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Abstract

Neutrinos play an important role in understanding nature’s behavior, from the

suggestion of their existence, to the experimental issues found in the way of

trying to present evidence for it. The oscillation induced by mass is supported

by overwhelming experimental evidence.

This work proposes a theoretical revision of the quantum mechanical descrip-

tion of neutrino oscillations, discussing the inconsistencies of the usual ap-

proaches and giving a more precise one. Moreover, the mechanism for oscilla-

tions in matter is studied with the purpose of finding the differential equation

to solve for the evolution of the neutrino states.

For finding the evolved states, a code for solving the Schrödinger equation nu-

merically was developed. The results were compared with the data from an

already existing simulation software for neutrino experiments, allowing the

validation of our solutions. Some steps following this work, such as the in-

troduction of Non-Standard physics and predictions at future experiments, are

described.
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Chapter 1

Historical Review

To refer to the history of neutrinos is to refer to that of weak interactions, which

starts with the discovery of the radioactivity of uranium, and two of its types of

products, α and β particles, by Becquerel and Rutherford respectively. In 1914,

Chadwick experimentally demonstrated the energy spectrum of electrons emit-

ted in β -decay to be continuous. This fact was controversial, as the beta decay

of a nucleus was thought to generate a single particle (an electron) and conser-

vation of energy implies that this particle should have a well-defined energy. In

an attempt to solve this problem, conservation of energy was questioned, with

N. Bohr suggesting that energy could be conserved only in a statistical sense.

However, Pauli proposed the existence of a weakly interacting fermion that was

emitted in β -decay [1].

In 1933, Francis Perrin suggested that the new particle, now with the name of

neutrino, needed to have a mass smaller than the one of the electron, a velocity

close to the speed of light, and spin 1/2. That same year, Fermi formulated a

1



2 Chapter 1. Historical Review

theory on β -decay [2], establishing the process as:

n → p+ e−+ ν̄ (1.1)

After these contributions, few doubted the existence of the neutrino, but it was

only observed in the 1950s by Reines and Cowan, with their measurement of

inverse β -decay (ν̄ + p → n + e+). For this purpose, they used the flux of

anti-neutrinos from a nuclear reactor and 1400 liters of liquid scintillators, con-

stituting the first reactor neutrino experiment.

There are three known neutrino flavors: the electron neutrino νe, observed by

Reines and Cowan, the muon neutrino νµ , first observed in accelerator neutrino

experiments (beams made from the reaction π+ → µ++νµ , and µ+ → e++

νe + ν̄µ), and the tau neutrino ντ , whose evidence is only inferred from the τ

decay modes. In distinction with the other fermions, neutrinos are only sensible

to weak interactions: a tiny fraction from a sample of neutrinos in a medium

will interact with matter [3].

Apart from nuclear reactors and accelerators, neutrinos can also come from

the Sun, atmospheric reactions or extragalactic sources. The Sun liberates its

energy in nuclear fusion reactions taking place in the solar core, in a network

of two-particle reactions, of which the most important one is the pp chain:

p+ p → 2H+ e++νe (1.2)
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We are also lead to other neutrino production reactions:

3He+ 4He → 7Be+ γ (1.3)

7Be+ e → 7Li+νe (1.4)

7Be+ p → 8B+ γ (1.5)

8B → 8B+ e+νe (1.6)

This gives rise to the dominant energy generation mechanism in the Sun [4],

and it represents a pure flux of electron neutrinos. However, the measurements

made by experiments at the time did not give fluxes as great as the one pre-

dicted by the solar standard model for solar neutrinos [5]. This resulted in the

so called Solar neutrino problem: the aforementioned experiments measured

only electron flavor neutrinos and there was loss of this flux on the neutrinos

way to Earth. For example, The SAGE and GALLEX experiments made mea-

surements by making solar neutrinos react with gallium, according to:

νe +
71Ga → 71Ge+ e− (1.7)

While the Kamiokande and Super-Kamiokande experiments used the reaction:

νe + e− → νe + e− (1.8)

with an energy threshold of 5 MeV in a water Cherenkov counter.

To solve the solar neutrino problem, many proposals were made, from doubting

the correctness of the standard solar model, doubting the estimation of the cross
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section for the reactions in the experiments, to assuming that neutrinos could

decay into new particles that would be invisible to detectors. As these scenarios

are fairly unlikely, neutrino oscillations, along with its resonances due to the

presence of a heavily dense medium, could also offer an explanation about the

mechanism that causes the solar neutrino problem. Nevertheless, the difference

between the measured and the predicted neutrino fluxes was solved by the SNO

experiment. It was able to measure different neutrino flavors by using their

reactions with a deuteron:

νe +d → p+ p+ e− (1.9)

νx +d → p+n+νx (1.10)

The total neutrino flux it obtained was in agreement with the predicted flux,

even if the mechanism for this result is not clear [6].

Having formerly been unwanted background for experiments, atmospheric neu-

trinos have provided the first indication for neutrino oscillations. The mecha-

nism for muon production in the atmosphere from Cosmic Rays is known and

accepted. A charged particle from an extragalactic source arrives at the Earth’s

atmosphere and interacts with nuclei there, causing both an electromagnetic and

a hadronic shower. From the latter, pions are produced and hey then decay, as

mentioned in the accelerator experiments case. Thus, giving an expectation of

a ratio of 2 to 1 between the number of νµ and the number of νe. Once again,

the measured flux was not in agreement with the theoretical prediction, until

Super-Kamiokande measured not only the energy of the neutrinos, but their di-
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rection, and, indirectly, the differences in their traveled path. It was found that

the neutrino flavor transition was actually dependent on this length [7].

Based on these observations, the most widely accepted theory was that of a pe-

riodic change in neutrino flavor, induced by their mass differences. Following

the K0 − K̄0 particle system, Pontecorvo suggested that oscillations happened

because the flavor eigenstates did not have a defined mass, but were a quantum

superposition of mass states (the eigenstates of the corresponding evolution op-

erator). Both bases were related by a rotation angle, θ given by nature, and this

formulation gave rise to the usual approach to neutrino oscillations, which will

be described in more detail in the following chapter.



Chapter 2

Description of Neutrino Oscillations

2.1 A first approach

To describe the change of a neutrino flavor as it propagates through space, it is

necessary to notice first that flavor states are not energy (mass) eigenstates and

therefore, are not the Evolution Operator eigenstates, so interactions cannot be

understood directly from them. Nevertheless, the energy eigenstates constitute

a basis and can be used to write a given flavor as a superposition of them:

|να〉= ∑
i

Uαi |νi〉 (2.1)

|να(t)〉= ∑
i

Uαie
iHt
h̄ |νi〉 (2.2)

The standard approach will usually apply the evolution operator on the mass

eigenstates and obtain the energy for each one of them, which would be equal

to the energy-momentum relation E2 = p2 +m2. For example, for the partic-

ular case of two generation mixing, where U represents a rotation matrix that

6



2.1. A first approach 7

depends on a parameter from nature, θ :

U =

 cosθ sinθ

−sinθ cosθ

 (2.3)

Each mass state |νi〉 has an energy Ei, and the evolved flavor state is:

|να(t)〉= e−iE1t cosθ |ν1〉+ e−iE2t sinθ |ν2〉 (2.4)

Then, the transition probability from the initial neutrino flavor α into a flavor

β is:

Pνα→νβ
= sin2 2θ sin2((E2 −E1)t) (2.5)

The energies involved in the probability formula can be expressed using the

relativistic approximation:

E =
√

p2 +m2 (2.6)

E ' p+
m2

2p
(2.7)

The use of this approximation is completely justified: the current boundaries

for neutrino masses indicate that they are less than 1 eV and their energy needs

to be higher than 100 keV to be detected. This bears a tiny ratio of ∆m2

p2 ≤ 10−10

[8].

By introducing this into Eq. (2.5) and making t = L
c , we obtain the master

formula for two generations:

Pνα→νβ
= sin2 2θ sin2(

∆m2

4E
L) (2.8)
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For three generation oscillations, the mixing matrix becomes more complex:

UPMNS =


c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13


(2.9)

where cmn = cosθmn, smn = sinθmn and δCP is a CP-violating phase. Obtain-

ing a master formula for three generation mixing becomes considerably more

difficult.

Although the steps followed for obtaining the probability formulas work well

and are in fact widely used experimentally, notation should be able to describe

the space-time and energy-momentum degrees of freedom for a neutrino state,

by factorizing the general states as described in [8]: considering that the afore-

mentioned quantities are not certainly known for flavor states, only mass states

can be written by defining the complete Hilbert space H as the product of

a space corresponding to the momentum and another one, to the mass of the

neutrino.

H := Hd ⊗Hm (2.10)

Thus, a general neutrino mass state |νi〉 ∈ H will have definite kinematical

properties [9] and will be expressed as:

|νi〉 := |νm
i 〉⊗ |pi〉 (2.11)
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and a flavor state can be written as:

|να〉= ∑
i

Uαi |νm
i 〉⊗ |pi〉 (2.12)

The wave function for this initial neutrino flavor state is:

|να(~x)〉= 〈~x|να〉= ∑
i

Uαiei~pi·~x |νm
i 〉 (2.13)

Now, we can apply the evolution operator to the state, and the neutrino flavor

state for a time t and position~x becomes:

|να(t,~x)〉= ∑
i

Uαie−iEitei~pi·~x |νm
i 〉= ∑

i
Uαieipix |νm

i 〉 (2.14)

Finally, the transition probability of the initial flavor α into a flavor β , defined

by
∣∣〈νβ |να(t,~x)〉

∣∣2, depends on the phase differences between mass states:

∆φik = ∆Eik · t −∆~pik ·~x (2.15)

2.2 Approximations and their accuracy

To evaluate Eq. (2.15), some assumptions are usually made, as will be de-

scribed below. The analysis in the following sections will be based on the work

in [10], summarizing and specifying some details.

1. Same momentum: By establishing pi = pk = p, the space dependence of

the phase difference vanishes, and the oscillation probability depends only

on time and energy. According to the relativistic approximation, Eq. (2.7),
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we obtain:

∆φik '
∆m2

ik
2p

t (2.16)

Now, the distance between source and detector is known much more ac-

curately than the time of propagation in neutrino experiments. This is

handled here by making the time to space conversion: as neutrinos are

considered to be ultra-relativistic, L ' t and

∆φik '
∆m2

ik
2p

L (2.17)

2. Same energy: As neutrinos are created in weak interactions, they have a

well-defined flavor at their source. Thus, it is only necessary to examine

the behavior of a single energy state: oscillation probabilities can be found

by evaluating a linear superposition of mass states with same energy and

different momenta [11]. Following this argument, using the same energy

for all mass states (∆E = 0) in Eq. (2.15) is also a common approach.

It is also possible to consider ~x||~p, as the distance from source to the de-

tector is much larger than the transverse sizes [10]. By also applying an

approximation analogous to Eq. (2.7), the oscillation phase is:

∆φik =−∆pik ·L '
∆m2

ik
2E

L (2.18)

Inconsistencies can be found in the approaches, as several contradictions arise.

It is first necessary to establish some aspects regarding the observability of

oscillations in experiments:
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a) The processes of neutrino production and detection are localized and have

different coordinates in space, so we must be able to distinguish positions.

b) Oscillation amplitudes must depend on space coordinates.

c) The production and detection of neutrinos also happen at specific instants

in time.

d) The description of oscillations is done by using quantum mechanics, which

implies that the phenomenon is the result of momentum (space) and en-

ergy (time) uncertainties. Therefore, our description must account for

them.

Let us first recall Eq. (2.16). The probability will not depend on any spatial

coordinates, so same momentum assumption cannot define production and de-

tection regions, contradicting aspect a). On the other hand, a time-only depen-

dence of the phase difference could lead us to believe that detecting neutrinos,

for example, at their source would be sufficient to observe oscillations. This

contradicts the definition of flavors by the weak charged current and supports

aspect b). Of course, the approach solves this by using the time to space con-

version, for which it is necessary to have a classical velocity (for a point-like

particle) [10].

Assuming that the neutrino mass states all have the same momentum means that

it is well-defined -i.e., they are momentum eigenstates and their wave functions

in momentum space are delta functions:

ψi(~p) = δ (~p−~pi) (2.19)



12 Chapter 2. Description of Neutrino Oscillations

In the position space, this wave function becomes:

ψi(~x, t) =
1

(2π)
3
2
ei~p·~x−iEit (2.20)

The same momentum assumption then allows us to consider the wave functions

as plane waves with definite ~pi [8]. A group velocity cannot be defined for plane

waves, but it is the equivalent to a point-like particle velocity, used for the time

to space conversion. Therefore, we arrive at an internal inconsistency of the

approach.

Finally, plane waves do not account for energy-momentum spread, which con-

tradicts aspect d). The oscillation phenomenon would not be possible with

plane waves.

The same energy approach results in a phase difference that does not account

for the time dependence of oscillations, and contradicts aspect c). Furthermore,

it could be argued that same energy for the mass states can be a reality for

certain Lorentz frames. Let us follow the logic in [12], and apply first order

corrections to the relation pi = Ei = E by adding a term depending on a param-

eter ξ that depends on production conditions:

pi = Ei −ξ
m2

i
2E

(2.21)

Then, Eq. (2.7) gives:

Ei ' E +(1−ξ )
m2

i
2E

(2.22)

Mass eigenstates with the same energy can then be obtained if we considered

a boosted reference frame at a velocity v, say for the case where a decaying
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particle is not at rest, we can arrive at a parameter ξ ′ = ξ ′(ξ ,v) = 1. Never-

theless, this frame does not coincide with the laboratory frame, meaning it is

not useful for calculations and predictions, and would depend on the energy of

the decaying particle. In realistic conditions, particle beams are not monochro-

matic, and the non-existence of one single value for the energy means that the

boost needed to arrive at the desired reference frame is not unique.

2.3 A more accurate treatment

As established in the previous section, plane waves cannot describe localized

neutrino production and detection, or a single localized particle for that matter.

In general, the latter is usually described by a wave packet: a superposition of

plane waves. Additionally, a wave packet has a momentum spread σp around

a central momentum ~p0, as the uncertainty relation implies that, if we have a

localized state in space, then we can know its momentum only with an uncer-

tainty σp & 1
σx

[1]. Just by examining the definition of wave packet, we see that

it is in agreement with the aspects for oscillation observability, thus validating

the use of wave packets for describing the states. Let us take a closer look a this

formalism.

Using the wave packet approach, a particle of mass mi is represented in the

coordinate space by a wave function of the form:

Ψ(~x, t) =
∫ d3p

(2π)3 f~p0 exp(i(~p ·~x−Ei(p)t)) (2.23)

where f~p0 is the corresponding momentum distribution with a peak at ~p0, mo-
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mentum spread σp and, of course, energy given by the dispersion relation, Eq.

(2.6). Then, the evolved state for the neutrino flavor in Eq. (2.14) becomes:

|να(t,~x)〉= ∑
i

UαiΨi(t,~x) |νi〉 (2.24)

and any other flavor states |νβ 〉 must also be described by a wave packet [10].

We now have to find the oscillation phase using the properties of a wave packet

rather than any of the previously discussed approaches.

The individual waves that compose a wave packet each have a value for their

respective momentum that is in fact close to the central value ~p0, determined

by the production and detection processes. We can then, in general, expand the

energy as:

E(~p0 +∆~p) = E(~p0)+
dE
d p

∆p (2.25)

Our state is a wave packet composed of a main wave and modulations to it,

which have a velocity:

vg =
dE
d p

∣∣∣
p0

(2.26)

Proceeding as in [10], we can make a similar expansion for ∆E, considering that

neutrinos are relativistic (the difference in energy of the mass states is small

in comparison to the average values E), and by also taking into account the

dependence of the energy on the mass of the neutrino state from Eq. (2.6):

∆Eik = vg∆pik +
1

2E
∆m2

ik (2.27)

Let us notice that this newly defined group velocity can be used for establishing
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relations of the form x = vt, as it is interpreted as the velocity of the localized

particle described by our wave packet. Thus, allowing us to make use of time

to space conversion t = L/vg with no contradictions. If we introduce Eq. (2.27)

into the phase difference found at first, Eq. (2.15), we can obtain two possible

new expressions for the latter:

∆φik = ∆Eik · t −∆~pik ·~x = ∆Eik · t −∆pikL (2.28)

∆φik = (vgt −L)∆pik +
1
2

E∆m2
ik (2.29)

∆φik =
1
vg
(vgt −L)∆Eik +

L
2p

∆m2
ik (2.30)

Both Eq. (2.29) and Eq. (2.30) can have their first term on the right hand

side vanish only for the case of the center of the wave packet, where vgt = L.

However, other positions cannot have a distance to the center of over σx to it:

∣∣vgt −L
∣∣≤ σx (2.31)

and we can establish a condition for each expression so their first term vanishes:

σx |∆pik| � 1 (2.32)

σx

vg
|∆Eik| � 1 (2.33)

Let us also recall that Heisenberg’s uncertainty indicates that σx ∼ 1
σp

, so our

condition in Eq. (2.32) becomes:

|∆pik| � σp (2.34)
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From E2 = p2 +m2, we can obtain σE = p
E σp = vgσp. Then, the uncertainty

principle also implies σx ∼
vg
σE

, and the condition in Eq. (2.33) becomes:

|∆Eik| � σE (2.35)

If the relations in Eq. (2.34) and (2.35) hold for the mass states, the phase

differences found with the same momentum and same energy assumptions are

recovered.

2.4 Uncertainties and Coherence

It is not a coincidence that our conditions for oscillations are related to quan-

tum uncertainties. In fact, they are the reason for the entire phenomenon to be

observable, apart from just the use of quantum mechanics in the description.

Let us take a look at a pion decay, π+ → µ+νµ , and follow the standard proce-

dure of 4-momentum conservation (Pπ = Pµ +Pν). If we apply this for the case

in which the pion is not at rest, so that we can express the mass of the neutrino

in terms of the masses and momenta of the pion and muon. If the experiment

to be performed were able to precisely measure the momenta, it would be able

to determine the neutrino mass squared m2
ν and distinguish it from the other

neutrino masses, as described below, following [13].

If we consider that the experiment will detect only a specific neutrino flavor,

the rate of the events of a particular neutrino mass state will be proportional to

its probability to trigger detection and the probability for a pion to decay in the

muon channel. Therefore, the results will depend on how a neutrino flavor state



2.4. Uncertainties and Coherence 17

is a superposition of mass states, but not vary with spatial coordinates: there

will be no oscillation pattern.

This can be explained as follows: if the experiment can determine E and p with

independent errors, the dispersion relation can be used to find an uncertainty

for the neutrino mass squared:

σm2 =
√

[2EσE ]2 +[2pσp]2 (2.36)

For a mass state to be identified, it is necessary that ∆m2 > σm2. For this to

hold, we see from Eq. (2.36) that we need:

2pσp < ∆m2 (2.37)

and by using the uncertainty principle, we arrive at:

σx >
2p

∆m2 (2.38)

Before continuing, we need to define a relevant quantity: the oscillation length.

Eq. (2.14) can be expressed using Eq. (2.7) as:

|να(t,~x)〉= ∑
i

Uαie
−i

m2
i

2p t |νm
i 〉 (2.39)

The probability of measuring a state given by Eq.(2.13) is then [13]:

Pνα→νβ
= ∑

i
U2

αiU
2
β i +∑

i6= j
UαiU∗

β iU
∗
α jUβ j cos(x

∆m2

2p
) (2.40)

As the periodicity of the cosine is given by 2π , we can write the term as
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cos(2π
x

losc
), where

losc = 2π
2p

∆m2 (2.41)

is the oscillation length for our probability. Except for a factor of 2π , this is

precisely the condition stated in Eq. (2.38).

We can then interpret the disappearance of oscillations with precise momentum

measurements. As the pion momentum is more accurately defined, its position

will be more undetermined and the neutrino production will be delocalized [13].

When the pion momentum is measured with enough precision such that σm2

is less than all ∆m2, the uncertainty in the coordinate of the production point

exceeds the oscillation length and oscillations are averaged.

Even though this entire argument was made by taking into account only the

production of a neutrino, it can be similarly done for neutrino detection. Thus,

we have arrived at a condition for the observability of oscillations: we must

not be able to distinguish what mass state has been produced or detected. This

condition is satisfied only if neutrino production and detection have their spatial

coordinates well-defined (they have small values for σx).

It could be argued that this violates energy-momentum conservation. However,

given that neutrinos (and their processes) have spatial and time coordinates with

their respective uncertainties, so do their energy and momentum values. Then,

the states that represent our particles are not exactly eigenstates of energy and

momentum, but this does not imply the 4-momentum is not conserved [10].

Another formulation for the coherence conditions can be done in configuration

space and arrive at conditions that are in agreement with the discussion so far.
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For that, we focus on the fluctuations of the oscillation phase, which must be

small as not to average the probability over the oscillation phase:

|δφ |= |∆E ·δ t −∆~p ·δ~x| � 1 (2.42)

If we assume that in no frame will the terms in Eq. (2.42) cancel (or rather if

we are not looking to get Lorentz invariant conditions), both terms need to be

small on their own. Furthermore, the fluctuations in, for example, production

position and time are, at most, equal to the uncertainties of those quantities,

δ t . σt and |δ~x|. σx. All these relations finally arrive at [10]:

|∆E| � σE (2.43)

|∆p| � σp (2.44)

These are the exact same conditions assumed for evaluating the oscillation

phase in the wave packet approach, and support the role of the quantum un-

certainties in observing oscillations.

While we have established that coherence in production and detection is needed

for neutrino oscillations to be observed, this condition is not sufficient by itself.

For a given momentum, the waves for each mass state will travel at different

speeds vg, as they depend on the respective mass, resulting in the separation of

their centers. When the waves do not overlap, the mass states cannot interfere

and produce oscillations [13] and so, coherence is lost.

However, the waves will maintain coherence while travelling some distance in

space, called the coherence length. Its value can be deduced logically from the
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conditions already mentioned. Let us consider an average group velocity for the

mass states, vg, and the average distance traveled by the different waves, l = vgt.

The separation between mass states after a time t will be given by ∆l = ∆vgt,

and for there to be interference of the states, this separation must be less than

the wave spatial spread σx, or at most, equal to it after a time tcoh =
lcoh
vg

. As a

result of these equations, the coherence length is found to be:

lcoh '
vg∣∣∆vg

∣∣σx (2.45)

Considering ultra relativistic neutrinos, we can use p ∼ E and vg ' 1. Also, by

considering an average energy, ∆vg ' ∆p
E ' ∆m2

2E2 , and the coherence length is:

lcoh '
2E2

|∆m2|
σx (2.46)

Neutrino oscillations can be observed only for distances traveled that satisfy

L � lcoh, which is in fact very large [10]. If this condition is not met, the

detection process will be able to distinguish each mass state wave as they arrive

at different times. However, depending on the characteristics of the detection,

coherence could be restored.

If the detection process takes longer than the time it takes all the wave packets

to arrive to the detection point, there may still be a coherent event. Hence, the

coherence length must have a dependence on the time resolution of the detector

[14]. From l = vgt, we can obtain σx = vgσt = vg/σE , interpreted as an effec-

tive length of the wave packet by taking into account the uncertainties of both

production and detection [10]. Then, for example, if the energy measurement
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in the experiment became extremely accurate, the effective length of the wave

packet would be infinite, and so would the coherence length: the propagation

of the neutrino mass states would not cause the loss of coherence.

2.5 Summarizing the Coherence Conditions

Neutrino oscillations are observable only if the neutrino flavor state is a co-

herent superposition the mass states at all times: production, propagation and

detection of neutrinos are coherent. There is, however, a possible contradiction

among the conditions this sets.

Going back to the example of a very accurate measurement of energy in the

detection process, it would not allow the condition in Eq. (2.43) to be satis-

fied. Furthermore, it would imply an infinitely large uncertainty in time, so the

instant for the detection is completely undefined, contradicting the argument

against the same energy approach.

Let us try and evaluate how both coherence conditions could work together.

They can be expressed as:

∆E ∼ ∆m2

2E
� σE (2.47)

∆m2

2E2 L �
vg

σE
(2.48)

and would represent limits for σE [10]:

∆m2

2E
� σE � 2E2

∆m2L
(2.49)
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The stated relation between the limits will work as long as ∆m2 is small (this

explains why neutrinos oscillate, while charged leptons do not). Moreover, two

conditions can be obtained:

2π
L

losc
� 2E2

∆m2 (2.50)

(
L

losc
)� E

2πσE
(2.51)

The first one ensures the compatibility of the conditions, while the second one

represents a fulfillment condition. Experimentally, σE is actually the energy

resolution of the detector, which is larger. This establishes conditions to be

considered in experiment design, such as the maximum number of observable

oscillations, lcoh
losc

, and the baseline.

2.6 Closing Remarks on the formalism

The conditions for neutrino oscillations to occur and be observable discussed so

far have a dependency on the production and detection processes. For example,

in Eq. (2.23), we find a dependence on a momentum distribution, which will be

different for the neutrino states in production and detection. On the other hand,

a flavor state needs to be normalized and for that to be ensured, they need to

satisfy: ∫ d3p
(2π)3

∣∣∣ f P
~p0

∣∣∣2 ∣∣∣ f D
~p0

∣∣∣2 = 1 (2.52)

So, for probabilities to even make sense, the production and detection pro-

cesses need to be taken into account. However, oscillations are a phenomenon
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in nature, and not induced from experimental conditions, ergo the oscillation

probabilities found with the formalism have to be universal.

Of course, measurable quantities do need to take into account the experimen-

tal aspects of production, propagation and detection, and they can be repre-

sented by the probability of the complete process. If this probability can be

expressed as factors of flux (production), interaction probability (detection)

and the experiment-independent probability, then we could be able to obtain

universal probabilities [10]. This type of factorization will only be possible if

all three aspects are independent of each other. Propagation and detection of

the neutrino states will not be dependent of each other. They will also not de-

pend on the production process if the latter generates neutrinos with the same

kinematics, which happens if the mass of different states does not affect the

momentum. This can all be reduced to having the production process not be

able to discriminate between mass states, i.e, production must be coherent. On

that note, propagation and detection must also not distinguish masses, so the

already established conditions ensure independence for experiments as well.

Finally, universality also implies that the probabilities do not depend on the

used frame of reference. The phase difference that defines the probability ex-

plicitly includes the relation L
E and, it can be shown that the relation remains

invariant. Following the treatment found in [15], let us assume an inertial refer-

ence frame O ′ moving with velocity v in the x direction with respect to another

reference frame O , and recall the Lorentz transformations for space and time:

∆x′ = γ(∆x− vt) (2.53)
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∆t ′ = γ(−v∆x+∆t) (2.54)

where the parameter γ = 1/(1− v2). The distance between the neutrino source

and the detector measured in O ′ is:

L′ =
L
γ

(2.55)

and the transformations for momentum and energy are:

p′ = γ(p− vE) (2.56)

E ′ = γ(−vp+E) (2.57)

In the ultra-relativistic limit,

E ′ = p′ = γ(1− v)E (2.58)

Evidently, L′ and E ′ will not result in probabilities equal to the ones using L

and E. However, for obtaining our phase difference, we have used the approx-

imation of L = t. The parameter L does not represent the distance between the

source and detector, but rather the distance traveled by the neutrino. On one

hand, we have for O , ∆x = ∆t, and for O ′:

∆x′ = ∆t ′ = γ(1− v)∆x (2.59)

Then, the correct transformation for L is:

L′ = γ(1− v)L (2.60)
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The relation L′/E ′ can now be seen to be equal to L/E [15]. That being the

case, probabilities now can be considered as universal.



Chapter 3

Oscillations in Matter

So far, we have established the acceptable formalism for neutrino oscillations

and found arguments to support the more simple approaches, as the necessary

conditions are usually satisfied. This has been done by only taking into ac-

count the properties of the particles themselves, without any additional poten-

tials from the medium they are in -i.e., we have considered neutrino oscillations

in vacuum.

According to the Standard Model, neutrinos are have no mass and are left-

handed, which allows them to only interact through weak force. On the other

hand, we have so far assumed that the reason for the oscillation phenomenon

to occur is that neutrinos are not actually massless, giving us a hint for new

physics, which will be studied in future work. For the purpose of this work,

we will consider only the standard interactions via weak force, through either

charged or neutral currents. Even though their interaction rate is relatively low,

oscillations can be affected when considering neutrinos in a medium, in the

presence of nucleons and electrons. The introduction of the interactions in the

theory to be used will be done by obtaining them from electroweak theory, to

26
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W−

e−

νe

νe

e−

W−

X

να

να

X

Figure 3.1: Feynman diagrams of Coherent Forward Scattering processes through charged (left)
and neutral (right) current. X represents and electron or a nucleon, and να , any flavor of
neutrino.

ensure a correct understanding of the phenomenon, and following the procedure

in [1].

Specifically, the processes that will affect neutrinos in a medium are coherent

forward elastic scattering, where the other interacting particle will recoil as

a whole (Fig. (3.1)), and incoherent scattering. However, the latter is a small

fraction of the total scattering events, as the neutrino mean free path considering

in normal matter can be demonstrated to be about 0.1 light years [1]. Thus, we

can neglect this process.

3.1 Evolution Equation

The number of events of coherent interactions will not be vanishingly small

and they will affect the neutrino flavor states evolution, as they add an effective

potential term to the energy. Let us recall the Schrödinger equation:

i
d
dx

ν = H ν (3.1)
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For our case, H is the total Hamiltonian, and includes matter effects as:

H = H0 +HI (3.2)

where HI |να〉 = Vα |να〉. The expression for Vα can be found from the for-

mulation of the interaction in electroweak theory. For the case of the charged

current shown in Fig. (3.1), the effective Hamiltonian is:

H CC(x) =
GF√

2
[νe(x)γρ(1− γ

5)e(x)][e(x)γρ(1− γ
5)νe(x)] (3.3)

After being transformed conveniently and averaged over the electron back-

ground:

H
CC

(x) =VCCνe,L(x)γ0
νe,L(x) (3.4)

where VCC =
√

2GFNe. Similarly, the effective Hamiltonian for the neutral

current interaction is:

H NC(x) =
GF√

2 ∑
α

[να(x)γρ(1− γ
5)να(x)]∑

f
[ f (x)γρ(g f

v −g f
Aγ

5) f (x)] (3.5)

By comparing with our previous equations, we arrive at the potential for neutral

current V f
NC =

√
2GFN f g f

V for each particle represented by f [1], where g f
V are

real dimensionless parameters for the couplings of the Z boson to fermions

[16]. The sums over neutrino flavors α and particles f appear because the

interaction is not limited to only electrons and electron neutrinos. However,

this also implies that the potentials produced by interactions with protons and

electrons will cancel out, as their values for g f
V are the same, but with opposite
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signs. Therefore, the potential will be reduced to that of the interaction between

neutrinos and neutrons, and we arrive at:

VNC =−1
2

√
2GFNn (3.6)

Finally, the potentials can be summarized as [1]:

H e f f (x) = ∑
α=e,µ,τ

Vανα,L(x)γ0
να,L(x) (3.7)

Vα =VCCδαe +VNC (3.8)

We can now express the total Hamiltonian in matrix form, taking into account

that the eigenstates of H0 are the neutrino mass states, while the eigenstates of

HI are the flavor states. On top of that, we will express the H0 eigenvalues

as the relativistic approximation for the energy, E = p+ m2

2E . Our total H then

will be, in the flavor basis:

H =U


p+ m2

1
2E 0 0

0 p+ m2
2

2E 0

0 0 p+ m2
3

2E

U† +


VCC +VNC 0 0

0 VNC 0

0 0 VNC

 (3.9)

The terms with VNC in HI will only add a global phase to any flavor state we

will be evaluating, and so will the term p+ m2
1

2E from H0. Then, we can take the

terms out and finally obtain:

H =
1

2E
(UM 2U† +A) (3.10)
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where U is the PMNS matrix and M 2 and A are defined as [1]:

H =


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 (3.11)

A =


ACC 0 0

0 0 0

0 0 0

 (3.12)

with ACC ≡ 2EVCC = 2
√

2EGFNe.

For the case of two generation oscillations, for example, the new term in the

Hamiltonian will modify the sole mixing angle considered in vacuum oscilla-

tions, so we can substitute the variables as:

ν1,ν2 → ν1,m,ν2,m (3.13)

m2
1

2E
,
m2

2
2E

→
m2

1,M

2E
,
m2

2,M

2E
(3.14)

θ → θm (3.15)

The new variables are defined as:

∆m2
M =

√
(∆m2 cos(2θ)−Acc)2 +(∆m2 sin(2θ))2 (3.16)

sin(2θM) =
∆m2 sin(2θ)

∆m2
M

(3.17)

and the oscillation probability will now depend on sin2(2θm) [1].
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3.2 Mikheyev-Smirnov-Wolfenstein Effect

We have established that neutrino flavor conversion is a product of coherent

mixtures of mass eigenstates, which will have different phases when evolving,

and this relative phase will produce interference. We have also established that,

when propagating in normal media, the Hamiltonian for the neutrino flavors

will depend on the effective potential due only to charged current interactions.

Thus, adding a term to our phase difference ∆φmatter = (Vα −Vβ )t and a depen-

dence on the matter density and neutrino energy, according to Eq. (3.12).

Analogous to the oscillation length defined in Eq. (2.41), we can define a re-

fraction length, l0 from the matter term in the phase difference, equal to the

distance in which the term becomes 2π [17]:

lo =
2π

Vα −Vβ

(3.18)

As seen from Eq. (3.17), our oscillation parameter has a dependence on the

ratio of the oscillation and refraction lengths [17]:

x ≡ losc

lo
=

2EV
∆m2 (3.19)

and it has a resonance for losc
lo

= cos2θ , making flavor mixing maximal. With

this new parameter x we can find a resonance density:

NR
e =

∆m2 cos2θ

2
√

2EGF
(3.20)

The effective mixing angle then gives θm = π/4 and the effective mass squared
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difference ∆m2 reaches a minimum. At this resonance, the initial flavor can

completely disappear [1]. This is the Mikheyev, Smirnov, Wolfenstein (MSW)

Effect and it evidences the difference between oscillations in vacuum and mat-

ter as follows.

For media with constant matter density, enhanced transitions are produced. As

the new parameters for the probabilities will still be fixed with a certain value

of Ne, their oscillatory behavior observed in vacuum remains [17]. However,

the effective potential for normal matter is positive and the resonance density in

Eq. (3.20) can only happen if θ < π/4. Then, the probability is not symmetric

if we change θ for π/2−θ , as it is in vacuum [1].

When neutrinos propagate in a medium whose density changes on their way, Ne

depends also on the spatial coordinate, and so will the new mixing angle θm(x).

This leads to having the eigenstates of the Hamiltonian also change with the

propagation. Considering adiabatic interactions, where the rate of change of

the effective mixing angle in space is small, allows us to neglect these changes

in eigenstates and oscillations still occur. Nevertheless, probabilities will differ:

we now need to take into account the dependence of our parameters on the

coordinate for the differential equation. Oscillations will then be produced by

both adiabatic conversion and change of phase [17]. The MSW Effect can

then also be interpreted as the adiabatic neutrino flavor transition in a medium

of varying density (following this reasoning, it has been used to explain the

oscillation of massless neutrinos).

A particular case of varying density is that in which it can be approximated

by having the mass states propagate in tiny regions (slabs) of constant density,
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picking up the corresponding phase, which takes into account its width ∆x. This

translates into having to apply the evolution operator for each slab succesively

to the initial neutrino state. This approach can lead us to clearly notice the effect

of parametric resonance in the oscillations, which occurs if the matter effective

potential varies periodically along the neutrino path [1].



Chapter 4

Numerical Calculation of Oscillation

Probabilities

After solving the Schrödinger equation for the evolution of neutrino flavor

states, the probabilities for flavor transitions can be obtained. For this work,

a code for solving the equation numerically has been developed. It takes into

account matter effects and a medium with constant density. An already existent

package for neutrino experiments (GLoBES) has also been used, for comparing

the solutions.

4.1 Developed Code

The code for finding the numerical solution for the Schrödinger equation from

Chapter 3 was developed using Python. The neutrino flavor states were de-

fined as vectors with two or three complex components each, and the effective

Hamiltonians, as 2x2 or 3x3 matrices with complex elements, for oscillations

in two or three generations respectively. The values used for the parameters θik

34
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and δCP for the PMNS matrix, and ∆m2
ik for the Hamiltonian term, H0, were

the latest best-fit updates in NU-fit [18]. The electron density in matter was

found with a function describing the density profile of the Earth, as used for

the evaluation of ultrahigh-energy neutrino interactions [19]. The fraction of

electrons in normal matter is taken to be ∼ 0.494.

The method for solving the initial value problem was implicit, as our ”vector

components” are not independent. A function (solve ivp) that contains Back-

ward Differentiation Formulas (BDF), already implemented in the SciPy library

[20], was used. Several relative and absolute tolerances were tried out as con-

ditions for convergence of the solution, with different orders of magnitude (the

relative error manages the number of correct digits in the result). The results

for different values of tolerance and initial flavor states are discussed in section

4.3.

4.2 General Long Baseline Experiment Simulator - GLoBES

GLoBES is a simulation software package for short and long baseline neutrino

oscillation experiments [21]. It allows the description of experiments through

a newly-defined language, and processing data for obtaining oscillation param-

eters. While the main purpose of GLoBES is the calculation of χ2 and its

projections onto certain subspaces of parameters, we will focus on its feature

of the calculating the oscillation probabilities. For this, the software takes a set

of input data, which can include the neutrino flavors for evaluating the prob-

abilities, matter density and certain experiments profiles. The details on the
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Figure 4.1: Probability ratio for νµ → νe process in vacuum.

functions for the calculation of probabilities can be found in [22].

The results from the package were used to validate the developed code. By

working with the same initial states and energy values, curves that could be

compared were obtained.

4.3 Results

For each case, we studied the behavior of the curves obtained with different

tolerances with respect to the results of GLoBES. The values used for the tol-

erance were 10−2 and 10−3, as lesser relative errors resulted in irrelevant data

(the values resulted in zero or infinity). In every case, there were no major dif-

ferences between data obtained with each of the relative errors. Therefore, the

graphs shown correspond to the ratio of the probabilities given by our code and

GLoBES, using 10−3 as tolerance.

The future for this work is the evaluation of experiments from the oscillation
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Figure 4.2: Probability ratio for νµ → νe process in matter.

probabilities. As neutrino beams are composed of muon neutrinos resulting

from the pion decay and are mostly detected as νe, we show the relevant case

of the transition νµ → νe in vacuum and matter, in Fig. (4.1) and (4.2).

The curves for oscillations, in general, describe a similar behavior, as they fol-

low the same pattern. Probabilities fit particularly well for energies in the order

of GeV in vacuum. However, they do differ considerably in matter at energies

of ∼ 1 GeV. This could be product of the chosen method of integration, as it

could make the solutions follow a different function.

Experiments also use atmospheric neutrinos to evaluate oscillations, so the pro-

cess νe → νe is relevant for the study of the developed code. The results are

shown in Fig. (4.3) and (4.4). In contrast to the probability of appearance of νe

with initial flavor νµ , the curves for the survival of νe fit the data from GLoBES

both in vacuum and matter very well.
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Figure 4.3: Probability ratio for νe → νe process in vacuum.

Figure 4.4: Probability ratio for νe → νe process in matter.
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4.4 Future work

A further study of the numerical method is required for finding the reason be-

hind the difference in the values for νe appearance in matter. Our results for the

oscillations probability need to be compared also with analytical solutions to

the Schrödinger equation. The long-term goal of the project in progress is the

introduction of new physics into the neutrino oscillations equations, which can

produce a distortion in the prediction of nature’s parameters with respect to ex-

perimental data, specifically obtained at DUNE (Deep Underground Neutrino

Experiment). Thus, our immediate next step is to compare our results with the

formula used in DUNE [23].

Afterwards, a review on non-standard physics will be necessary, to allow us to

add new effects to the known Hamiltonian. Non-standard neutrino interactions

will be added using an effective theory. Changes in the oscillation pattern will

be analyzed, along with their correlation with energy, and matter and neutrino

properties.
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