 

Audio transcription requires additional processing in 
order to produce useful information that leads to a 
successful PSL signs detection. Bag of Embedding 
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Figure  1:  Video  annotation process 

 

Words (BoEW) is a widely used technique on Natural 
Language Processing tasks providing a easy and flex- 
ible way to list the most relevant words based on fre- 
quency. This work is focused on detecting nouns and 
numbers (our method is designed to be progressively 
improved to handle a wider set of PSL elements) as- 
suming that nouns (numbers are a subset of nouns) 

su↵er less variations in spoken Spanish than verbs, 
pronouns, adverbs and adjectives, and provide more 

semantic value than conjunctions, prepositions and 
interjections. 

 
We used Amazon comprehend for text analysis, 

specifically the syntax detection functionality which 
will provide a comprehensive list of detected language 
elements along with a score from 0.0 to 1.0 indicat- 
ing the detection accuracy, we have selected the ones 
that have at least a 0.8 accuracy score and omitted 
the rest, this process was automated using a tran- 



6  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3: Most relevant tokens detection frequency in the PSL 

dataset 

 

 

scription detection processor  which  uses  BoEW 

to provide a list of most relevant nouns and numbers 
based on appearance frequency. Table 3 shows a list 
of nouns and numbers and their frequencies in the 
PSL dataset. 

Once a weighted list of nouns and numbers is gen- 
erated a mapping showing when nouns and numbers 
appear in videos is required, moving forward called 
Samples Metadata. Table 4 shows mapping meta- 
data extracted from PSL. 

 
3.1.4 Samples Generation 

Our method requires PSL elements to be represented 
as a set of RGB frames and a calculated Optical Flow 
using the Lucas-Kanade method, both representa- 

tions are inputs of two di↵erent models as presented 
on 3.4. 

Translation  Delay  Factor:  The  di↵erence  in  
time between the instant when a sign is emitted and 
when a translation for that given sign is delivered is 
uncertain, we are calling that uncertainty the transla- 
tion delay factor, we are trying to approximate it us- 
ing a constant value, we chose a three seconds trans- 
lation delay factor assuming that most of the trans- 
lations will occur between three seconds after a sign 
is emitted. 

A RGB Samples generation processor uses 
samples metadata in combination with the transla- 

 
tion delay factor to determine frames that represent  
a given PSL element. We use OpenCV to extract 
frames and store them following a hierarchical folder 
structure (listing 4.2) that nSDm data loaders  will 
use to feed data into the RGB branch in the nSDm 
model architecture ?? during training and testing. 

An Optical Flow Samples  generation  pro-  
cessor uses video frames and the hierarchical folder 
structure generated by the RGB samples generation 
processor to calculate an Optical Flow representa- 
tion for PSL elements and store them in a hierar- 
chical folder structure that will also be used by the 
nSDm data loaders to feed the optical flow branch on 
the nSDm model architecture ?? during training and 
testing. We selected optical flow as a samples gen- 
eration strategy due to its ability to represent move- 
ment traces from previous frames. It is particular 
useful for representing body movement patterns exe- 
cuted by informant while emitting a PSL sign. A PSL 

sign is made up of di↵erent body movements includ- 
ing: elbow, arms, neck, eyes, shoulders and hands, 
which are performed quickly, a way to detect move- 
ment traces between frames allows to generate a sin- 
gle image representation of all movement involved on 
a sign emission(Figure 8). 

 

3.2 Opticalflow Model 

The model uses a 2D CNN architecture to learn fea- 
tures from Opticalflow samples calculated from RGB 
frames using the Lucas Kanade method for features 
tracking. Opticalflow samples hold features tracked 
from an entire frames set sequentially that way all  
the features found across frame sets are condensed in 
a single image. 

 
3.2.1 Model Architecture 

The Opticalflow model architecture described in Fig- 
ure 2 uses a Resnet152 backbone pre-trained with 
ImageNet. We used a fine tuning transfer learning 
approach, the backbone produces a 7x7x2048 output 
that then is passed to a Global Average Pooling layer 
for obtaining a flattened output of 1x1x2048 which is 
then passed to a dense layer for logits computation 

Token Frequency 

pareja 40 
cosas 30 
cine 20 
noche 20 
terror 10 
parque 10 
casa 10 
montón 10 
apariciones 10 
fantasmas 10 

dos 10 
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sample, frames were resized to 128x128 for GPU 
memory optimization during training decreasing con- 
siderably the number of training parameters. Frame 
set samples length varies  on each  sample  requiring 
a layer to mask entries ensuring same length sam- 
ples. We decided on using a bidirectional approach 
because we found benefits on learning features from 
left to right and right to left in the same way as text 
based NLP. It uses a many-to-one architecture with 
LSTM cells that hold state of 64 units length, the out- 
put produced by the recurrent layers is then passed 
to a dense layer for logits computation and subse- 
quent softmax activation function for classes proba- 
bility computation. 

 

noche consultant-02-session- 
01-part-01-04.mp4 

montón consultant-02-session- 
01-part-01-04.mp4 

cosas consultant-02-session- 
01-part-01-04.mp4 

7.91 8.2 
 

8.5 8.78 
 

8.88 9.38 

3.4 Novel Signs Detection Model 
(nSDm) 

We propose a novel model for signs detection that 
ensemble the two neural networks architectures de- 
scribed in sections 3.2.1 and 3.3.1 with the objective 
to learn visual features like edges, corners and ridges 

Table 4: Shows metadata extacted from the PSL dataset: 
(1)Token could be a noun or a number (2)Video Path shows 

the video where the token was detected (3)Start Time time 

when the token reproduction starts (4)End Time time when 

the token reproduction ends. 

 
 

and finally to a softmax activation function for classes 
probability computation. 

 
3.3 RGB Recurrent Model 

The model uses a RNN architecture to learn  fea- 
tures in a sequential way from RGB frames set gen- 
erated by the video annotation pipeline see Figure 
1. RGB frame sets hold a sequence of images rep- 
resenting a PSL element. We selected a RNN archi- 
tecture based on Natural Language Processing text 
based techniques that already shown good results. 

 
3.3.1 Model Architecture 

The RGB recurrent model architecture described in 
Figure 3 receives a sequence of decoded video frames 
bidirectionally where each frame set represents a PSL 

(CNN) and at the same time patterns learned from a 
time based series of inputs (RNN) to boost the per- 
formance on detecting PSL elements. CNN network 
receives optical flow inputs and the RNN branch re- 
ceives RGB frames extracted from the labeled PSL 
dataset described in 3.1. 

We designed two neural network architectures for 
nSDm, both architectures use pre trained Opticalflow 

and RGB models as base models and applies di↵er- 
ent model ensemble techniques on top of them. This 
architectures are described in detail in sections 3.4.1 
and 3.4.2. 

For this work we selected the Tensorflow/Keras 
functional API for its ability to define combined mod- 
els along with a versatile data extraction and trans- 
formation layer. 

 
3.4.1 nSDmV1 Model Architecture 

Pre-trained Opticalflow and RGB recurrent models 
are ensemble using transfer learning with all layers 
freeze along with a flexible data input pipeline for 
data feeding, transformation and normalization. 

Token Video Start End 

cine consultant-02-session- 4.19 4.75 
 01-part-01-00.mp4   

cine consultant-02-session- 1.19 1.75 
 01-part-01-01.mp4   

terror consultant-02-session- 3.82 4.4 
 01-part-01-01.mp4   

parque consultant-02-session- 8.97 9.3 
 01-part-01-03.mp4   

casa consultant-02-session- 10.12 10.57 
 01-part-01-03.mp4   

pareja consultant-02-session- 3.91 4.36 
 01-part-01-04.mp4   

noche consultant-02-session- 4.49 4.92 
 01-part-01-04.mp4   
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Figure 2: Opticalflow model architecture 

 

The Input pipeline accesses the labeled PSL sam- 
ples and applies transformations preparing the data 
for upper layers, transformations were applied for 
both Opticalflow and RGB frames, PSL Opticalflow 
samples were resized to be compliant with ImageNet 
pre-trained models using a 224 by 224 shape and 
three channels for color images in the other hand 
PSL RGB samples were resized to a 128x128 shape 
for GPU memory optimization, data augmentation 
transformations were not applied due to the nature 
of the experiment where samples were captured us- 
ing similar light conditions and camera orientations, 
PSL samples were transformed to tensors and nor- 
malized to floats in the [0, 1] interval, finally the 
transformed and normalized versions of optical flow 
and RGB samples were tight together in a tuple of 
tensors along with the label forusageatupper layers. 
nSDmV1 architecture is described in Figure 4. 

We applied transfer learning from Opticalflow and 
RGB recurrent models where all their layers were 
frozen that way we save a considerable amount of 
computation resources, finally Opticalflow and RGB 
recurrent models outputs are averaged producing the 
nSDMV1 classifier output. 

 
3.4.2 nSDm V2  Model Architecture 

nSDmV2 architecture inherits many elements from 
nSDmV1   including   the   Data   input   pipeline,  data 

transformation, normalization and Opticalflow and 
RGB recurrent base models. We removed the last 
dense layers (classifiers) from both base models with 
the objective to add a single classifier in an outer 
layer. We concatenated the outputs and finally added 
a Dense layer with a softmax activation function to 
convert logits into probabilities used for a correct sign 
classification. nSDmV2 architecture is described in 
Figure 5. 

 
3.5 Sign detection testing 

We selected videos in section 4.1 that were not used 
for training nSDm models  for  testing  nSDm  mod- 
els (models were not trained with the 24 consultant 
videos). We proceed the input video to extract RGB 
frames for video fragments of 0.5 seconds length mov- 
ing ahead 0.1 seconds on each loop until the end of 
the video that way we can reduce the number of cut 
or incomplete signs between video fragments. Opti- 
cal flow and RGB frames extractors feed nSDmV2 to 
detect signs 3.4 present in the video fragment. 

We selected nSDmV2 for signs detection on new 
videos because we obtained better results with nS- 
DmV2 than with nSDmV1. Experimentation results 
are described on section 4 

A software component called Video Annotator uses 
video metadata produced by the RGB Frames Ex- 
tractor including start and end time in seconds along 
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Figure 3: Recurrent RGB model architecture 

 

with detected signs. Video annotation entries are 
added to an annotations document which can be used 
for further video processing like adding a mask that 
highlights detected signs using a graphics library like 
OpenCV for incorporating masks to test videos, Fig- 
ure 6 shows the signs detection testing architecture. 

4 Experimentation 

4.1 Dataset Description [3] 

The PSL dataset was developed by the PUCP Gram- 
mar and Signs research group in 2014 and consists in 
a set of videos recorded during the interviews of 24 
individuals, 12 male and 12 female informants, all of 
them are Lima Peru residents and reported to be born 
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Figure  4:  nSDmV1  model architecture 
 
 

 

 
 

Figure  5:  nSDmV2  model architecture 

 

with a permanent deafness condition or acquired the 
condition before the acquisition of Spanish. 

The dataset consists in 718 video clips recorded 
with a ADR-CX220 SONY HD camera which in-  
cluded an embedded microphone. The camera fo- 

cused only the informant but also recorded questions, 
instructions and translations. 

The video clips were recorded in three sessions 
with the following participants:  A  coordinator,  a 
PSL [4] translator and a informant. 
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Figure 6: Signs detection testing process architecture 

 

 
Recording Session 1: A 45-60 minutes semi 

structured interview that included: Biographic infor- 
mation as well as habits, anecdotes, opinion about 
cultural subjects and elicitation of names, states and 
actions. 

Recording Session 2: The informant was pre- 

sented with a set of 55 cards describing actions and 
were asked to choose a set of them in order to build 
a coherent story that was subsequently told by the 
informant. 

Recording Session 3: A PSL [4] conversation 

facilitated by the coordinator happening  between 
the informant and the translator. 

 
During all the sessions a PSL [4] translator per- 

forms a translation after a word or phrase is com- 
pleted. 

 
4.2 Video Annotation Results 

The video annotation pipeline described on 3.1 pro- 
duced an annotated PSL  dataset  suitable  for  using  
it in a supervised learning experiment. The anno- 
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tated dataset is divided in two main parts (RGB and 
Optical Flow samples) 

RGB Samples folder structure is a hierarchical 
folder structure where each detected noun or number 
is represented as a first level folder, all instances of a 
detected sign received an identifier which is an auto 
incremental integer, detected instances represent the 
second level folders, detected signs video represent 
the third level, Figure 7. 

Listing 1: RGB Samples Folder Structure example 

L1 : dos 

 

 

 

 

 
 

L1 : cine 

L2 :1 

 

 

 

 

 
 

L2 :1 

 

 

 

 

 

L2 :2 

 

L3 : rgb - frame 01 . jpg 

L3 : rgb - frame 02 . jpg 

L3 :rgb - frame 03 . jpg 

... 

L3 :rgb - frame 08 . jpg 

 

 

L3 : rgb - frame 01 . jpg 

L3 : rgb - frame 02 . jpg 

L3 :rgb - frame 03 . jpg 

... 

L3 :rgb - frame 15 . jpg 

 

L3 : rgb - frame 01 . jpg 

L3 : rgb - frame 02 . jpg 

L3 :rgb - frame 03 . jpg 

... 

L3 : rgb - frame 11 . jpg 

 

 

 

 

 

Figure 7: PSL number ”Two” RGB representation 

Optical Flow samples folder structure is a 
hierarchical folder structure based on the RGB sam- 
ples folderstructure, it isa more simple based on two 
levels instead of three, the nature of Optical Flow of 
tracing movement between frames allow to produce a 
single image for each detected PSL element instance 
(listing 4.2), Figure 8 shows an example of an optical 
flow generated sample 

Listing 2: Optical Flow Samples Folder Structure ex- 
ample 

L1 : dos 

L2 :oflow -dos -01. jpg 

L1 : cine 

L2 : oflow -cine -01. jpg 

L2 : oflow -cine -02. jpg 

 

 

 

 

 

 

 

 

Figure 8: PSL number ”Two” OpticalFlow represen- 
tation 

 

4.3 Sign detection results 

We  trained models described on sections 3.2, 3.3 and 
3.4 with  the  5%  of the  PSL dataset  and validated it 
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with the 5% of the validation PSL dataset, models 
were trained during ten epochs obtaining the results 
in Tables 7, 8, 9 and 10. 

We used the same hyper parameters while training 
all models. These are listed on Table 5 

Ensemble models (nSDmV1 and nSDmV2) show 
the highest performance where nSDmV1 reports a 
loss equals to 0.627 a AUC equals to 1.0000 a Preci- 
sion equals to 1.0000 and a Recall equals to 0.7273 
and where nSDmV2 reports a loss equals to 0.1651 a 

   Precision equals to 1.0000 and Recall equals to 1.000 
Hyper parameter Value 

 

Learning Rate 0.001 
No Epochs 10 
Batch Size 64 

Shu✏e Bu↵er Size 5000 

Table 5: training hyper parameters 

 
We used the same loss function and optimizer for 

all models. These are listed on Table 6 

Name Value 

and a AUC equals to 1.0000. 
The results indicate ensemble models perform bet- 

ter than individual models justifying the e↵ort to 
design models that combine 2D CNN and RNN ar- 
chitectures. nSDmV1 combines the two individual 
models with a simple outputs average showing show- 
ing a better recall than the Opticalflow and RGB 
recurrent models. nSDmV2 shows the highest perfor- 
mance presumably related to the classifiers removal 
action applied to Opticalflow and RGB models  and 
the subsequent concatenation which is then sent to a 
new classifier layer (dense layer with softmax activa- 

      tion) as described in section 3.4.2. 
Loss Function Categorical Cross Entropy 
Optimizer Adam 

 

 

Table 6: Loss and optimization functions 

 
Even though models were trained with a small 

number of samples and are subject to over fitting, 
train results show patterns that indicates that per- 
formance will increase as we add more samples where 
metrics will become stronger as we add more samples 
to the input data pipeline, we are planning on pro- 
cessing more PSL samples as well as including PSL 
samples from external sources as described on section 
5. 

The nSDmV2 model was used for inference using 
the proposed Signs detection testing architecture de- 
scribed in Figure 6 due to the performance presented. 
We successfully inferred samples as shown in Figure 
9 where the sign for the noun ”Pareja” was detected. 
In the other hand we observe that silent periods are 
being incorrectly classified as shown on Figure 10, 
adding one additional class for silent could improve 
our classifier allowing it to infer when a consultant is 
performing any action. 

 

5 Discussion and Future Work 

Train results shows the RGB recurrent model hav- 
ing the lowest performance with a loss equals to 
2.5790 and a AUC equals to 0.1229  and  Precision 
and Recall equals to 0.0000 which indicates recurrent 
models are not learning enough features. In the other 
hand the Opticalflow model performs better with a 
loss equals to 0.5981 a AUC equals to 0.9877 a Pre- 
cision equals to 1.000 and a Recall equals to 0.6818 
which  indicates  features  available  in  Lucas Kanade 

Opticalflow representations are learned more e↵ec- 
tively  with  a  2D  CNN  architecture.   2D  CNN archi- 
tectures show better performance than RNN archi- 
tectures for detecting PSL elements. 

We processed the five percent of the PSL dataset  
with the proposed video annotation pipeline produc- 
ing PSL samples for nouns and numbers using the Lu- 
cas Kanade Opticalflow representation and sequential 
RGB frames respectively. We trained four models de- 
scribed on sections 3.2, 3.3 and 3.4 obtaining results 
presented on section 4. Results shown over fitting 
due to number of samples used to train the models. 
As a continuation of this work we will continue pro- 
cessing the rest of the PSL dataset and train models 
to improve their robustness. 

A successful supervised learning task requires a la- 
beled dataset where samples are carefully produced 
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 Opticalflow Mode l Training Results w ith the 5  of the dataset 

Epoch Loss Precision Recall AUC 

Epoch 1 3.2775 0.0000e+00 0.0000e+00 0.0900 
Epoch 2 2.5090 0.0000e+00 0.0000e+00 0.1327 
Epoch 3 2.0908 1.0000 0.0455 0.2616 
Epoch 4 1.8167 1.0000 0.0455 0.4361 
Epoch 5 1.5668 1.0000 0.1364 0.5651 
Epoch 6 1.3303 1.0000 0.1364 0.7557 
Epoch 7 1.1146 1.0000 0.3182 0.8657 
Epoch 8 0.9199 1.0000 0.4545 0.9205 
Epoch 9 0.7464 1.0000 0.6364 0.9657 

Epoch 10 0.5981 1.0000 0.6818 0.9877 

 

Table 7: Shows results of training the Opticalflow model with the 5% of the labeled PSL dataset: (1)Epoch identifies the epoch 

in in the training process (2)Loss obtained loss (3)Precision obtained precision (4)Recall obtained recall  (5)AUC area under 

the precision-recall curve. 

 

 

 

 

 

 
 

RG B Recurrent Mod el Training Results with the 5  of t he dataset 

Epoch Loss Precision Recall AUC 

Epoch 1 2.7568 0.0000e+00 0.0000e+00 0.0911 
Epoch 2 2.6647 0.0000e+00 0.0000e+00 0.1008 
Epoch 3 2.6455 0.0000e+00 0.0000e+00 0.1017 
Epoch 4 2.6296 0.0000e+00 0.0000e+00 0.1193 
Epoch 5 2.6121 0.0000e+00 0.0000e+00 0.1222 
Epoch 6 2.6032 0.0000e+00 0.0000e+00 0.1222 
Epoch 7 2.5943 0.0000e+00 0.0000e+00 0.1229 
Epoch 8 2.5875 0.0000e+00 0.0000e+00 0.1229 
Epoch 9 2.5825 0.0000e+00 0.0000e+00 0.1229 

Epoch 10 2.5790 0.0000e+00 0.0000e+00 0.1229 

 

Table 8: Shows results of training the RGB Recurrent model with the 5% of the labeled PSL dataset: (1)Epoch identifies the 

epoch in in the training process (2)Loss obtained loss (3)Precision obtained precision (4)Recall obtained recall (5)AUC area 

under the precision-recall curve. 
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 nSDmV1 Tra ining Results with t he 5  of the dat aset 

Epoch Loss Precision Recall AUC 

Epoch 1 1.0210 1.0000 0.0455 0.9929 
Epoch 2 0.9115 1.0000 0.0455 1.0000 
Epoch 3 0.8364 1.0000 0.0909 1.0000 
Epoch 4 0.7748 1.0000 0.2273 1.0000 
Epoch 5 0.7277 1.0000 0.2727 1.0000 
Epoch 6 0.6929 1.0000 0.4545 1.0000 
Epoch 7 0.6673 1.0000 0.5000 1.0000 
Epoch 8 0.6479 1.0000 0.6364 1.0000 
Epoch 9 0.6327 1.0000 0.6364 1.0000 

Epoch 10 0.6207 1.0000 0.7273 1.0000 

 

Table  9:  Shows results of training nSDmV1 with the  5% of the  labeled PSL dataset:  (1)Epoch   identifies the epoch in in   

the training process (2)Loss obtained loss (3)Precision obtained precision (4)Recall obtained recall (5)AUC area under the 

precision-recall curve. 

 

 

 

 

 

 
 

 nSDmV2 Tra ining Results with t he 5  of the datas et 

Epoch Loss Precision Recall AUC 

Epoch 1 2.9711 1.0000 0.0000e+00 0.2959 
Epoch 2 2.2159 1.0000 0.0455 0.6564 
Epoch 3 1.7181 1.0000 0.0909 0.8154 
Epoch 4 1.3140 1.0000 0.1818 0.9340 
Epoch 5 0.9585 1.0000 0.3636 0.9691 
Epoch 6 0.6747 1.0000 0.5909 1.0000 
Epoch 7 0.4739 1.0000 0.8636 1.0000 
Epoch 8 0.3261 1.0000 0.8636 1.0000 
Epoch 9 0.2263 1.0000 0.9545 1.0000 

Epoch 10 0.1651 1.0000 1.0000 1.0000 

 

Table  10:  Shows results of training nSDmV2 with the 5% of the labeled PSL dataset:  (1)Epoch   identifies the epoch in in   

the training process (2)Loss obtained loss (3)Precision obtained precision (4)Recall obtained recall (5)AUC area under the 

precision-recall curve. 
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Figure 9: PSL noun ”Pareja” RGB Frames correctly 
classified 

 
 
 

 

 
Figure 10: PSL noun ”Pareja” RGB Frames incor- 
rectly recognized. The classifier is incorrectly classi- 
fying silent periods where the consultant is not per- 
forming any action 

 

and annotated. The video annotation pipeline de- 
scribed on section 3.1 requires a significant amount 
of human intervention to find video segments where 
signs are followed by a translation delivered after a 

delay factor that varies between translations. In this 
work we have estimated a delay factor of 3 seconds  
to ensure extracted frames contain the target  sign 
but a the same time it introduces additional frames 
requiring human intervention to remove frames that 
are not relevant to the target sign. Applying self su- 
pervised learning techniques to avoid or minimize the 
need for human intervention while labeling the PSL 
dataset and other external PSL datasets available like 
the ”Aprendo en Casa” dataset (Gisella Bejarano et 
al.) is the natural next step for this work where pre- 
trained nSDm models enriched with an auto-encoder 
architecture can be used to remove the need to hu- 
man intervention on the proposed video annotation 
pipeline. 

State of art on pose estimation and body expres- 
sions detection are based on key points, joints and 
heat maps regression. The method described in this 
work is a supervised learning task for signs classifi- 
cation, converting a classification problem into a re- 
gression one seems to be a good option  that  could  
be beneficial. Movement across frames is captured 
with Opticalflow showing the body parts a PSL con- 
sultant moved  to  emit  a  sign.  We  are  looking  for  
a method for calculating key points and joint co- 
ordinates from Opticalflow samples, caluculated key 
points and joint coordinates which are inputs for a 2D 
CNN (dowsampling) and 2D Transposed CNN (up- 
sampling) for heat maps regression that will finally 
be used to detect PSL elements. 

 

6 Conclusion 

Human intervention was required for cleaning and 
pre-processing input videos before they can passed 
to the proposed video annotation pipeline. It pos- 

itively a↵ected produced samples quality because 
video segments containing noise and non relevant 
frames can be easily removed in advance. A Delay 
Factor between signs emitting and signs translation 
introduces noise because it varies on each produced 
sample requiring additional human intervention to 
post-process produced samples to remove non rele- 
vant frames. 

Lucas Kanade Opticalflow feature tracking method 
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successfully represented movement that occurred 
during signs emitting, it is important to note that 
when a sign is emitted many body parts are moved 
including arms, hands, head, neck and eyes, Opti- 
calflow is capable to capture movement patterns for 
the entire body configuring an excellent tool for vi- 
sual features representation in PSL elements. It is a 
very CPU inexpensive algorithm that can be applied 
as a data augmentation/transformation in data in- 
put pipelines for both training and test allowing to 
expand its utilization to a wide range of datasets. 

Opticalflow model shown better performance than 
the RGB recurrent model in terms of AUC, Precision 
and Recall, the Opticalflow model uses a pre-trained 
RestNet152 base model with transfer learning (freez- 
ing) indicating that using a pre-trained base model 

positively a↵ect the model performance. RGB recur- 
rent model performance is subject to improve as we 
train with more PSL samples. 

Ensemble models shown better performance than 
Opticalflow and RGB recurrent models where nS- 
DmV2 shown the highest performance. The nSDmV2 
novel architecture where pre-trained base models 
were popped and then concatenated allowing adding 
additional layers for learning features after based 
model were concatenated and subsequent classifier. 

The area under the precision-recall curve allow 
measuring how well is nSDm detecting because it 

summarizes the trade-o↵ between the true positive 
signs rate and the predicted signs. 
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