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ABSTRACT 

 

 

Coffee is the most traded agricultural commodity in the world.  Currently, Peru is considered the 

third principal producer of Coffea arabica in South America, and the sixth worldwide, accounting for 6 

% of the global production. However, most of the coffee (~ 99 %) is exported as green beans due, in 

part, to the fact that the local quality control of the roasting process is not yet optimal. Hence, it is 

crucial to develop a more standardized process for the quality control of roasted coffee beans that 

will allow local Peruvian coffee farmers to introduce to the market a more valuable product. 

 

In the thesis presented here, work associated with the project FINCyT-PIPEI-PUCP-

CENFROCAFE-2012 on the quantitation of the main compounds developed during the roasting 

process was embraced using NMR and HPLC-DAD methodologies. Attention was focused on the 

secondary metabolites that, from a flavor-aroma perspective, are of interest: caffeine, 5-

caffeoylquinic acid, trigonelline, 1-methylpyridinium ion and nicotinic acid, and 5-

hydroxymethylfurfural as a marker of deterioration. 

 

One- and two-dimensional NMR techniques allowed the simultaneous identification of eleven 

compounds known to be associated with the flavor and aroma of coffee. The NMR quantitation of 

five compounds was performed using ERETIC2 and Standard Calibration Curves and the results 

were validated by a new HPLC methodology, which constitutes the only validated methodology 

currently available for the simultaneous quantitation of these five compounds. The percentage 

difference among this three methods was within acceptable values (1 – 20%) for most of the 

compounds. It was demonstrated that these numbers were sample dependent. In addition, PCA 

analyses of quantitative data (NMR and HPLC-DAD) allowed the discrimination of coffee samples 

acording to the degree of roasting, as well as to their origin (instant coffee, speciality coffees from 

different regions in Peru). 

 

Hence, these preliminary  results  indicate that NMR and HPLC can be used as quality control tools 

to optimize the roasting conditions of Peruvian specialty coffee. Recommendations are included in 

this work to improve further the error percentages between the NMR and HPLC data that in some 

cases (for 5-caffeoylquinic acid and nicotinic acid) were high. 
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1. INTRODUCTION: BACKGROUND AND SIGNIFICANCE OF THE STUDY  

 

 

1.1. Characterization of coffee 
 

Coffee (Coffea spp.) is a tropical plant indigenous to Africa that belongs to the Rubiaceae family. 

Coffee trees are characterized by a great morphological variation, which complicates its 

taxonomic classification (Clifford and Willson, 1985). Today, coffee is widely grown throughout 

the tropics, principally in Latin America (FAO, 2011, ITC, 2011).  

 

The plant is characterized by a pronounced dimorphism between upward and horizontal growing 

branches. They tolerate shade and are amenable for agroforestry ecosystems because they share 

similar growth requirements with forest trees (Verheye, 2010). Coffee presents markedly stages 

of vegetative and reproductive growth with times between flowering and picking stages, which 

range from 6 to 11 months, depending on the coffee species (Verheye, 2010). The ripe fruit has a 

red or purple color, and usually contains two seeds (green coffee beans). Its production requires 

specific edapho-climatic conditions with altitude, temperature, rainfall, sunlight, and soil being 

the most influential factors (Verheye, 2010). Rich soils, moist climate, high altitudes and middle 

temperatures contribute to the flavor of the bean, leading to the highest quality coffee (Cansonni 

et al., 2012). 

 

The international coffee trade is principally centered in two coffee species, Coffea arabica and 

Coffea canephora (synonym C. robusta) (Rubiaceae), which account for around 64 % and 35 % 

of the global production, respectively (Verheye, 2010). It is widely accepted that C. arabica 

produces a superior taste and consumer acceptance than C. robusta, which is considered a lower 

quality species (Jaiswal et al., 2010; Cansonni et al., 2012). High quality coffee blends consist of 

100 % of C. arabica imposing higher market prices (Jaiswal et al., 2010). However, the 

cultivation of C. robusta has some advantages over that of C. arabica including, faster growing 

and adaptation to a larger variety of climatic conditions and altitudes (Jaiswal et al., 2010), and 

higher resistance to leaf rust, a devasting desease for coffee plantations caused by the fungus 

Hemileia vastatrix (Verheye, 2010). 
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Figure 1.1. World coffee trade and production (source: FAO, 2011). 
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1.2. Global situation of coffee 

 

Coffee is the world´s most traded agricultural commodity, being a vital contributor to the 

economy of several countries1 (ITC, 2011). It has been estimated that about 26 million people, 

from 52 countries, depend on coffee production for their livelihood (Castro, 2004). 

 

The principal coffee producing and exporting countries are shown in Figure 1.1 (FAO, 2011). As 

can be seen, the bulk of the world coffee production is concentrated in Latin America, with Brazil 

being by far the largest grower and seller in the world. Between the principal importing countries, 

the United States represents the first market for green coffee (data not shown, FAO, 2011). 

Interestingly, none of the principal roasted coffee exporting countries are coffee producers.     

 

 

1.3. Coffee in Peru: Specialty coffees 

 

Coffee has become a major source of income for Peru, and accounts for over 30 % of the 

agricultural export basket (MINAG, 2012). Moreover, it plays a significant social role, as it is 

involved in a national strategy to defeat drug trafficking in the Amazon region, by the 

replacement of coca cultivars employed for the production of cocaine (INIA, 2012; MINAG, 

2012).  

 

Peruvian coffee is well-appreciated worldwide for its unique flavor and aroma due to the 

privileged environmental conditions available throughout different regions of Peru, one of the 

seventeen megadiverse countries in the world. Coffee is cultivated in sixteen regions within the 

country. However, the most suitable environment, in terms of geographical and climatic 

conditions favorable for the cultivation of coffee, is the area east of the Andes, characterized by 

the presence of dense and rainy mountain forests. Given this feature, coffee production is 

basically concentrated in five regions: Junin, Cajamarca, San Martin, Amazonas and Cuzco, in 

order of importance, which account for 92 % of the national production (Figure 1.2). As a result 

of this privileged environment, Peru is well-known for its suitability for the production of 

specialty coffees, which constitute a particular class of coffee characterized by a unique quality, 

different and superior from the common coffee beverages. This denomination is associated with 

the high standards involved in the production and handling of the green bean (SCAE). Yet, little 

                                                           
1 In Uganda and Burundi, for instance, 90 % of their gross national product (GNP) is based on coffee exports 

(Wintgens, 2009). 
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is known about the chemical and physical properties of Peruvian coffee that are responsible for 

its unique quality. 

 

Currently, Peru is considered the third principal producer of coffee (C. arabica is the only 

cultivated coffee species) in South America, and the sixth worldwide (Figure 1.1), accounting for 

6 % of the global production (MINAG, 2011). However, most of the coffee (~ 99 %) is exported 

as green beans (SIICEX, 2011) due, in part, to the fact that the local quality control of the 

roasting process is not yet standardized (ESAN, 2010). This fact represents a substantial 

reduction of profit margins for national farmers considering that the price of the roasted product 

is significantly higher than that of the green bean. 

 

 

Peru: Principal coffee producing regions 

 

 

 
Figure 1.2. Coffee producing regions in Peru (source: MINAG, 2011). 
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Given the social and economic importance of coffee in Peru, it is crucial to develop a more 

standardized process for the quality control of roasted coffee beans that will allow local Peruvian 

coffee farmers to improve their roasting protocols. In the next section, the physical and chemical 

changes of coffee known to take place during the roasting process will be described, with special 

emphasis in the evolution of particular compounds that have been reported as quality markers.  

 

It is important to mention that, as opposed to Brazil and Colombia, the two main Latin American 

coffee producers, in Peru, no center, institution, or laboratory participates in the chemical quality 

control of coffee, green or roasted. The first example of a combined effort between academia and 

a local coffee producer is the collaboration established by the Pontificia Universidad Catolica del 

Peru and CENFROCAFE (Maruenda et al., 2012). Both entities are interested in establishing a 

quality control protocol beyond the one centered in good agricultural practices and in basic 

physical properties of green beans, such as humidity and integrity of the grain.  

 

In this collaborative effort, the main goal is to optimize the roasting protocol available in 

CENFROCAFE. Hence, in the thesis presented here, work that belongs to the first stage of the 

project, the quantitation of the main compounds developed after roasting, and associated with 

flavor and aroma of a cup of coffee, will be embraced. 

 

 

1.4. Influence of the roasting process on coffee chemical composition 

 

The roasting process is key in the development of the characteristic flavor and aroma of coffee, 

features which are absent in the green coffee (Clarke and Vitzthum, 2001; Wei et al., 2012 a). 

The quality of the green bean and its inherent chemical composition, both associated with 

environmental and harvesting conditions, are also determinant factors in the quality of the final 

product.  

 

During roasting, many complex chemical and physical changes take place, all of which depend 

on the particular conditions of the process (temperature, time, load and weight of the batch). 

Drastic roasting conditions (excessive time and heating temperatures) are known to cause 

undesirable chemical changes in the bean (Casal et al., 2000a) leading to a strong and unpleasant 

bitter taste (Blumberg et al., 2010).  

 

The main aspects of the roasting process are illustrated in Figure 1.3. Inside the roaster, 

exothermic and endothermic reactions take place, leading to gas formation, mainly H2O and CO2, 
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and to an increase of the internal bean pressure to finally cause the cellulose cell wall of the bean 

to crack (Clarke and Vitzthum, 2001). Heat energy transportation into the coffee bean, and 

therefore the technology applied in this process (drum or fluidized bed reactors), determines the 

rate and uniformity of roasting (Clarke and Vitzthum, 2001). As temperature increases, Maillard 

reactions (sugar degradation) give rise to the formation of melanoidins, colored polymers 

responsible for the gradual darkening of the bean (Clarke and Vitzthum, 2001).  

 

 

 

 
Figure 1.3. Main aspects of the roasted coffee bean process (reproduced from Clarke and 
Vitzthum, 2001). 

 

 

Scheme 1.1 illustrates the principal processes taking place during roasting associated with the 

properties of the starting material (green bean) and the end product (roasted bean). The time and 

temperature at which the green beans are heated have a crucial influence on the particular 

characteristics of the final product, since they will have a strong effect on the chemical reactions 

taking place through roasting, as also do the physical properties and chemical composition of the 

starting material. This high interdependence makes the process complex to study, and hence the 

physical and chemical mechanisms taking place during roasting are not yet fully understood 

(Clarke and Vitzthum, 2001). 

 
As mentioned earlier, the roasting process gives rise to complex chemical changes in the green 

bean composition. Several chemical reactions occur simultaneously leading to the degradation of 

polysaccharides, chlorogenic acids and amino acids, among many other metabolites, and to the 

formation of lipids, low molecular weight organic acids, as well as many others (Ciampa, 2010; 

Wang, 2012). There are some compounds present in the green bean - quinic acid for example- 

which increase in concentration during roasting.  In the case of quinic acid this is due to the 

degradation of chlorogenic acids.  
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Various reports studying the changes in chemical composition of coffee (C. robusta and C. 

arabica) during roasting have recently become available in the literature (Yen et al., 2005; 

Trindade et al., 2006; Moon et al., 2009; Blumberg et al., 2010). They are concerned mainly with 

the polysaccharides and caffeoylquinic acids in the case of the green beans, and the chlorogenic 

acids, trigonelline, caffeine and nicotinic acid in the case of the roasted beans.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 
Scheme 1.1 Coffee roasting process, its interrelation with crude coffee, roasting technology and 
its effect on the end product (adapted from Clarke and Vitzthum, 2001).  
 

 

In this study, attention will be focused on the secondary metabolites that, from a flavor-aroma 

perspective, are of interest at the initial stage of the project PUCP-CENFROCAFE, some of 

which are associated directly with the degree of roasting: caffeine, caffeoylquinic acids, 1-

methylpyridinium ion and nicotinic acid. Trigonelline is also assessed, and as a marker of 

deterioration (del Campo et al. 2010), 5-hydroxymethylfurfural content is analyzed. The 

techniques used for quantitation in this study are not the most convenient to address quinic acid. 

In the case of caffeic acid, previous studies (Maruenda, 2009) have shown that this molecule is 

absent in specialty coffees. 

 

 
GREEN COFFEE 
 
(a) Physical properties 
 
Specific heat thermal 
conductivity 
Emission 
Bean structure 
Density 
Porosity 
State of cell walls 
Structure of surface 
Inner pressure 
Gas inclusion 
 
(b) Chemical composition 
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ROASTING 
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(equipment/operation) 
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HEAT TRANSFER 

BEAN 
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REACTIONS 

MASS TRANFER 
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degree of roast, extraction yield, appearance, aroma quality, degassing properties, among others. 
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1.4.1. Main alkaloids present in coffee: Caffeine and Trigonelline 

 

Caffeine is a water-soluble, purine alkaloid which is, by far, the most studied compound in 

coffee, due to its physiological effects. It is also found in other important beverages as cocoa, 

maté, guarana and tea (Dewick, 2009). The structure of caffeine (1) is shown in Figure 1.4. It is a 

tri-N-methyl derivative of xanthine that acts as a competitive inhibitor of phosphodiesterase 

(Dewick, 2009). This enzyme participates in the degradation of cyclic AMP (cAMP) leading to 

the stimulation of the central nervous system by mimicking the action of catecholamines 

(Dewick, 2009). Hence, due to this effect, the recommended maximum daily intake should not 

exceed about 1 g to avoid disagreeable side effects and an intake of 5-10 g is considered lethal 

(Dewick, 2009).  

 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4. Chemical structures of caffeine (1), trigonelline (2), 1-methylpyridinium ion (3), 
nicotinic acid (4), 5-caffeoylquinic acid (5) and 5-hydroxymethylfurfural (6). 

 

 

Green coffee beans contain between 1 to 2 % of caffeine. The amount depends on the coffee 

species: C. canephora (syn. C. robusta) commonly contains more caffeine than C. arabica 

(Clarke and Vitzthum, 2001).  

 

It is a consensus in the literature that the concentration of caffeine is only slightly affected during 

roasting. Most studies have reported a small decrease with longer roasting times and temperatures 

(Clarke and Vitzthum, 2001). However, Moon et al. have recently reported a slight increase of 

caffeine with more severe roasting conditions in all seven brands they studied (Moon et al., 

(1)   (2)  (3) 

 (4)  (5)  (6) 
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2009). Caffeine is found in the green bean mainly combined with chlorogenic acids through 

hydrophobic π complexes (D´Amelio et al., 2009). This could explain its relative stability upon 

heating.  

 

Trigonelline (2 in Figure 1.4) is a pyridine alkaloid, biosynthesized from nicotinate, and is 

known to be widely distributed in plants (Stadler et al., 2002, a). Its importance is related to the 

known anticarcinogenic (cervix and liver), hypocholesterolemic and glucose-lowering activities, 

among other therapeutic properties (Zeiger, 1997, Lang, 2010). Trigonelline has been claimed as 

the second most abundant alkaloid in green coffee after caffeine (Stadler et al., 2002 b). 

However, unlike the latter, it is present in C. arabica (7.9 - 10.6 g / kg) in higher amounts than in 

C. canephora (robusta) (6.6 - 6.8 g / kg) (Stadler et al., 2002 b). Also, unlike caffeine, it 

undergoes significant degradation during roasting; forming a wide variety of aromatic nitrogen 

compounds related to brew bitterness and, in consequence, is considered a key precursor of 

coffee flavor and aroma (Casal et al., 2000 a; Stadler et al., 2002 a,b). It has been also suggested 

that trigonelline is, by itself, an important contributor to bitterness through combination with 

cyclic peptides and aminohexose reductones (Clarke and Vitzthum, 2001). 

 

Moreover, it has been shown, when comparing trigonelline hydrate, trigonelline hydrosulfate and 

trigonelline hydrochloride degradation, that the nature of the counter ion in trigonelline reactions 

is a determinant factor in defining the reaction pathway for its degradation (see Figure 1.5), and 

in consequence it should be taken into account in the evaluation of trigonelline (Stadler et al., 

2002 b). This will undoubtedly also have an impact on the flavor-aroma profile of coffee given 

that alkylpyridinium products may indeed be significant contributors to the bitterness of the 

coffee brew (Stadler et al., 2002 b).   

 

 

 

Figure 1.5. Conversion of trigonelline salts (hydrate, hydrogen sulfate) to give alkylpyridinium 
products as a function of temperature, at a constant pyrolysis time (15 min). Values are expressed 
as percent of conversion of trigonelline on a molar basis (Stadler et al., 2002 a). 
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Casal et al. (2000 a) performed an investigation of the thermal degradation of trigonelline and 

caffeine in C. arabica and C. canephora. In this study, the trends and patterns previously 

mentioned for these compounds, in terms of variation among species and thermal behavior, can 

be appreciated (results are shown in Table 1.1). A slight decrease of caffeine concentration and a 

decrease of trigonelline content, which become significant when the temperature reaches 240 °C, 

were observed.  

 

Table 1.1 Results (mg/kg dry mass base) for the roasting program 
performed at different temperatures for a constant time (15 min) (Casal et 
al., 2000 a). 

 
Trigonelline 

 
Caffeine 

  C. arabica C. robusta   C. arabica C. robusta 

Green 8.91 6.32 

 

12.36 20.84 

140°C 8.47 6.37 

 

14.37 22.12 

160°C 8.31 5.86 

 

15.18 21.71 

180°C 8.29 5.78 

 

13.57 19.81 

200°C 7.80 5.43 

 

13.87 19.93 

220°C 5.57 4.20 

 

12.95 19.88 

240°C 0.49 0.97 
 

10.96 19.25 

 

 

 

1.4.2. Trigonelline decomposition products: Nicotinic Acid and 1-Methylpyridinium 

 

Two major decomposition pathways operate for the thermal degradation of trigonelline: 

decarboxylation to afford the 1-methylpyridinium ion (3 in Figure 1.4), as the major reaction 

product, and N-demethylation to give nicotinic acid (4 in Figure 1.4) (Stadler et al., 2002 a). In 

the study performed by Stadler et al., the degradation pathway was demonstrated indirectly, by 

heating trigonelline at temperatures mimicking roasting, from 220 to 250 °C. The chemical 

structures of these compounds are shown in Figure 1.4.  

 

1-Methylpyridinium ion is a non-volatile, alkylpyridinium compound poorly studied in natural 

sources due to its quaternary nature, a feature that complicates the isolation and quantitation 

protocols (Stadler et al., 2002 b). Even though 1-methylpyridinium cation is known to exist in 

various marine gastropods / bivalves, coffee is recognized as a major food source for this 

compound (Stadler et al., 2002 b), which is currently under investigation due to its potential anti-

carcinogenic properties (Boettler et al., 2011, Volz et al., 2012).  
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1-Methylpyridinium ion has been reported by Stadler et al. (2002 a),  as the major product of 

trigonelline degradation during coffee roasting, reaching levels from 0.06 to 0.25 % due to the 

high polarity of the molecule, which may lead to human exposures of 30 to 125 mg / person / 

day. Like trigonelline and caffeine, it has been related to the bitter taste of coffee (Stadler et al., 

2002 b). More recently, Lang et al. (2010) found high plasma levels of 1-methylpyridinium after 

coffee consumption, which demonstrates that this molecule is rapidly absorbed despite its 

cationic natures and that it effectively enters into the vascular system, an indispensable step for 

the biological in vivo effects claimed for this compound. 

 

As opposed to previous studies, which reported immediate methyl rearrangements to yield 

pyridines and alkylpyridines, Stadler et al. (2002 a) found that 1-methylpyridinium is rather 

stable during roasting. According to these studies, the stability of 1-methylpyridinium depends on 

the nature of the standard trigonelline counter ion employed, suggesting that this might stabilize 

the quaternary amine. In the real coffee matrix, 1-methylpyridinium must be associated with 

organic or inorganic counter ions which fulfills this role, such as the phosphate, chloride, 

formate, lactate, or even with more complex molecules, such as the melanoidins (Stadler et al., 

2002 b).  

 

According to the studies performed by Stadler et al. (see Table 1.2), the formation of 1-

methylpyridinium from trigonelline is strongly dependent on time and temperature, and reaches a 

maximum at 240 °C, after 20 min of roasting. This result is consistent with the data obtained by 

Casal et al. (2000 a), who reported a significant decrease in trigonelline content when the 

temperature reaches 240°C (see Table 1.1). This behavior suggests that the ratio trigonelline / 1-

methylpyridinium could be used as an indicator of organic roasting loss (Stadler et al., 2002 b), 

and moreover, it may be useful to monitor the coffee roasting process, which is the aim of the 

present study.  

 

The decrease in 1-methylpyridinium formation after prolonged roasting periods (>20 min) (Table 

1.2) may be the result of further decomposition, rearrangement mechanisms or alkylation 

reactions with potential nucleophiles present in coffee (Stadler et al., 2002 a). The dramatic 

changes observed at 240 °C as compared to 220 and 230 °C, where after a significant decrease 

from 18 to 4 % at 20 min, an increase with longer roasting periods was registered, were not 

explained or even mentioned in the article. 
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Nicotinic acid (4 in Figure 1.4), also known as niacin or vitamin B3, is an essential human 

nutrient biosynthesized through the oxidative degradation of tryptophan (Dewick, 2009). Its 

deficiency has been related to pellagra, a chronic disease associated with erythematous dermatitis 

and dementia (FAO, 2002). The consumption of coffee contributes to the minimum dietary 

requirements of nicotinic acid for an adult (Stadler et al., 2002 a), which ranges from 14 to 16 mg 

/ day (FAO, 2002). Although there is an endogenous amount of nicotinic acid in green coffee 

beans (8 – 17 mg / kg), its concentration is significantly augmented during the roasting process, 

mainly as a product of trigonelline demethylation (Casal et al., 2000 a; Stadler et al., 2002 a). 

 

As in the case of 1-methylpyridinium, the formation of nicotinic acid has been correlated to the 

roasting degree through model studies that mimicked roasting (Casal et al., 2000 a). Figure 1.6 

indicates that N-demethylation (formation of nicotinic acid) is favored over N-decarboxylation to 

give 1-methylpyridinium, at temperatures in the range of 220-240 °C. Stadler et al. (2002 a) 

explain that this behavior may be the result of the quaternary nitrogen that favors methyl transfer 

reactions.  

 

To evaluate the influence of heating time on the formation of nicotinic acid, Stadler et al. (2002 

a) established six different time-periods for trigonelline hydrochloride thermal treatment. Table 

1.3 shows the results of this evaluation. A salient increase of nicotinic acid with time and 

temperature (an almost fivefold increase after only 5 min of reaction was observed at 220 °C) and 

good stability, even at high temperatures and long roasting times, was observed. In contrast to the 

pattern reported at 220 and 230 °C for 1-methylpyridinium (Table 1.2), nicotinic acid follows a 

constant increase over the entire time range (60 min). However, at 240 °C, a decrease starts to 

take place after reaching a maximum at 20 min (Stadler et al., 2002 a). This behavior is 

Table 1.2. Formation of 1-methylpyridinium from trigonelline 
hydrochloride as a function of temperature and time. Expressed 
as percent conversion on a molar basis (adapted from Stadler et 
al., 2002 a).  

time (min) 220 °C 230 °C 240 °C 

5 0.64 1.14 2.53 

10 1.33 1.77 6.63 

20 1.63 3.08 18.79 

30 1.77 3.18 4.56 

45 1.29 2.18 7.12 

60 1.08 1.77 9.15 
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consistent with the pattern reported by Casal et al. (2000 a), although they found a peak at 15 

min. 

 

 

 
Figure 1.6. Formation of nicotinic acid (dashed line) and 1-methylpyridinium (solid line) from 
trigonelline hydrogen chloride as a function of temperature at a constant time (15 min). Values 
are expressed as percent of conversion on a molar basis (Stadler et al., 2002 a). 

 

 

Table 1.3. Formation of nicotinic acid from trigonelline 
hydrochloride as a function of temperature and time Expressed as 
percent conversion on a molar basis (adapted from Stadler et al., 
2002 a). 

time (min) 220 °C 230 °C 240 °C 

5 0.35 1.47 5.26 

10 1.56 5.10 14.10 

20 4.34 12.75 16.85 

30 6.86 14.26 11.36 

45 9.30 15.27 10.00 

60 10.85 17.08 6.70 

 

 

The significant increase of nicotinic acid during the first 20 min of roasting at 240oC, as in the 

case of 1-methylpyridinium, is consistent with the degradation of trigonelline (Table 1.1), 

confirming its role as the major source of nicotinic acid (Stadler et al., 2002 a).  

 

 

1.4.3. Caffeoylquinic Acids (CQAs)  

 

Caffeoylquinic acids are an important group of phenolic metabolites produced by certain plant 

species like potatoes, tomatoes, apples, pears, and coffee, where they are found at particularly 
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high levels (Farah and Donalgelo, 2006; Lallemand et al., 2012). These compounds are formed 

through the reaction of quinic acid with caffeoyl-CoA, catalyzed by the quinate-O-

hydroxycinnamoyltransferase enzyme (Dewick, 2009). Beside their relevance in plant 

physiology, caffeoylquinic acids have a number of beneficial health properties related to their 

potent antioxidant activity (Farah and Donangelo, 2006) and anticarcinogenic potential (Boettler, 

2011). 

 

Caffeoylquinic acids are considered as the main group of chlorogenic acids in green coffee, and 

in consequence, play an important role in the taste quality of the coffee brew (Moon et al., 2009, 

Blumberg et al., 2010), contributing to the final acidity, astringency and bitterness of the 

beverage (Farah and Donangelo, 2006). 

 

Among the various caffeoylquinic acids identified in coffee, the monocaffeoyl isomers, 3-, 4- and 

5-CQA (structure 5 in Figure 1.4) are the most abundant and investigated compounds. There is 

an agreement in the literature regarding the order of abundance of these isomers, both in green 

and roasted coffee, 5-CQA being the most prominent compound, accounting for about 56 – 62 % 

of total chlorogenic acids (Farah and Donangelo, 2006), followed by 4-CQA and 3-CQA 

(Fujioka and Shibamoto, 2008; Moon et al., 2009; Blumberg et al., 2010) (see Table 1.4). 

However, during roasting, significant decreases of 5-CQA levels were reported (Tables 1.4 and 

1.5), whilst the content of the 3-CQA and 4-CQA isomers were reduced in a lesser extent. As a 

consequence, under city and french roast conditions, the amount of 4-CQA and 5-CQA are 

almost the same (Table 1.4). Prolonged roasting periods and high temperatures are responsible 

for the almost total loss of these compounds due to their thermal inability. This behavior needs to 

be considered when defining the roasting conditions, given the pharmacological potential of this 

group of compounds. 

  

 

Table 1.4. Monocaffeoylquinic acid content in Nicaraguan coffee beans roasted 
under different conditions (values are expressed in mg / g dry mass basis) (adapted 
from Moon et al., 2009). 

Origin Green light roasta medium roastb city roastc french roastd 

3-CQA 3.52 4.65 3.50 0.50 0.09 

5-CQA 40.19 12.22 8.19 1.08 0.21 

4-CQA 5.96 7.12 4.90 0.87 0.17 

Roasting term conditions: a 12 min at 230 °C, b 14 min at 240 °C, c 17 min at 250 °C, d 21 min at 250 
°C. 
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The contents of 5-caffeoylchlorogenic acid found in green coffee beans of different origins and 

under different roasting conditions are shown in Table 1.4 (Moon et al., 2009). Very little 

variation in 5-CQA content, in terms of geographical origin, except in the case of the Ethiopian 

coffee, can be observed. As mentioned above, the amount of 5-CQA varies substantially with the 

intensity of roasting degree, reaching the lowest level under french roasting conditions in all 

cases.  When comparing the behavior of 5-CQA during roasting in Ethiopian and Panamanian 

coffees, for example, it can be appreciated that matrix effects may also affect the changes in 5-

CQA concentration, especially for the light and medium roasts.  

 

 

Table 1.5. 5-CQA content in coffee from different origins and with different roasting 
degrees in mg / g dry mass basis (adapted from Moon et al., 2009). 

Origin Green light roasta medium roastb city roastc french roastd 

Ethiopian 50.70 15.11 9.27 0.79 0.16 

Nicaraguan 40.19 12.22 8.19 1.08 0.21 

Panamanian 40.15 15.88 11.04 1.17 0.23 

Sumatran 41.65 14.74 10.11 1.57 0.30 

Roasting term conditions: a 12 min at 230 °C, b 14 min at 240 °C, c 17 min at 250 °C, d 21 min at 250 °C. 

 

 

A consistent correlation between the pH of the solution and the degree of roasting was also noted 

by Moon et al. (2009). The pH increased from 5.7 to 6.2 through light to french roast, results 

which may suggest that caffeoylquinic acids are important contributors to the degree of acidity of 

the coffee brew.  

 

 

1.4.4. 5-Hydroxymethylfurfural (5-HMF) 

 

5-Hydroxymethylfurfural, structure 6 in Figure 1.4, is an aliphatic aldehyde product of the 

Maillard reaction, present in a wide range of thermal treated foodstuffs. It is formed during the 

carbohydrate degradation that leads to reactive fructofuranosyl cations (Perez-Locas and 

Yaylayan, 2008). It has been demonstrated that this compound produces hepatocarcinogenic 

activity in female mice after a 2-year administration of 188-375 mg / kg day (NTP, 2010), 

however, in mammalian cells, no significant genotoxic effects were observed (Perez-Locas and 

Yaylayan, 2008, Abraham et al., 2011). Based on these studies, a daily intake of 80 – 100 mg / 

kg body weight was established as the safety margin for its consumption (Abraham et al., 2011). 
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5-HMF is less volatile and chemically more stable, and is therefore more prone to accumulate 

and persist in food than are similar compounds (Nikolov and Yailayan, 2011). It has been 

recognized as an indicator of heat damage or excessive storage in various foodstuffs, and, in 

consequence, is being used nowadays as a deterioration marker in some food quality controls, 

including coffee (Charlton et al., 2002; Perez-Locas and Yaylayan, 2008; del Campo et al., 

2010).  Recently, 5-HMF has been reported in a number of instant coffee samples in amounts that 

range from 1 to 6 mg / g of solid product (del Campo et al., 2010). 

 

 

1.4.5. Low molecular mass organic acids  
 

As mentioned previously, acidity is an important sensory quality of the coffee brew. It has been 

estimated that the acids present in coffee account for about 11 % of the green coffee bean mass 

and 6 % of the roasted coffee bean mass (Galli and Barbas, 2004). Various low molecular-mass 

organic compounds contribute to this feature. The structures of some of the major aliphatic acids 

present in green and roasted coffee beans are listed in Figure 1.7. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 1.7. Chemical structures of the major organic acids found in roasted coffee: citric (7), 
quinic (8), lactic (9), acetic (10), malic (11), glycolic (12), formic (13). 

 

 
 
Table 1.6 shows the variation in different acid contents as a function of organic roasting loss 

(ORL). As can be appreciated from this Table, the amount of some of these acids is greatly 

modified by the roasting process. As roasting progresses (higher ORL), the content of citric and 

malic acids decreased, whereas those of quinic, formic, acetic, glycolic and lactic acids increased.  

(7) 

(10) (11) (12) 

(8) (9) 

(13) 
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Table 1.6. Acid content in g / kg as a function of organic roast loss 
(ORL%) (adapted from Clarke and Vitzthum, 2001). 
 

Acid 0.0 % (Green) 3.3 % 4.2 % 5.1 % 6.4 % 

Formic nd  2.29 2.53 2.47 2.28 

Malic 4.02 3.29 3.11 2.49 2.00 

Citric 13.11 11.1 9.53 7.66 6.34 

Glycolic nd  1.28 1.64 1.81 2.02 

Acetic 0.29 3.76 4.18 4.86 4.98 

Lactic nd 0.73 1.00 1.35 1.30 

Quinic 6.87 9.96 8.81 8.94 9.12 

 a The conditions of roasting were not reported. The organic roast loss is proportional 
to the increase of roasting degree. 

 

 

Quinic, malic and citric acids are the major organic acids, both in green and roasted coffee. The 

increase of quinic acid is a consequence of the chlorogenic acid cleavage, whereas citric and 

malic acids are degraded during the process to give other acidic compounds (Clarke and 

Vitzthum, 2001). Sucrose has been identified in model systems as the principal green bean 

precursor of formic, acetic, glycolic and lactic acid, whose contents are considered negligible in 

the green bean, but increase considerably during roasting (Ginz et al., 2000). A major fraction of 

the acidity can be attributed to these four aliphatic acids. Figure 1.8 illustrates the formation of 

these compounds as a function of temperature, where it can be appreciated that formic and acetic 

acid began to fall off after reaching a maximum at 240 °C, whereas glycolic and lactic, which are 

less volatile acids, continued to increase. The decrease of these compounds, together with that of 

citric and malic acids, correlates with the lower acidity perceived in high-roasted coffees, where 

bitterness becomes the dominant sensory feature (Clarke and Vitzthum, 2001). 

 

 
 
Figure 1.8. Acid content (g/kg) of formic, acetic, lactic and glycolic acids as a function of 
temperature (adapted from Clarke and Vitzthum, 2001). 
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1.5. Summary and Hypothesis 

 

The relevance of the compounds previously discussed in the flavor and aroma profiles of coffee, 

in addition to the significant role they play during the roasting process, make these compounds 

suitable as chemical markers to monitor the roasting process. 

 

As mentioned previously, this thesis is part of a project whose objective is to help over 2000 

families, who constitute the association CENFROCAFE, to improve their roasting protocols. For 

this particular purpose, a fast and validated strategy is needed to quantify all these markers.  

 

Of all the possible quantitative methods to be used for this purpose, quantitative nuclear magnetic 

resonance (q-NMR) seems an attractive approach for many reasons, although is not yet 

considered a standard method in food analysis. By NMR, sample preparation, solvent 

consumption, and the time of the analysis are diminished, when compared to chromatographic 

protocols, such as GC-MS, HPLC-DAD, and LC-MS. In addition, it affords, in only one 

experiment, information on all of the compounds present in the sample analyzed, data that can be 

directly used to identify and quantify the constituents of the food extract sample (Manina et al., 

2012). A chemometric approach, employing Principal Component Analysis (PCA), will be also 

addressed in this study in order to distinguish differences in roasting degree. 

 

Hence, the hypothesis of this work is that the new q-NMR methodology developed will allow, in 

a short-time experiment, distinctions to be made between different grades of coffee roasting by 

monitoring the markers previously identified (compounds 1 - 6), and that these results will be in 

good agreement with classical and validated HPLC-DAD methodology. Additionally it is 

expected that this data will be useful to help set up the quality control protocol to be followed in 

order to optimize the roasting process performed by CENFROCAFE.  

 

In the next chapter, the methodologies, q-NMR and HPLC-DAD and PCA, related to these coffee 

studies, are presented.  
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2. QUANTITATION STRATEGY OF SELECTED COMPOUNDS  

 

 

Most of the studies previously discussed for the monitoring and quantitation of non-volatile small 

organic compounds in coffee are based in chromatographic techniques, and among them, HPLC 

(with different detectors MS, DAD and UV) was the most extensively applied (Casal et al., 2000 

a,b; Stadler et al., 2002 a,b; Bastos and Alves, 2004; Farah et al., 2005; Alves et al., 2006; 

Clifford et al., 2006; Fujioka and Shibamoto, 2008; Moon et al., 2009). These techniques are 

time-consuming, involving the use of large amounts of organic solvents and require tedious 

sample pre-treatments. However, HPLC remains a recognized methodology to quantitate coffee 

(AOAC, 1995; AOAC, 2000). 

 

In the last few years, Nuclear Magnetic Resonance (NMR) has shown enormous potential 

towards application in the field of food science in terms of foodstuff quality, geographical origin, 

variety differentiation, origin authentication, and raw material safety (Manina et al., 2012). The 

increasing interest in the application of NMR arises from the capacity of this technique to provide 

simultaneous access to qualitative and quantitative information. Among the NMR techniques 

available, two are the most extensively applied in quantitation analysis: 1H-NMR and 13C-NMR 

(Heikinnen et al., 2003; Manina et al., 2012). The principal difference between these techniques 

is the recording acquisition time. This is due to the difference in the natural abundance, 

magnetogyric ratio and relaxation mechanisms between 1H and 13C nuclei that are rather 

favorable for proton, making the 1H-NMR technique the most suitable for fast (5 – 15 min) and 

accurate quantitative measurements. A q-13C-NMR analysis could take several hours.  In 

consequence, 1H-NMR was the technique chosen in the present study for the quantitative study of 

chemical markers in coffee. 

 

Both strategies, chromatography and nuclear magnetic resonance, will be described in this 

chapter, with a special emphasis on the parameters involved in the 1H-NMR quantitative analysis. 

 

 

2.1. Quantitative NMR analysis of coffee beans 

 

2.1.1. NMR Acquisition parameters 

 

Nuclear magnetic resonance represents the most versatile and extensively applied spectroscopic 

tool in modern chemical research with a wide range of applications in the basic and applied 
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sciences. As mentioned earlier, the increasing interest in the quantitative application of 1H-NMR 

arises from the capacity of this technique to provide access to quantitative information due to the 

fact that the areas of the 1H-NMR resonances are proportional to the relative number of nuclei 

that give rise to each signal. However, it is important to stress that this is only true under well-

established experimental conditions. Hence, the level of accuracy of the quantitative 

measurements depends on the acquisition protocol employed. The principal aspects of 

quantitative acquisition will be explained below. 

 

The transition between energy levels that give rise to the NMR signal is induced by the 

application of a radiofrequency which provides a magnetic field, perpendicular to the static field 

that oscillates at the Larmor frequency of the spins. According to the vector model, when a pulse 

of θ is applied to the spin system (B1 in Figure 2.1) the bulk magnetization vector (z-axis) rotates 

towards the y-axis at a θ angle (Williams and King, 1990). A high power 90° pulse, closer to a 10 

μs pulse width, is the most commonly applied for NMR measurements to provide a wide 

frequency range (able to excite all the resonances in the spectrum) and avoid off-resonance 

effects2 (Claridge, 2009). Since, after a 90° pulse, all magnetization is placed in the transverse 

plane x – y, a maximum signal intensity is achieved and the sensitivity is optimized, a feature that 

is essential for quantitative purposes. However, to improve the S/N ratio it is required to perform 

successive scans and wait for the signals to fully relax, thus extending the recording periods. 

 

 

Figure 2.1. Vectorial representation of an rf pulse applied to a spin system (reproduced from 

Claridge, 2009). 

 

 

A feature of major importance for the resolution and sensitivity of the method is the avoidance of 

differential saturation effects which arise from spins with different relaxation rates. A proper 

recording time needs to be established to guarantee that the acquired data actually reflect the 

relative contents of the different metabolites present in the sample (Pauli et al., 2005; Burton et 

                                                           
2
 Off-resonances effects arise when the rf excitation does not match precisely the Larmor Frequency giving rise to 

nuclei resonance outside the excitation bandwidth of the pulse.    
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al., 2005). Following rf pulse perturbation, nuclear spins of the sample re-establish equilibrium 

conditions by different relaxation mechanisms. There are two principal processes for spin 

relaxation: longitudinal (T1) and transverse relaxation (T2).  

 

Longitudinal relaxation consists in the recovery of the +z magnetization after pulse excitation of 

the nuclear spins and hence in the equilibrium re-establishment of the system (Figure 2.2). This 

process follows an exponential behavior (Figure 2.3), determined by the relaxation time 

constant, T1. As can be seen in Figure 2.3 full recovery (~99.33%) is essentially achieved after a 

period of 5T1 (Burton et al. 2005; Claridge, 2009). Thus longitudinal relaxation time knowledge 

of the nuclei present in the sample is a parameter that has to be considered for quantitative NMR 

experiments. 

 

 

 

 

Figure 2.2. The recovery of the magnetization vector re-established the longitudinal component 

in z-axis (reproduced from Claridge, 2009). 

 

 

 

 

Figure 2.3. Evolution of the exponential growth of longitudinal magnetization (reproduced from 

Claridge, 2009). 
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Typical T1values for hydrogen are in the range of 0.5 to 5 s for most medium-sized organic 

molecules (MW=100-500), whereas carbon T1s may require minutes for full recovery. This is 

principally a consequence of dipolar relaxation (Claridge, 2009), the dominant relaxation 

mechanism for proton and carbon nuclei. According to this mechanism, the relative positions of 

two neighboring nuclei affects the local field experienced as a result of dipolar interactions and 

molecular tumbling in solution. Thus, 1H and 13C nuclei require the presence of neighboring 

protons as a source of magnetic dipoles to induce relaxation. The higher availability of this 

source of relaxation for 1H nuclei, especially when compared to quaternary carbons, makes 

hydrogen T1 values, and thus 1H-NMR, more suitable for practical purposes than 13C-NMR, 

leading to shorter recording times.  

 

Transverse relaxation is a consequence of the local magnetization field experienced by each 

nucleus due to magnetic field inhomogeneity and principally to local magnetic fields arising from 

intramolecular and intermolecular interactions, which may result in no net magnetization in the 

transverse plane. As with longitudinal relaxation, transverse relaxation occurs with an 

exponential decay, now characterized by the time constant T2. This parameter is inversely 

proportional to the widths of the NMR resonances, since a short T2 corresponds to fast decaying 

FIDs, whereas longer FIDs give narrower resonances (Figure 2.4).  

 

 

 

Figure 2.4. Transverse relaxation times for high and low molecular weight compounds 

(reproduced from Claridge, 2009). 

 

 

Higher molecular weight molecules typically display shorter T2 times than smaller ones, and in 

consequence give broader NMR resonances. If the difference is sufficiently large, the faster 

relaxing species can be selectively reduced in intensity with the Carr-Purcell-Meiboom-Gill 

(CPMG) echo sequence, allowing editing of the spectrum according to molecular size (Claridge, 

2009; Manina et al., 2012). Figure 2.5 shows a successful application of this approach where the 
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signals of camphor, a small molecule, can be appreciated after the T2-filtering of the broad 

resonances of a heavy molecular weight polymer (Claridge, 2009). 

 

 

 
Figure 2.5. T2 filter for a camphor sample contaminated with polysytrene (MW=50000). The 
broad resonances of the polymer in (a) have been suppressed in (b) through T2 based-editing 
with the CPMG sequence (reproduced from Claridge, 2009). 
 

 

Large solvent resonances may also affect the 1H-NMR spectrum, principally by baseline 

distortion and masking of solute resonances due to severe broadening of the water signal, related 

to the loss of transverse magnetization (reduced apparent T2) (Pauli et al., 2005; Claridge, 2009). 

Pre-saturation of the solvent is the most robust technique to reduce the magnitude of the solvent 

resonance before the NMR signal reaches the receiver. In the case of a 1D spectrum, the 

NOESY-presat sequence is the most commonly applied in qNMR analysis (Claridge, 2009, 

Manina et al., 2012), it involves the application of a non-selective 1D NOESY with short mixing 

time to assure solvent suppression. Pre-saturation of solvent signals could induce intermolecular 

nuclear Overhauser enhancements (NOEs) or cause partial saturation of signals from exchanging 

protons and in consequence, it might be considered as a potential source of error (Burton et al., 

2005). 

 

Like other quantitative methods, quantitative NMR measurements require calibration. Typically 

this process is achieved through the addition of an internal standard, a compound with a known 

concentration against which the area of the signals from the analytes will be compared. However, 
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although the internal standard method is considered the most accurate procedure (Pauli et al., 

2012), it must satisfy some requirements that may not be fulfilled in complex matrices as food: it 

must be inert to the solute, its relaxation time should be similar to the analytes present in the 

sample, and its resonance signals should not overlap with those of the sample (Pauli et al., 2005).  

 

Although it has not received much attention as the internal standard method, external standard 

calibration has also been validated for quantitative 1H-NMR (Burton et al., 2005). In this case, 

spectra of standards and analytes need to be recorded under the same conditions to minimize 

error. The factors affecting the precision of the external standard method and their relative 

influence have been investigated and, according to this study, the principal error sources are the 

experimental temperature, deviation from 90° pulse, purity of calibration standards, pre-

saturation method and integration (Burton et al., 2005).  

 

Another alternative to the addition of a chemical internal standard is the use of a synthetic 

reference signal called ERETIC2. Electronic Reference to access in Vivo concentration 

(ERETIC2) is a new quantitation tool based on PULCON (Pulse Length based Concentration 

Determination) (Dreier and Wider, 2006) as an internal standard method that allows the 

correlation of the absolute intensities of two different spectra. This is possible because the lengths 

of a 90° or 360° pulse are inversely proportional to the NMR signal intensity. Therefore, if the 

samples are well calibrated, their concentration can be obtained from another sample, whose 

concentration is known precisely. For this experiment it is crucial to have well-defined 

quantitative acquisition parameters.       

 

In addition to the parameters related to experimental acquisition, that were previously discussed, 

factors affecting the accuracy and precision of the data processing need to be considered, 

especially when dealing with complex spectra, given that these are potentially the most subjective 

aspects of NMR quantitation (Burton et al., 2005). Phasing and baseline correction are crucial, 

especially when baseline distortions are introduced by incomplete suppression of the solvent or 

the presence of impurities (Burton 2005). Subjectivity in the ranges of integration is inevitable in 

manual integration and is sample-dependent. Thus, the selection of sharp, non-overlapping and 

well-defined signals is critical for quantitation. 
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2.1.2. State of the art in NMR analysis of coffee 

 

There are well-reported methods for the 1H-NMR analysis of some fruit and vegetables, olive 

oils, alcoholic beverages, milk and dairy products, fish and meat, among others (Mannina et al., 

2012). However, there are only a few reported methods in the literature for the NMR quantitation 

of the metabolites in coffee, and most of them are based on 13C-NMR spectra. Among these 

studies only one of them is validated by HPLC (del Campo et al., 2011), and other two correlate 

the qNMR results with the evolution of changes in chemical composition during roasting (Bosco 

et al., 1999; Wei et al., 2012).  

 

Bosco et al. (1999) assessed for the first time the chemical changes in the roasting process of 

coffee by 1H-NMR. They performed this study in two C. arabica and one C. robusta coffee 

samples, under three different degrees of roast. Both water (for hydrophilic molecule evaluation) 

and organic solvents (for hydrophobic and aromatic substance identification) were used for the 

coffee extract preparation. Significant differences among samples with different roasting degree 

were observed, including the decrease of trigonelline, chlorogenic acid, citric acid and formic 

acid content, and the increase of quinic acid levels.  

 

More recently, Tavares and Ferreira (2006) investigated the structural elucidation of fourteen 

different commercial coffee samples by 1D and 2D NMR techniques. In this study C. arabica 

and C. canephora, were evaluated and nine important coffee metabolites including trigonelline, 

1-methylpyridinium, formic acid, and quinic acid, among others were identified. Additionally 

they were able to quantitate caffeine in the complex coffee mixture employing a 1H-NMR 

standard calibration curve.  

 

The most detailed studies on the structural investigation of green and roasted coffee have been 

performed by the Wei research group (Wei et al., 2010; Wei et al., 2011). They were able to 

identify sixteen compounds in green coffee and almost thirty compounds in roasted coffee by 

means of 2D NMR techniques, such as edited heteronuclear single quantum correlation 

spectroscopy (HSQC), quantum filter correlation spectroscopy (DQF-COSY), constant time 

heteronuclear multiple bond correlation (CT-HMBC), rotating frame Overhauser effect 

spectroscopy (ROESY), among others. They also assessed the quantitation of several of these 

compounds by 13C-NMR spectroscopy and studied the chemical composition evolution of some 

of them throughout the roasting process. However, despite the fact that they used a relaxing agent 

such as copper sulfate, the number of scans required in their measurements were of the order of 

40000 which suggests extremely long and time-consuming experiments. 
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None of the studies previously mentioned include a validated quantitative method, such as 

HPLC, to corroborate their results. Recently, Del Campo et al. (2010) have performed a 1H-NMR 

quantitative determination of important metabolites in various instant coffee brands that includes 

trigonelline, formic acid, caffeine and 5-hydroxymethylfurfural (5-HMF). To our knowledge this 

is the only study available in the literature that includes an HPLC validation of the 1H-NMR 

quantitation results in coffee evaluation. Moreover, they found good agreement between the two 

techniques with percentage errors in the range of 1 to 20 %. 

 

Although 13C spectra show narrow and less overlapped compared with 1H-NMR spectra, this 

technique has important disadvantages when compared to 1H-NMR spectroscopy for quantitative 

purposes. In addition to the low natural abundance of the 13C nuclei, these nuclei also have longer 

longitudinal relaxation times (several seconds or even minutes for quaternary carbons compared 

to a few seconds for proton nuclei) which results in longer acquisition times and in consequence, 

in time-consuming experiments. Even though the use of relaxing agents, containing paramagnetic 

species, such as chromium(III) acetylacetonate can reduce significantly the T1s in 13C 

experiments, it is the experience of this laboratory that this also hinders the sample preparation 

procedure (Maruenda and López, 2009).  

 

Hence, the present study will address the quantitation of the selected metabolites 1 – 6 in coffee 

by the development of a new 1H-NMR approach, for which all the parameters previously 

discussed: number of scans, receiver gain, relaxation time and pulse sequence, will be optimized.  

 

 

2.2. HPLC-DAD quantitative analysis of coffee beans 

 

As mentioned earlier, HPLC is the technique most extensively applied for the analysis of non-

volatile foodstuffs, including the study of coffee. Several methods have been proposed for the 

selective analysis of specific compounds known to be relevant in the flavor and aroma profile of 

the coffee brew (Casal et al., 2000 a,b; Ky et al., 2001; Yen et al., 2005; Alves et al., 2006). In 

Table 2.1 the methods that have addressed the simultaneous quantitation of the compounds 1 – 6, 

which are of interest for the present investigation, are listed. In addition, it includes the strategies 

for the separation of the chlorogenic acids, which are known to contribute significantly to the 

quality of the brew. It is important to mention that only one of them includes the determination of 

1-methylpyridinium. 
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The method developed by Casal et al. (2000 a, b) achieved poor resolution for nicotinic acid and 

caffeine in the coffee sample, and the method of Ky et al. (2001) only achieved the separation of 

trigonelline and caffeine, which does not represent a difficulty due to their very different polarity.  

 

The method developed by Yen et al. (2005) allowed the separation of trigonelline, nicotinic acid, 

5-HMF, 5-CQA, caffeine and caffeic acid. However, this method involved the use of three 

different solvents for the system gradient and did not permit a good resolution or separation 

between trigonelline and nicotinic acid (Figure 2.6).  All compounds in this study were 

monitored at only one wavelength, 280 nm.  

 

 

 
           
Figure 2.6. HPLC chromatogram of roasted coffee (reproduced from Yen et al., 2005). 

 

 

More recently, Alves et al. (2006) have reported a method for the simultaneous quantitation of 

nicotinic acid, trigonelline, 5-CQA, and caffeine in roasted coffee employing an acetic acid / 

acetonitrile mobile phase. They obtained good resolution employing ODS reverse phase columns, 

and the method achieved good recovery and repeatability values. This study did not include 1-

methylpyridinium.    

 

In addition to the difficulty in separating trigonelline from nicotinic acid, for which the methods 

available achieved only a slight separation (  ), addressing the quantitation of 1-

methylpyridinium ion in their presence represents a challenge. These compounds are very polar 

and share a pyridine skeleton, features that compromise selectivity. Another possible 
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complication is the cationic nature of 1-methylpyridinium that impedes its retention in C18 

columns. Only one study (Stadler et al., 2002 b) has addressed its quantitation in coffee, but this 

method involved the use of an ion exchange column and did not include trigonelline 

determination. To the best of our knowledge only one, yet un-reported method (Maruenda et al., 

2012) (Table 2.1), achieved the separation of trigonelline, nicotinic acid and 1-methylpyridinium 

with good resolution. This method includes the use of a Phenyl-hexyl Luna column (4.6 x 250 

mm x 5μm) of dimensions similar to those reported by the other authors (Table 2.1). This 

column provides good selectivity for aromatic analytes due to interactions between the π 

electrons of the analyte and the π electrons of the phenyl ring bonded groups in the stationary 

phase. It is important to highlight that a method developed by Blumberg et al. (2010) also 

succeeded in the separation of several chlorogenic acids, including caffeoylquinic acid isomers 3, 

4, and 5, by employing a Phenyl-hexyl Luna column (Table 2.1). 

 

LC-MS will be used to corroborate the separation achieved by HPLC-DAD and to identify any 

new compound present in extracts of specialty coffee. Therefore the solvent-system required for 

the HPLC-DAD studies needs to be compatible with LC-MS. As seen in Table 2.1, most of the 

separation strategies presented used buffers that are not appropiate for LC-MS analysis, such as a 

phosphate buffer. Hence, for strategic reasons, associated with the CENFROCAFE-PUCP project 

(Maruenda et al., 2012), in which one of the objectives is to identify new quality markers in 

specialty coffee by LC-MS, the conditions that will be employed for the HPLC-DAD analysis 

will follow the protocol previously developed in this laboratory which are suitable for LC-MS 

analysis, the use of a phenyl-hexyl column using a formic acid / MeOH solvent. 

 

In addition to the methodologies previously discussed, chemometric approaches are also being 

widely used in food science and traditional medicine, particularly in order to classify the data 

according to the origin, authentication and quality of the material (Mannina et al., 2012). In the 

following section, the suitability of one of these approaches, Principal Component Analysis, for 

coffee analysis will be discussed.  

 

 

2.3. Chemometrics: Principal Component Analysis (PCA) 

 

Chemometrics is generally defined as the application of statistical measurements to complex 

chemical and physical data with the aim of obtaining useful information as trends and patterns 

(Miller and Miller, 2010).  
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Table 2.1. Methods reported for the separation of compounds 1-6 in roasted coffee. 
  

        

        

Author Compounds studied  Technique Column Solvent 
Wave 
lengths (nm) 

T (°C) 
Time 
(min) 

Casal et al., 
2000 a, b 

Caffeine, trigonelline, nicotinic 
acid  

HPLC-DAD 
Sprerisorb S5 ODS-1 (4.6 x 250 
mm x 10 μm) 

Phosphate 
(pH=4)/MeOH  

264, 268, 276 n.ka 30 

Ky et al., 
2001 

Caffeine, trigonelline HPLC-DAD 
Sperpher 100 RP 18       (4 x 250 
mm x 5 μm) 

Et3N-Acetic acid 
(pH=5.3)/MeOH 

263, 272 n.k 15 

Yen et al., 
2005 

Caffeine, trigonelline, nicotinic 
acid, 5-CQA, 5-HMF, caffeic acid 

HPLC-UV 
Lichrosorb RP 18       (4.5 x 250 
mm x 5 μm) 

Ammonium dihydrogen 
phosphate 
(pH=2.6)/Phosphoric 
acid (pH=1.5) 

280 25 30 

Alves et al., 
2006 

Caffeine, trigonelline, 5-CQA, 
nicotinic acid 

HPLC-DAD 
Sprerisorb ODS-1       (4.5 x 250 
mm x 5 μm) 

Acetic acid/MeCN 260, 272, 320 25 30 

Blumberg et 
al., 2010  

Caffeoyl quinic acids (3, 4 and 5-
CQA ) and caffeoyl quinides 

LC-MS 
Phenyl-Hexyl Luna     (4.5 x 250 
mm x 5 μm) 

Ammonium formate 
(pH=3.5)/MeOH 

324 n.k 50 

Maruenda et 
al, 2012 

Caffeine, trigonelline, nicotinic 
acid, 1-methylpyridinium, 5-CQA 

HPLC-DAD 
Phenyl-Hexyl Luna     (4.5 x 250 
mm x 5 μm) 

Formic acid 
(pH=2.6)/MeOH 

260, 270, 330 30 40 

a n.k = not known 
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Among the different chemometric techniques, Principal Component Analysis (PCA) is one of the 

most widely applied methods in the treatment of spectroscopic and chromatographic data 

obtained from NMR, HPLC and MS methodologies (Bruker, 2009; Manina et al., 2012) and is 

the method of choice for obtaining an overview of the data and identify clusters and outliers 

(Trygg et al., 2007).  

 

PCA can be defined as a projection method that converts multidimensional data into a low-

dimensional model, usually with two or three dimensions simplifying its visualization and 

handling. The measure of the spread of a data matrix in each dimension or variable is given by 

the variance (Eq. 1), whereas the covariance (Eq. 2) determines how much of each dimension 

varies from the mean with respect to each other, to see if there is a relationship between them. 

Covariance is used by the PCA algorithm to find relationships between dimensions in the high 

dimensional data set. A positive value of covariance indicates that both dimensions increase and 

decrease together, a negative value indicates an inverse behavior between them and zero 

covariance indicates that the two dimensions vary independently.  

 

 

   ( )   
∑ (    ̅)(    ̅)
 
   

   
        (Eq. 1) 

 

   (   )   
∑ (    ̅)(    ̅)
 
   

   
     (Eq. 2) 

 

 

To keep most of the variability, dimensions with constant values, low variance and linearly-

dependent to other dimensions are ignored because they are not useful to explain the differences 

among the samples. In contrast, dimensions that do not depend on others, that have low 

covariance and high variance are kept (see Eq. 1 and Eq. 2), so that the most important features 

can be extracted.  

 

In order to focus on variation among the samples, it is necessary to translate the coordinate 

system to the center of the data cloud (Figure 2.7). This is done by subtracting the average from 

every column of variables of the data matrix (see Scheme 2.1). Changing the basis does not 

change the data, only its representation, with the aim to decrease the noise (low variance 

dimensions) and redundancy in the data set.  
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Figure 2.7. PCA centering through translation of the coordinate system (adapted from Trygg et 

al., 2007). 

 

 
 

V1 V2 V3     V´1 V´2 V´3 

2.2 5.0 2.1     -0.3 -0.4 -0.3 

0.5 3.2 0.9     -2.0 -2.2 -1.5 

2.9 7.5 2.2  ̅1  = 2.5 0.4 2.1 -0.2 

4.8 8.5 4.0  ̅2  = 5.4 2.3 3.1 1.6 

3.4 6.4 3.7  ̅3  = 2.4 0.9 1.0 1.3 

0.9 2.4 1.1     -1.6 -3.0 -1.3 

2.6 4.9 2.9     0.1 -0.5 0.5 
 
 

Scheme 2.1. Simplified representation of the subtraction of the mean from dimensions in a three 
variable (V1, V2, V3) data set with seven samples (rows) so the new average of every column will 
now be zero (adapted from Farag et al., 2009).  

 

 

A schematic representation of the PCA treatment of a three dimensional data set is shown in 

Scheme 2.2.  Each point in the system corresponds to different samples located in the three 

dimensional space as a result of the combination of the different variables. PCA first selects a 

normalized direction in the multidimensional space along which the variance is maximized, and 

then it finds a second direction along which the residual variance is maximized, however, 

because of the orthonormality condition, it restricts its search to directions perpendicular to the 

previous selected direction. These new set of axes are denominated as principal components and 

the resulting plane that best fits the data, a score plot (T in Scheme 2.2). The variances associated 

with each component quantify how principal or significant they are. As can be appreciated, most 

of the variation in the set of points can be described by this plane, i.e. a lower dimensional space 
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than the original. The residuals (E in Scheme 2.2) represent the distance between each point and 

its projection in the plane and correspond to the variability that is not explained by the model and 

is ignored because it is considered of lesser significance. The loading vectors (P in Scheme 2.2) 

define the relation among the variables and show their individual influence in the model. As 

directions in the loading plot correspond to directions in the score plot they are useful for 

identifying which variables or loadings separate different groups of objects (the scores). Thus, the 

loadings plots make possible the spectroscopic interpretation in chemical terms, of the statistical 

results.  

 

PCA application can be extended to a bigger matrix X. If the dimensions are highly correlated 

there will be a small number of principal components with large variance enough to explain the 

data variability. 

 

                
 
 

                                               

 

Scheme 2.2. Schematic representation of the principal component analysis (PCA) of three-
dimensional data (adapted from Trygg et al., 2007). 
 

 

There are a few PCA approaches in the literature for the analysis of coffee employing NMR 

spectrometry. However, most of them are related to establishing geographical or variety 

differentiation (Wei et al., 2012 b; Consonni et al., 2012). An interesting PCA study was 

performed by Charlton et al. (2002) on instant coffee distinction according to the specific 

manufacturer, where 5-HMF was found as the best marker for this purpose.  

 

PCA multivariate statistical analysis on two different roasted coffee varieties from various 

geographical origins has been performed by Casal et al. (2000 b) with data obtained from the 

SCORE PLOT 
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HPLC quantitation of trigonelline, nicotinic acid and caffeine. This study concluded that only 

trigonelline and caffeine could be useful for discrimination among different samples. More 

recently, Consonni et al. (2012) performed an 1H-NMR-based PCA and PLS study also with the 

aim to develop a model for the geographical differentiation of C. arabica roasted coffees from 

three main production areas, Africa, Asia and America, which includes two Peruvian coffees. 

Their results indicate that fatty acids, chlorogenic acid, lactic acid, acetic acid and trigonelline 

where useful for sample separation according to geographical origin. 

 

The PCA application developed by Wei et al. (2012 a) used 13C-NMR data to study the evolution 

of chemical composition of the coffee bean during the roasting process. The PCA score plot 

resulting from these studies is shown in Figure 2.8, where a clear distribution of the coffee 

samples according to their roasting degree can be observed. This approach allowed them to 

identify chlorogenic acids, trigonelline and 1-methylpyridinium as chemical markers of the 

roasting process. 

 

 

 

Figure 2.8. PCA score plot reported by Wei et al. (2012 a) from the 13C-NMR spectra data of 
coffee samples with 3, 5, 7, and 9 min of roasting. 

 

 

2.4. Summary of the strategy selected for the quantitation of compounds identified as 

chemical markers in roasted coffee 

 

Scheme 2.3 summarizes the strategy that will be applied in the present study for the investigation 

of different Peruvian specialty roasted coffees. In the experimental section that follows, all the 

steps of the procedures will be described. The specialty coffee samples will vary in roasting 

degrees and in origin. An instant coffee sample is included for comparison purposes.   
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In general, the methodology selected for this study involves NMR, HPLC-DAD, LC-MS and 

PCA analysis, as shown in Scheme 2.3. 

 

For the 1H-NMR study, structural analysis (2D-NMR experiments) and pulse sequence selection 

(1D-CPMG and / or NOESY-Presat) will be addressed to determine the best acquisition 

parameters (T1, RG, NS) for the identification and quantitation of the selected quality markers 

present in the coffee extract. This requires a specific NMR-sample preparation. The results 

obtained from the NMR experiments, identification of the major compounds present in the coffee 

extracts, will lead the HPLC-DAD study in terms of column, wavelength selection and elution 

gradients,  in order to separate and quantitate the compounds of interest. The selective separation 

will be confirmed by LC-MS. In the case that the 1-methylpyridium ion is present in the coffee 

extracts under study, the use of a phenyl-hexyl-Luna C18 column will be required (Maruenda et 

al., 2012).  

 

Finally, all of the data, qualitative and quantitative, will be analyzed by PCA.  
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Scheme 2.3. Strategy for the analysis of roasted coffee. 
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3. MATERIALS AND METHODS 

 

 

3.1. Chemicals, materials and equipment 

 

Chemicals: Pyridine (anhydrous, 99.8%), iodomethane and the standard compounds, trigonelline 

hydrochloride, caffeine, nicotinic acid and chlorogenic acid (5-caffeoylquinic acid, # 127K1640) 

were purchased from Sigma-Aldrich. 1-Methylpyridinium iodide was synthesized by Alonso 

Arguelles following a literature procedure (Son et al., 2009). Oxalic acid was acquired from 

Mallinckrodt and di-sodium oxalate salt, from Merck. Methanol (HPLC-grade) was purchased 

from J.T. Baker, Co., and the water for HPLC and LC-MS analyses was MilliQ purified. 

Deuterated water and 3-trimethylsilyltetradeuteropropionic acid sodium salt (TSP) were 

purchased from Merck. 

 

Materials: Five different roasted coffees were obtained from three different producers. APU 

Espresso, APU Gourmet and APU Classic were kindly supplied by CENFROCAFE-PERU (Jaen-

Cajamarca, Peru) and differ from each other in quality and degree of roast. Two Huayabamba 

coffees with different roasting degrees (Espresso and House) were purchased in a local market. A 

commercial brand of instant coffee was also included in the study. 

 

Equipment: All of the samples were lyophilized using a LABCONCO, Freeze Dry System / 

FreeZone 4.5.  

 

One dimensional (1H-NMR, 13C-NMR) and two dimensional (COSY, HSQC, HMBC, TOCSY) 

NMR experiments were performed on a Bruker AVANCE - III 300 spectrometer using a broad 

band probe tuned to detect  1H-NMR resonances at 300.13 MHz and 13C resonances at 75.46 

MHz. All spectra were acquired and processed using Bruker TopSpinTM 2.1 software (Bruker 

BioSpin GmbH). 

 

HPLC analyses was performed using an Agilent 1200 series-DAD equipped instrument with a 

binary pump unit (G1312A), UV-VIS detector (G1315D), degasser (G1379B), column oven 

(G1316A), and an auto-sampler (G1329B), controlled by Chemstation software LC3D (Agilent 

Technologies,  Inc.). The column used was a Phenyl-hexyl Luna (250 x 4.6 mm, 5 μm, 

Phenomenex).  
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The LC-MS experiments were carried out on a Bruker Daltonics Esquire 6000 Ion-Trap mass 

spectrometer controlled by Compass 1.3 for Esquire / HCT software (Bruker Daltonik GmbH) 

with electrospray ionization (ESI). The HPLC system was the same as described for the HPLC - 

DAD.  

 

 

3.2. Methodology 

 

3.2.1. Extraction protocol for coffee samples 

 

Twenty grams of roasted coffee bean samples were ground into a fine powder using an electric 

grinder (Sigma - Aldrich, model Z278181). Fourteen grams of the ground material were 

extracted, under constant stirring, with 40 mL of boiling water for 5 min in a closed plastic tube. 

The extract was quickly cooled in an ice bath for 15 min and then centrifuged (3500 x g) for 60 

min at -10 °C. The turbid supernatant was lyophilized. Instant coffee was employed directly, 

without the extraction treatment. All coffee extracts were stored at -30°C after drying to preserve 

them for future analysis. 

 

 

3.2.2. NMR analysis  

 

3.2.2.1. Sample preparation 

 

All samples, standards and dried coffee extracts (3.2.1), were treated according to a previously 

reported protocol (Son et al., 2009), with minor modifications. Sixty milligrams of ground coffee 

were dissolved in 1 mL of 100 mM oxalate buffer (pH 4.0) and the solution was lyophilized until 

complete dryness (48 hours). The lyophilized material was re-dissolved in D2O (1 mL) and 

lyophilized a second time (48 hours). Finally, the dry powder was taken into a final volume of 1 

mL with D2O and mixed with 100 μL of TSP-D2O solution (3 mM).  For quantitative NMR 

analysis, 600 μL of each sample was placed in a 5 mm diameter NMR tube. 

 

3.2.2.2. NMR experiment 

 

Deuterated water was used to lock the field frequency, and TSP was employed as internal 

reference. All samples were individually tuned and matched and data were collected at room 

temperature (~22 °C). 
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Pulse Sequence: An inter-pulse delay of 150 ms, and a T2 value of 0.8 ms, were used for  the 1D-

CPMG (Carl Purcell Meiboom Gill) pulse sequence. The NOESY-Presat pulse sequence was 

applied to suppress the residual water signal. The transmitter frequency offset (O1) was optimized 

for each sample. 

 

Acquisition Parameters: The longitudinal relaxation time (T1) was calculated using the inversion 

recovery NMR sequence. This value was optimized for the extract and the standard samples. 

Inversion delays used for recovery experiment were in the range of 0.5 to 60 s. The relaxation 

delay (D1) was set to five times the longest longitudinal relaxation time (5 x T1). The number of 

scans was 32 and spectra were acquired with a receiver gain (RG) at a constant value of 90.5. A 

pre-scan delay of 10 μs was used. All other parameters were kept as set by the default. The time 

involved in the acquisition of each spectrum was 11 min. Two-dimensional experiments were 

performed with default parameters. All spectral data were collected at 64 K data points with a 

spectral width of 6188 Hz, using a 90° pulse length (9 μs pulse width). 

 

Processing: Fourier transformation was performed with an exponential line broadening (LB) of 

0.3 Hz for 1H and 1.0 Hz for 13C 1D NMR experiments. Phase and baseline correction were 

achieved manually, using Topspin 2.1 NMR software and ACD / NMR Processor 12.01 

(Academic Edition).  

 

3.2.2.3. 1H-NMR standard calibration curves 

 

Five different solutions containing standard compounds at various concentrations were prepared 

using D2O as solvent. The concentration range, expressed in mg / mL for each compound, was as 

follows: 0.237 – 2.001 for trigonelline, 0.119 – 1.011 for 1-methylpyridinium iodide, 0.417 – 

3.529, for caffeine, and 0.144 – 1.220 for 5-CQA. All solutions contained TSP-D2O solution (3 

mM). 

 

The calibration curves were obtained by plotting the ratio between the peak area of the selected 

signal against that of TSP, with respect to the standard concentration in μg / mL. The linearity 

was checked by regression analysis of five different concentrations, and repeatability was 

assessed by two independent measures for each concentration, and five measures at a given 

concentration of each standard. The calibration curve was validated with an independent solution 

containing known amounts of each standard.  
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3.2.2.4.  NMR analysis of coffee samples  

 

Structural assignment: 1D and 2D-NMR spectroscopy (COSY and edited-HSQC) were used to 

assign the structures of the compounds present in the coffee aqueous extract, and in the mixture 

of standard compounds.    

 

Quantitative methods: Reproducibility of the NMR data acquisition, and the processing 

parameters of real samples, were assessed by five repeat measurements of each extract. For this 

purpose, 60 mg of the dry coffee extract was treated as described in 3.2.2.1 and the mean peak 

area and standard deviation were calculated. Two different methods were employed to determine 

the concentration of selected compounds in coffee extracts: standard calibration curves (3.2.2.3) 

and ERETIC2. For ERETIC2 quantitation, a quinic acid / D2O solution (1500 μg / mL) was 

employed as the reference sample for electronic calibration. For 90° pulse optimization, the pulse 

width was determined for three different signals, and was set to 1/4 of the 360° pulse length at 

which the signals are null (integral equal to 0) A 600 Hz width was employed. The determined 

value was employed to perform the NOESY-Presat sequence. 

 

 

3.2.3. HPLC analyses 

 

The mobile phase employed for separation was a mixture of two solvents: A (0.3% aqueous 

formic buffer, pH 2.4) and B (MeOH). The gradient elution program was: 0 - 10% B in 5 min, 10 

- 25% B in 8 min, 25% for 3 min, 25 - 35% B in 6 min and 35 - 40% B in 8 min (total recording 

time = 30 min). The flow rate was 1 mL / min and the separation temperature was 30 °C. 

Nicotinic acid and 1-methylpyridinium were monitored at 260 nm, trigonelline and caffeine at 

270 nm, and 5-CQA at 330 nm. The injection volume was 10 μL. All samples were filtered 

through a 45 μL syringe filter (Millipore, Germany) prior to analysis.  

 

 

3.2.3.1. HPLC method validation 

 

The HPLC method was validated according to ICH requirements (ICH, 1996). The external 

calibration curves were prepared with solutions containing standard compounds in the following 

ranges expressed in μg / mL: 27 - 217 for 1-methylpyridinium, 50 - 402 for trigonelline, 1.9 - 15 

for nicotinic acid, 30 - 241 for 5-CQA, and 90 - 722 for caffeine. The linearity was checked by 

regression analysis of five different concentrations of each compound. Intraday and interday 
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precision were confirmed by performing injections on the same day (n=5) and over five different 

days, respectively, at a given concentration of each compound. Limit of detection (LOD) and 

limit of quantitation (LOQ) values were obtained from highly diluted solutions, assuming signal-

to-noise ratios (S / N) of 3 for LOD and 10 for LOQ. 

 

3.2.3.2. Qualitative analysis of aqueous extracts by LC-MS 

 

The ESI - MS operating conditions for the positive ionization mode were: drying gas (N2) flow, 

12 L / min; nebulizer pressure, 65 psi; gas drying temperature, 350 oC; capillary voltage 4000 V, 

scan mode m/z 50 – 500; injection volume, 10 μL. For the negative ionization mode, conditions 

were as described for the positive mode, but with a voltage of 3800V. The elution program was 

the same as that employed for HPLC analysis.  

 

3.2.3.3. HPLC analysis of coffee samples 

 

For quantitative analysis, 12 mg of each coffee extract (3.2.1) was diluted with MilliQ water to a 

final volume of 1 mL and then filtered through a 0.45 μm syringe filter (Millipore, Germany) and 

injected in to the HPLC as described in 3.2.3. Each sample was evaluated in triplicate. 

Quantitative determination of selected compounds was achieved from the calibration graphs 

(3.2.3.1).  

 

 

3.2.4. Principal Component Analysis (PCA) 

 

3.2.4.1. PCA of 1H-NMR results 

 
1H-NMR spectral data of coffee extracts were reduced into 0.002 ppm spectral buckets 

employing a simple rectangular bucket method with AMIX Software Viewer 3.9, 2009 (Bruker 

BioSpin). The water suppressed region (4.7 to 5 ppm) was excluded, and the reference regions, 

left and right, were set at 10 and 0.3 ppm, respectively. The integration mode of intensities option 

was set as the sum of intensities, and the one used for scaling was scaled to maximum intensity. 

The resulting bucket tables were then imported to MATLAB 7.11 software (Matworks, Inc., 

Natick, MA) for further multivariate statistical analysis. Prior to PCA, all spectra were aligned by 

the Icoshift tool (Savorani, et al., 2010) and then scaled using Pareto scaling. A confidence 

ellipse in the score plots defined the 95% confidence interval of the model. 
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3.2.4.2. PCA of HPLC results 

 

Principal component analysis of the HPLC results was performed employing a table elaborated 

on Microsoft Excel (Microsoft Office, 2010), containing information on the concentration of the 

evaluated standards for each coffee extract, calculated from the standard calibration graphs. The 

data was processed with MATLAB 7.11 software (Matworks, Inc., Natick, MA) as described in 

3.2.4.1. 
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4. RESULTS AND DISCUSSION 

 

 

Six types of commercial coffee brands were selected for the present study, five of which are 

considered specialty coffees. This denomination is associated with the privileged environmental 

conditions where they grow, in terms of altitude, microclimate and soil. Table 4.1 summarizes 

the principal characteristics of these five Peruvian specialty coffees. The sixth coffee type was a 

commercial instant coffee brand, selected for comparison purposes. 

 

Table 4.1. Characteristics of the Peruvian specialty coffees under study. 
 

Coffee brand Location Coffea species Growing altitude 
(m.a.s.l.) 

Cup score Roasting 
time 

APU Gourmeta Cajamarca C. arabica >1600 88-90 t1b 

APU Classica Cajamarca C. arabica 1200-1600 86-87 t1b 

APU Espressoa Cajamarca C. arabica 1200-1600 86-87 t1b + 2 min 

Huayabamba coffee a Amazonas C. arabica 1400-2100 n.kc t2b 

Huayabamba coffee b Amazonas C. arabica 1400-2100 n.kc t2b + 2 min 
a APU brand provided by CENFROCAFE, Jaen-Peru; b proprietary information; c n.k = not known  

 

 

The difference between APU Gourmet and APU Classic / APU Espresso is based on the different 

growing altitudes, whereas APU Classic and APU Espresso differ in roasting time, as do 

Huayabamba coffees, a and b. 

 

The cup score values in Table 4.1 are the result of the sensory tests (cupping) performed by the 

CENFROCAFE team. These tests evaluate specific flavor attributes, including fragrance/aroma, 

acidity, sweetness, body, aftertaste and balance. According to the Specialty Coffee Association of 

America (SCAA, 2009), a final scoring greater than 80 is considered a specialty coffee.   

 

Taking into consideration that the altitude and the roasting conditions do affect the quality of 

coffee (Farah and Donangelo, 2006; Neves et al., 2012), this work is centered on a chemical 

analysis that will allow differentiation among all of the six coffee samples in terms of grades of 

coffee roasting and quality by monitoring certain chemical markers. The approach followed 

utilizes a HPLC validated methodology to support a non-classical, nuclear magnetic resonance 

(NMR) spectroscopy-based quantitative method.   
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Hence, the selection of an appropriate coffee extraction protocol, followed by the implementation 

of quantitative NMR methodology (optimization of NMR parameters) was required for the 

chemical analysis proposed. 

 

 

4.1. Extraction protocol 

 

All of the samples were ground and extracted with hot water (14 g / 40 mL) at 95 °C for 5 min, 

after which centrifugation (rpm 3500 g; T = -10 °C; t = 60 min) was used to separate the solid 

material from the aqueous extract. The results obtained for the five samples are shown in Table 

4.2. It is clear from the Table that the extracted volume (14 - 16 mL) and the dried coffee extract 

mass (1.017 - 1.356 g) are comparable for all of the samples. 

 

Table 4.2. Final volume and mass values of coffee extracts for the developed extraction protocol.  
 

Coffee brand Supernatant volume (mL)   Dried aqueous extract mass (g) 

APU Gourmet 14.00 
 

1.017 

APU Classic 14.50 
 

1.094 

APU Espresso 16.00 
 

1.121 

Huayabamba coffee a 15.50 
 

1.356 

Huayabamba coffee b 15.90 
 

1.247 

 

 

When a different extraction protocol was tried, using a domestic espresso coffee maker, at a 

constant extraction time (20 s), and having ground identically an exact weight of coffee beans, 

the final volume of the coffee extract varied dramatically (15 – 30 mL). These erratic results may 

be due to the inability to control the tamper pressure in this non-professional coffee maker. This 

method was therefore not further considered in developing an extraction protocol. 

 

 

4.2. Quantitative determination by NMR  

 

4.2.1. NMR sample preparation 

 

In any NMR sample preparation, due to the low sensitivity of this spectroscopic method, 

concentration is a parameter that must be defined early in the study. Highly diluted samples will 

produce signals with a low S/N ratio. On the other hand, samples which are highly concentrated 
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will induce signal broadening, which affects the resolution and makes structure determination 

more difficult (Mannina et al., 2012). The concentration needs to be optimized, and in 

consequence, the solvent used to prepare the NMR sample is critical. Given that coffee extracts 

have a good solubility in water, D2O was employed for the NMR analysis. The optimal sample 

concentration was set to 60 mg / mL of D2O. 

 

Considering that many of the coffee constituents are organic acids, the pH of the NMR solution 

needs to be controlled to minimize chemical shift variation. According to a literature review 

(Mannina et al., 2012), two different buffers are commonly used for NMR food sample 

preparation: a phosphate buffer, which stabilizes pH in the range 6 to 7, and an oxalate buffer, for 

a pH = 4. Hence, due to the nature of the various organic acids involved (chlorogenic, citric, 

formic, quinic, among others), oxalate buffer was chosen for the study performed here.  

 

In summary, as described in section 3.2.2.1, 60 mg of the lyophilized coffee extract was 

suspended in 1 mL of oxalate buffer. The lyophilized sample was re-dissolved in D2O and then 

lyophilized for a second time. This protocol assures the maximum proton-deuterium exchange 

while keeping the pH constant. As shown in Figure 4.1, a sample not treated with buffer, and not 

lyophilized with D2O (A in Figure 4.1), shows lower resolution than an oxalate - D2O treated 

sample (B in Figure 4.1). 

 

 

 

 
 

Figure 4.1. Typical 1H-NMR spectrum of a coffee sample without (A) and with (B) oxalate-D2O - 
sample treatment.  

 

H2O/HOD 

H2O/HOD 

 

citric acid 

citric acid 

A 

B 
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4.2.2. Spectral assignment of metabolites in roasted coffee samples 

 

All structural assignments within the coffee extract spectra were verified by two-dimensional 

NMR techniques, such as COSY and edited-HSQC. The results were corroborated with the 

available literature for some of the compounds (Wei et al., 2011; Wei et al., 2012). This approach 

allowed for the simultaneous recognition of eleven compounds known to be associated with the 

flavor and aroma of coffee in the aqueous extracts (Casal et al., 2000 a,b, Clarke and Vitzthum, 

2001; Stadler et al., 2002 a,b). Other spinsystems were also detected, but could not be assigned. 

Detailed information regarding the structures and the signal assignments is available in Figure 

4.2 and Tables 4.3 and 4.4.  

 
It is clear from Figure 4.3 that the region between 1 and 5 ppm is very complex due to the strong 

overlap between the signals from various metabolites in the matrix, and also to signal broadening. 

The latter may be due to the presence of very high molecular weight compounds, such as 

melanoidins, derived from the Maillard reaction (Borreli et al., 2002; Wei et al., 2011), 

polysaccharides and proteins. The presence of these macromolecules complicates the spectral 

assignment of signals in this region. Despite this, seven compounds were identified in this region 

of the NMR spectrum (Figure 4.3). 

 

 

 

 
Figure 4.3. Expanded 1H-NMR region (1 - 5 ppm) of a representative coffee extract under study. 
Compounds identified: T (trigonelline), MP (1-methylpyridinium), Qa (quinic acid), La (lactic 
acid), C (caffeine), Ca (citric acid), Aa (acetic acid). 
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Figure 4.2. 1H-NMR spectrum of a representative coffee extract sample. Compounds identified: T (trigonelline), N (nicotinic acid), MP (1-
methylpyridinium), Fa (formic acid), C (caffeine), CQA (caffeoylquinic acid), 4C (4-caffeoylquinic acid), 5C (5-caffeoylquinic acid), Qa (quinic acid), La 
(lactic acid), Ca (citric acid), Aa (acetic acid). 
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Table 4.3. ¹H-NMR assignments of standard compounds identified in the coffee 
studied. 

Metabolite Assigment  δH  (multiplicity)  Structure 

Acetic acid (Aa)   H-2 2.30 (s) CH3CO2H 

Caffeine (C) 

  H-8 8.09 (s)   

  N7-CH3 3.77 (s) 

  N1-CH3 3.32 (s) 

  N3-CH3 3.15 (s) 

5-Caffeoylquinic acid 
(5C) 

  H-2 

  H-8 

  H-4 

  H-5 

  H-1 

  H-10 

  H-12 

  H-11 

  H-15, H-13 

7.42 (d, 16.0 Hz) 

7.01 (d 3.0 Hz) 

6.94 (dd 6.0, 3.0 Hz) 

6.78 (d, 6.0 Hz) 

6.17 (d, 15.0 Hz) 

5.15 (m) 

4.12 (m) 

3.75 (dd 9.0, 3.0Hz) 

2.06 (m) 

 

Citric acid (Ca) 
  H-1a, H-3a 
 
  H-1b, H-3b 

2.90 (d, 15.6 Hz) 
 
2,72 (d, 15.6 Hz) 

  

Formic acid (Fa)   H-1 7.74 (s) HCO2H 

Lactic acid (La) 
  H-1 
 
  H-2 

4.24 (q, 12.0, 6.0 Hz) 
 
1.28 (d, 6.0 Hz) 

  

1-Methylpyridinium 
(MP) 

  H-2/H-6 8.67 (d, 6.2 Hz)   

  H-4 8.41 (t, 6.9 Hz) 

  H-3/H-5 8.02 (t, 6.9 Hz) 

  N-CH3 4.33 (s) 

Nicotinic acid (N) 

  H-2 9.12 (s)   

  H-6 8.88 (dt, 6.0 3.0 Hz) 

  H-4 8.31 (d, Hz) 

  H-5 7.58 (t, Hz) 

Quinic acid (Qa) 

  H-5 4.03 (q, 3.5 Hz)   

  H-3 3.91 (m) 

  H-4 3.42 (dd, 4.6, 3.4 Hz) 

  H-2a/H-6a,b 1.96 (m) 

  H-2b 1.79 (dd, 13.4, 11.0 Hz) 

Trigonelline (T) 

  H-2 9.21 (s)   

  H-4, H-6 8.82 (m) 

  H-5 8.02 (dd, 6.4 Hz) 

  N-CH3 4.33 (s) 
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Table 4.4. ¹H-NMR assignments of compounds in the aqueous coffee extracts.  

Metabolite   Assigment δH  (multiplicity)  Structure 

Acetic acid (Aa)   H-2 2.29 (s) CH3CO2H 

Caffeine (C) 

  H-8 7.79 (s)   

  N7-H 3.85 (s) 

  N1-H 3.40 (s) 

  N3-H 3.24 (s) 

5-Caffeoylquinic acid 
(5C) (Wei et al., 2010) 

  H-2 
 
  H-5 
 
  H-1 

7.47 (d, 16.0 Hz) 
 
6.92 (d, 6.0 Hz) 
 
6.25 (d, 16.0 Hz) 

  

Citric acid (Ca) 

  H-1a, H-3a 2.81 (d, 15.61 Hz)   

  H-1b, H-3b 2.68 (d, 15.61 Hz) 

Formic acid (Fa)   H-1 8.45 (s) 

 
HCO2H 

Lactic acid (La) 

  H-1 4.15 (b)   

  H-2 1.35 (d, 6.98 Hz ) 

1-Methylpyridinium 
(MP) 

  H-2/H-6 8.78 (d, 6.19 Hz)   

  H-5/H-3 8.02 (b) 

  H-4 8.53 (t, 7.75 Hz) 

  N-CH 4.39 (s) 

Nicotinic acid (N) 

 
  H-2 
 
  H-6 
  

9.06 (s) 
 
8.63 (d, 8.20 Hz) 

  

Quinic acid (Qa) 

  H-5 4.15 (m)   

  H-3 4.06 (m) 

  H-4 3.55 (dd, 9.32, 3.25 Hz) 

  H-2a/H-6a,b 2.05 (m) 

  H-2b 1.88 (dd, 10.64, 11.2 Hz) 

Trigonelline (T) 

  H-2 
 
  H-4, 6 
 
  H-5 
 
  N-CH3 

9.12 (s) 
 
8.83 (d, 7.2 Hz) 
 
8.09 (t, 7.06 Hz) 
 
4.44 (s) 
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Signals pertaining to lactic acid, acetic acid and quinic acid were identified in the region from 1 

to 2 ppm. The methyl group (H-2) of lactic acid (La) shows a distinctive doublet at 1.35 ppm. 

This signal overlaps with a broad signal which could not yet be assigned, and it correlates in the 

COSY spectra (Figure 4.4) to the H-1 multiplet signal at 4.15 ppm (orange circle, Figure 4.4). 

Both CH and CH3 are confirmed as blue cross peaks in the HSQC spectra (Figure 4.5). Acetic 

acid (Aa) was identified by spiking through its distinctive singlet at 2.29 ppm, a signal that 

decreased substantially after the lyophilization treatment, as shown in Figure 4.6. 

 

After a meticulous J-value analysis, the methylene groups of quinic acid (Qa) were assigned to 

the multiplets at 1.88 and 2.05 ppm (H-2, H-6), and associated with red cross-peaks in the HSQC 

spectrum (green circle in Figure 4.5). These protons correlate in the COSY spectra to both the 

multiplet at 4.15 ppm (H-5) and the doublet of doublets at 4.06 ppm (H-3) (red circle in Figure 

4.4), and both signals were associated with the blue cross-peaks in the HSQC spectra (red circles 

in Figure 4.5). The doublet of doublets for H-3, in turn, correlates with the multiplet at 3.55 ppm 

(H-4) (red circle in Figure 4.4). 

 

Citric acid (Ca) was identified by its characteristic and well-defined doublet of doublets between 

2.7 – 2.8 ppm, which corresponds to the two equivalent methylene groups (H2-1, H2-3) adjacent 

to the carboxylic acid groups. The methylene identity of the signal was confirmed by the red 

cross-peaks in the HSQC spectra (green circle in Figure 4.5) and by J value comparisons against 

a citric acid standard sample (15.6 Hz). It is important to highlight at this point that the sample 

treatment developed for this study has allowed, at 300 MHz, a well-defined and resolved citric 

acid signal whereas previous results by Wei et al. (2011), using a higher field magnet (500 MHz), 

and with the sample under phosphate buffer conditions, resulted in broad signals which were 

attributed to the presence of metal-citrate complexes. 

 

The methyl groups of caffeine, trigonelline and the 1-methylpyridinium ion (Figure 4.3), 

covalently bound to a heteroatom, were identified in the region from 1 to 5 ppm: singlets at 3.86 

(N7-H), 3.43 (N1-H) and 3.26 (N3-H) ppm for caffeine, at 4.43 ppm (N1-H) for trigonelline, and 

at 4.39 ppm (N1-H) for the  1-methylpyridinium cation. All of these signals show blue cross-

peaks in the HSQC spectra (purple circles in Figure 4.5). HSQC also allows for the assignment 

of the carbons directly bonded to these protons. The 13C-NMR signal assignments for this region 

are noted in Figure 4.5. The assignment of these protons was further confirmed by their 

correlation to adjacent aromatic protons using the COSY spectrum (blue, purple and black 

circles, respectively, in Figure 4.4).  
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Figure 4.4. COSY spectrum of a 
representative roasted coffee 
extract under study. 
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Figure 4.5. High field region of 
the HSQC spectrum of a 
representative roasted coffee 
extract under study. 
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Figure 4.6. Expansion of the 1H-NMR spectrum of a coffee extract from 0 to 3 ppm with (A) and 
without (B) lyophilization treatment. 

 

 

Signals in the region from 6 to 10 ppm are better resolved (Figure 4.7) and less overlapped than 

those at higher field (Figure 4.3). These signals are well-reported, and were assigned to the 

aromatic protons from caffeine, trigonelline, 1-methylpyridinium and nicotinic acid, the olefinic 

protons of caffeoylquinic acids (CQAs), and the non-carboxylic proton of formic acid. The 

multiplets at 8.1 – 8.3 ppm and 7.8 – 7.9 ppm and the singlet at 6.5 ppm could not be identified. 

 

 

Figure 4.7. Expanded 1H-NMR spectrum expansion from 5 to 10 ppm of a representative coffee 
extract under study. Compounds identified: T (trigonelline), N (nicotinic acid), MP (1-
methylpyridinium), Fa (formic acid), C (caffeine), CQA (caffeoylquinic acid), 4C (4-
caffeoylquinic acid), 5C (5-caffeoylquinic acid). 

 
 
 

Trigonelline in the coffee extract shows three signals in this region instead of four, as in the 

individual standard (Table 4.3), a singlet at 9.12 ppm (H-2), a doublet (which integrates for two 

(A) (B) 
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protons with respect to H-2) at 8.82 ppm corresponding to the aromatic protons H-4 and H-6, and 

a triplet at 8.09 ppm corresponding to H-5. All of these signals correlate to each other, and to the 

singlet at 4.44 ppm in the COSY spectrum (Figure 4.4). The doublet at 8.77 ppm, which 

corresponds to the protons H-2 and H-6 of 1-methylpyridinium, overlaps with a signal associated 

with trigonelline. This doublet correlates to a triplet at 8.04 ppm which corresponds to H-3 and 

H-5 in 1-methylpyridinium. The latter also overlaps with a signal from trigonelline. The triplet at 

8.52 ppm corresponds to the H-4 proton, and, as expected, correlates in the COSY spectrum with 

the triplet at 8.04 ppm. The only aromatic proton of caffeine is seen as a singlet at 7.82 ppm (H-

8), correlating with the N7-methyl group at 3.86 ppm. Singlets at 9.04 (H-2) and 8.45 (H-1) ppm 

confirm the presence of formic acid and nicotinic acid, respectively. Those assignments were 

corroborated through a careful spiking experiment. As shown in Figure 4.8, the formic acid 

signal was also diminished after lyophilization.              

                

 
Figure 4.8. Expanded region of the 1H-NMR spectra (7 - 9 ppm) of the coffee extract sample 
with (A) and without (B) lyophilization treatment (the spectra are on the same scale). 
 

 

Given that only the isomer 5-CQA (5C) is available commercially, the assignment of the other 

chlorogenic acid isomers, 4-CQA (4C) and 3-CQA (3C), was made by studying the detailed J 

value and chemical displacement analysis reported by Wei et al. (2010) for green coffee and 

considering their relative abundance (see Table 1.4). For 5-CQA it was possible to assign the two 

doublets at 6.25 ppm and 7.47 ppm as corresponding to the olefinic protons H-1 and H-2, and an 

additional doublet at 6.92 ppm corresponding to the aromatic proton H-5 (Table 4.4). The 

distinction between H-1 and H-2 was possible from the analysis of the HSQC spectrum (Figure 

4.9). From this data it is clear that H-1 correlates with a carbon signal at 115 pm, whilst H-2 

correlates with at 146 ppm due to the influence of the aromatic group. 

(A) (B) 



54 
 

The 13C-NMR assignments of the carbons directly bonded to the protons discussed above were 

also made from the HSQC spectral analysis (Figure 4.9).  

 

 

 

Figure 4.9. HSQC spectrum expansion from 6 to 9.5 ppm of a representative roasted coffee bean 
extract. 

 

 

In summary, from the above analysis, it is apparent that there are non-overlapped signals in the 

region 6 – 10 ppm of the 1H-NMR spectrum which may be useful for quantitation purposes. Even 

though formic acid is an intense signal and free from overlap, the lyophilization treatment affects 

its intensity in a non-consistent manner, thereby making it impossible to be used in this study for 

quantitation purposes in this study.  

 

In Figure 4.10, the selected signals for each particular compound of interest are depicted. In the 

case of 5-CQA, the doublet at 6.25 ppm is somewhat overlapped with other signals, including 

those of 4-CQA. Being the only signal amenable for quantitation, it will be used in these studies. 

The results will establish its suitability for quantitative use.  
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Figure 4.10. Chemical structures of compounds 1 - 5 under study (the protons employed for 1H-
NMR quantitation are labeled with circles).  
 

 
 

Having selected the NMR signals of interest in the coffee extract spectra, the spectral acquisition 

parameters need to be optimized. 

 

 

4.2.3. NMR pulse sequence selection: CPMG vs. NOESY-Presat 

 

Signal broadening, caused by the presence of high molecular weight compounds in the coffee 

extract, affects the signal resolution of small molecules (Wei et al., 2011). The 1D-CPMG pulse 

sequence was evaluated for the quantitative study of coffee extracts with the aim to reduce this 

signal broadening. This technique allowed filtering of the background contributions of the high 

molecular weight compounds, which display broader resonances than the smaller molecules due 

to their shorter transverse relaxation times (T2) (Claridge, 2009). Through this technique, the 

signals of the fast diffusing species, i.e. the larger compounds, are attenuated or removed, whilst 

the resonance of the smaller molecules are less affected.  In Figure 4.11, the 1D-CPMG spectrum 

of a representative coffee extract is compared to that of the 1H-NMR spectrum using the default 

parameters.  

Trigonelline 
(s, 1H, 9,12 ppm) 

(2) 

Nicotinic acid 
(s, 1H, 9,06 ppm) 

(4) 

1-methylpyridinium 
(t, 1H, 8.53 ppm) 

(3) 

Caffeine 
(s, 1H, 7.82 ppm) 

(1) 

5-CQA 
(d, 1H, 6.25 ppm) 

(5) 
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Through 1D-CPMG analysis, the signals are better resolved: they are sharper and therefore more 

intense (better S/N). However, a closer inspection of the region from 5 to 10 ppm revealed that 

the caffeine and the chlorogenic acids signals are severely compromised. This could be explained 

if the T2 values of these molecules were similar to those of the high molecular weight molecules 

(Claridge, 2009). Therefore, the 1D-CPMG acquisition protocol, at the default values used, is not 

a suitable tool for quantitation. 

 

 

 

 

 
Figure 4.11. Original zg spectra (A) and 1D-CPMG spectra (B) of a representative roasted coffee 
bean extract. 

 

 

The NOESY-Presat sequence was employed to minimize the broadening due to the water signal. 

The pulse sequence involved the irradiation of the frequency associated to the nucleus of interest 

(H-O-D, H2O) prior to the excitation and acquisition steps (Claridge, 2009). By suppressing the 

solvent peak signal, the baseline and the overall resolution of the 1H-NMR spectrum are 

improved. The signals adjacent to the solvent frequency are inevitably affected (Figure 4.12), but 

none of the signals of interest in this study (the lower field region) pertain to that area of the 

spectrum, so its potential for quantitative purposes is not diminished by this experimental NMR 

manipulation. 

 

(A) 

(B) 

caffeine 

CQAs 

caffeine 

CQAs 
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It is known that pre-saturation sequences such as NOESY-Presat, also alters exchangeable proton 

signals. However, the sample preparation undertaken (pH control by the use of oxalate buffer and 

full deuterium exchange by previous treatment with D2O followed by lyophilization) may 

diminish this attenuation. All of the NMR data acquisition, including that used for quantitative 

NMR purposes, was performed with this NOESY-Presat sequence. 

 

 

 

 

Figure 4.12. Original zg spectrum (A) vs. the NOESY-Presat spectrum (B) of a representative 
roasted coffee bean extract. 

 
 
 

4.2.4. Optimization of acquisition parameters  

 

The 1H-NMR parameters were optimized to assure maximum relaxation of the proton nuclei 

under study after each data acquisition and to maximize resolution.  

 

(A) 

(B) 
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The inversion recovery NMR pulse sequence was employed to determine the longitudinal 

relaxation time (T1) for the proton signals selected. The T1 values were calculated in the two 

types of sample environments: a mixture of standard compounds and the aqueous coffee extract. 

Table 4.5 shows the T1 values obtained. 

 

Table 4.5. Longitudinal relaxation times (T1) for compounds 1 – 5 using a pulse width of 9 μs. 
 

Compound δa (ppm) T1 (s, coffee sample) T1 (s, standard mixture) 

Trigonelline 9.124 1.000 5.623 

Nicotinic acid 9.061 n.db 8.541 

1-Methylpiridinium 8.588 1.979 6.401 

Caffeine 7.821 1.183 6.080 

5-Caffeoylquinic acid 6.252 1.189 0.728 

TSP 0.000 1.456 2.793 
a Chemical shift of the signal used for quantitation 
b n.d = not determined due to the very low intensity of this signal in the coffee extract 

 

 

As can be seen, there is a substantial difference between the T1 values in these two types of 

samples. One possible explanation for this behavior could be related to the presence of 

paramagnetic metal ions in these complex coffee extracts that might be acting as relaxing agents. 

This statement is supported by literature reports that have demonstrated, through elemental 

analysis studies (ICP), that the roasted coffee bean samples contain metal ions such as copper(II) 

(1 - 20 ppm) and iron(III) (2 - 30 ppm) (Anderson and Smith, 2002; Ali-Mohamed and Khamis, 

2004), both metals are well-known as relaxing agents in NMR spectroscopy (Claridge, 2009).  

 

Theoretically, it is recommended for NMR-quantitative purposes that the relaxation delay (D1) be 

at least five times the longest T1 value found in the sample under study. This guarantees 99.3 % 

recovery of longitudinal magnetization (Claridge, 2009). The longest T1 value attained in the 

study, Table 4.5, is that of the 1-methylpyridinium ion, 1.979 s, therefore, a D1 value of 12.5 s 

was set for all coffee samples. However, considering that T1 of the nicotinic acid standard is the 

highest, it is quite possible that its T1 value in the coffee extract may be higher than the one used 

to set D1, hence, affecting the NMR quantitation of nicotinic acid.  

 

In the case of the calibration curves employing the mixtures of standards, D1 was also set to 12.5 

s. This decision was based on the fact that (peak areastd / peak areaTSP) using D1 = 12.5 s and that 

using D1 = 40.0 s (5T1 = 5 × 8.541 s) remain constant in all cases, see Table 4.6. 
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Table 4.6. Absolute areas of the signals from the standard compounds in a mixture 
with two different D1 values.  

Compound δa (ppm) 
Integral 

(D1 = 12.5 s) 
Integral 

(D1 = 40 s) 
Percentage 

difference (%) 

Trigonelline  9.12 15439183 15792931 2.29 

Nicotinic Acid  9.06 935995 941259 0.56 

1-Methylpyridinium  8.53 5984830 5909807 1.25 

Caffeine  7.79 24494732 25437001 3.85 

5-Caffeoylquinic acid 6.25 3678879 3878425 5.42 

a Chemical shift of the signal used for quantitation 

 

 

A number of 32 scans was found to be sufficient to obtain an adequate S/N ratio in the coffee 

extract sample. The receiver gain (RG) was set to 90.5 with the aim to obtain sufficiently intense 

signals to overcome digitization noise and to improve the S/N ratio, without increasing sample 

concentration (Claridge, 2009). All other parameters, such as the number of data points, line 

broadening and spectral width were set as default, as mentioned in the experimental section. The 

values selected for all the parameters allowed for reduction in the spectra recording time without 

compromising resolution. The time involved in the acquisition of each spectrum was 11 min. 

 

Pulse width optimization for the 90° pulses was performed for the signals of 1-methylpyridinium, 

caffeine and trigonelline in order to evaluate its influence in the quantitative aspects of the NMR 

experiment. According to the results shown in Table 4.7, all the signals differ in almost 1 μs 

from the default value (9 μs). Additionally, it can be seen that pulse width is a sample-dependent 

parameter, but it does not change among the different signals, which indicates that, if necessary, 

pulse width optimization can be performed only for one signal. 

 

 

Table 4.7. 90° pulse width optimization for each signal employed for quantitation in the 
different coffee extracts. 
 

Coffee extract 
Pulse width  

1-methylpyridinium (μs) 
Pulse width  
Caffeine (μs) 

Pulse width  
Trigonelline (μs) 

Instant coffee 10.00 10.00 10.00 

Hayabamba coffee a 10.13 10.13 10.13 

Hayabamba coffee b 10.13 10.13 10.13 

APU Espresso 10.00 10.00 10.00 

APU Gourmet 10.00 10.00 10.00 

APU Classic 9.88 9.88 9.88 

Standard mixture 9.65 9.65 9.65 
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4.2.5. Quantitation of selected compounds in various coffee samples 

 

The 1H-NMR spectra of the six coffee extracts under study are shown in Figure 4.13. In general, 

the spectra show a similar profile, and all signals previously assigned by 2D NMR are easily 

recognized.    

 

However, on a closer inspection, an important difference between the specialty coffees and the 

instant coffee (IC) is depicted: the presence of a singlet at 9.44 ppm, two doublets at 7.52 and  

6.68 ppm and a singlet at 5.42 ppm (red arrows in Figure 4.14) which matches with the 1H-NMR 

signals reported by Charlton et al. (2002) in an NMR study of different instant coffees, 

suggesting that these signals might correspond to the aldehydic proton, the furan protons H-3 and 

H-4 and the H-1 methylene proton of 5-hydroxymethylfurfural (5-HMF), respectively (6 in 

Figure 4.13). The presence of 5-HMF, as discussed later, was confirmed in this study by LC-

MS-MS through observation of the ions at m/z = 127 and 109.  

 

The compound 5-HMF has been described by others as a quality marker of deterioration in 

various foods (Perez-Locas and Yaylayan, 2008; del Campo et al., 2010), and hence, its detection 

and quantitation has recently been highlighted as an important issue in quality control programs. 

Moreover, 5-HMF is known to promote hepatocarcinogenic activity in mice (Monien et al., 

2012). Considering the levels reported in instant coffee (0.62 - 6.18 mg / g), and knowing that 

this compound also exists in other dairy products (honey, vinegars, jam, juices), monitoring 5-

HMF in various coffee samples may become important when health issues are taken into 

consideration. Therefore, the quantitation of 5-HMF was embraced in this study. 

 
Much more variation between the 1H-NMR profiles of the coffee samples was observed at the 

higher field regions, from 0 to 5 ppm (Figure 4.14), in particular, the interval from 3.5 to 4.3 

ppm, which is associated with caffeine, quinic acid and polysaccharides. As explained 

previously, due to the complexity of this region, in the present study, none of the compounds of 

interest are addressed in that segment of the spectrum. 

 

Two different quantitative NMR methodologies were used to quantify compounds 1 - 5 (Figure 

4.10), in the coffee samples: the use of standard calibration curves and ERETIC2-based 

quantitation. Compound 6 was quantified only by ERETIC2. A description of the results attained 

follows.  
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Figure 4.13. Expanded 1H-NMR spectra, from 5 to 10 ppm, of representative samples from each 
type of coffee studied: IC (Instant coffee), HCa (Huayabamba coffee a), HCb (Huayabamba 
coffee b), AE (APU Espresso coffee), AG (APU Gourmet coffee) and AC (APU Classic coffee). 5-
HMF signals are highlighted with red arrows. 

 

 

(6) 
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Figure 4.14. Expanded 1H-NMR spectra, from 0 to 5 ppm, of representative samples from each 
type of coffee studied: IC (Instant coffee), HCa (Huayabamba coffee a), HCb (Huayabamba 
coffee b), AE (APU Espresso coffee), AG (APU Gourmet coffee) and AC (APU Classic coffee).  
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Standard Calibration Curves  

 

A mixture of the five compounds at various concentrations, following the preparation protocol 

(3.2.2.3) yielded spectra that, when compared to spectra from the coffee extracts, lead to some 

important observations.  

 

Although oxalate buffer was used to minimize the pH variation among the samples, the aromatic 

chemical shifts of 5-CQA were severely shifted among the standard mixtures, as can be 

appreciated in Figure 4.15. This behavior may be the result of the inevitable concentration-

dependent interactions between caffeine and chlorogenic acids to form caffeine-chlorogenate 

complexes in aqueous coffee solutions, leading to slight chemical shift displacements (D’Amelio 

et al., 2009; Wei et al., 2012).  

 

 

 

 

Figure 4.15. 1H-NMR spectra of standard mixtures, at three different concentrations, employed 
for the standard calibration curves. Concentration-dependent chemical shift variation of 
chlorogenic acids signals can be observed. 

 

 

It is important to highlight also that the nicotinic acid standard overlaps in the mixture of 

standards with trigonelline. This rendered nicotinic acid unfit to be evaluated by NMR calibration 

curve methodology, and will also affect the trigonelline signal area for quantitation. 
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The concentration range of all the compounds used to prepare the calibration curves (Table 4.8) 

were assigned taking into consideration the quantitation results obtained by HPLC (section 4.3). 

The linear regression parameters for all four calibration curves indicate good linearity in the 

concentration range established for each of the four standards used (Table 4.8). 

 

 

Table 4.8. 1H-NMR calibration curves of standard compounds. 
 

Compound δa (ppm) 
Concentration range 

(mg/mL) 

Linear regression 

y=mx+b R2 

Trigonelline 9.12 0.237 - 2.001 y = 87.730E6x - 8.859E6 0.9999 

1-Methylpyridinium 8.53 0.119 - 1.011 y = 80.539E6x - 4.262E6 0.9977 

Caffeine 7.82 0.417 - 3.529 y = 89.605E6x - 31.176E6 0.9994 

5-Caffeoylquinic acid 6.27 0.144 - 1.220 y = 72.368E6x + 9.203E6 0.9998 

a Chemical shift of the signal used for quantitation; R2 = Correlation coefficient; the results are an average of two 
independent experiments (n = 2).  

 

 

The calibration curves were validated using a mixture of standards of a known concentration. 

Results are shown in Table 4.9. The percentage errors attained vary from 1 to 3 %, confirming its 

accuracy for quantitation. 

 

Table 4.9. Standard calibration curve validation results for standard compounds. 
 

Compound δa (ppm) 
Real concentration 

(mg/mL) 
Calculated concentration 

(mg/mL) 
Percentage error 

(%) 

Trigonelline  9.12 0.6640 0.6804 2.47 

1-Methylpyridinium  8.53 0.3374 0.3271 3.05 

Caffeine 7.82 1.1542 1.1713 1.48 

5-Caffeoylquinic acid  6.25 0.4018 0.4104 2.14 

a Chemical shift of the signal used for quantitation; the results are the average of two independent experiments (n=2) 

 

 

When comparing the 1H-NMR spectrum of a mixture of the standard compounds 1 – 5, shown in 

red in Figure 4.16, against the 1H-NMR spectrum of the coffee extract (blue contour in Figure 

4.16), an important chemical shift variation, between the signals of the standards in the mixture 

and those in the real samples is observed. This is particularly relevant in the case of nicotinic acid 

(N), which separates from trigonelline (T) in the coffee extracts, compared with signal overlap 

with this compound, in the standard mixture. This variation may be also related to complex 
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formation in the case of caffeine and chlorogenic acid variation or other concentration-dependent 

interactions that were not identified in the case of nicotinic acid. 

 

 
 
Figure 4.16. 1H-NMR spectrum expansion from 6 to 10 ppm of a representative roasted coffee 
bean extract overlaid with that of the standard mixture. 

 

 

Another important variation that can be appreciated in Figure 4.16 is that the 5-CQA (5C) signal 

at 6.25 ppm is not sufficiently separated from the 4-CQA isomer in the coffee sample (blue 

contour). These factors may introduce error in 5-CQA quantitation by NMR. 

 

In summary, trigonelline, 1-methylpyridinium ion, caffeine and 5-CQA, present in the six coffee 

extracts studied, were quantified using the standard calibration curves described in Table 4.8. 

Baseline correction using an algorithm available in ACD / NMR Processor 12.01 was necessary 

in order to improve the accuracy of the method; particularly in the case of 1-methylpyridinium 

(see Annexes 1 – 12).The results obtained are shown in Table 4.10. The discussion of these data 

will be addressed after the ERETIC2 methodology, which was also used to quantify these 

standards in the coffee extracts, is described and discussed. 

 

 

ERETIC2 methodology 

 

In order to evaluate the applicability of the ERETIC2 tool, available in the Topspin NMR 

software, for quantitation purposes, this method was used to quantify the selected compounds 1 - 
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6 in the coffee extracts. Quinic acid (Figure 4.17) was chosen as the calibration reference 

because it fulfills the requirements established for an ERETIC2 reference: it has, as a standard, a 

longitudinal relaxation time, similar to the T1 values of the compounds that will be quantified in 

the coffee extract samples under study (T1 = 1.89 s), see Table 4.5. 

 

 
 
Figure 4.17. 1H-NMR spectra of quinic acid used as a calibration reference for ERECTIC2 
quantitation.  

 

 

ERETIC2, based on PULCON (pulse length based concentration determination), uses the 

formula described below to calculate the concentration of an unknown analyte (Cunk) from the 

integrated areas of the reference signals (Aref) of a known concentration (Cref) against the areas of 

the analyte of interest (Aunk). This is possible if the 90° pulse has been well-calibrated for all 

samples. In the formula below,        and    
    represent the pulse needed to obtain a tip angle of 

90° for each particular sample, whereas “T” is associated with temperatures and “n” represents 

the number of scans. The correction factor (k) takes care of incomplete relaxation or differences 

in receiver gains between experiments. 

 

          
           

       

           
   
    

 

 

 

The amounts obtained for compounds 1 – 6 in the six different coffee extracts, using these two 

different NMR-quantitative approaches, are shown in Table 4.10.  

 

In general, the Percentage Differences (PD%) between these two methodologies are within 

reasonable values, PD% < 15%. In some cases, it varied widely with the sample and the 
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compound analyzed. No pattern was observed for these variations. That is, the PD% for 

compounds in the same sample (Huayabamba coffee a, for example) would vary from 8 to 32 %, 

whereas in instant coffee, it remained almost constant, 8 – 11%.  With compounds like 

trigonelline, the PD% in all coffee samples varied from 3 to 15 %, whereas for 5-CQA, 

particularly in the case of APU Espresso and Huayabamba coffee, the PD% reached values as 

high a 33 %. 

 

The highest PD% values are associated with both of the Huayabamba coffees, and with the 

quantitation of 5-CQA in all samples. The signals of 5-CQA have been previously indicated as 

troublesome, due to the shifts they experience through complex formations, and to the inevitable 

overlap with 4-CQA signals. The existence of 5-CQA adducts will unequivocally be highly 

dependent on the coffee extract matrix. 

 

Even though the PD% between these two methods was high in some particular cases, overall, 

more than 65 % of the PD% data was below 10 %. In addition, it is important to highlight that the 

values are the result of the analyses of at least four independent samples (n = 4) and good 

precision (low standard deviation) was obtained for all the compounds in all samples analyzed. 

The experimental ease of using the ERETIC2 methodology instead of NMR-standard calibration 

curves, justified its use to address the 5-HMF quantitation in the coffee samples (Table 4.10), 

especially considering that a 5-HMF standard was not readily available in the laboratory.  

 

The singlet at 9.44 ppm, corresponding to the aldehydic proton H-1 of 5-HMF (see structure in 

Figure 4.13), was used for quantitation. The result attained for instant coffee (1.959 ± 0.075 mg / 

g of dry aqueous extract) was comparable to the data reported by del Campo et al. (del Campo et 

al., 2010) in the 1H-NMR analysis of different brands of instant coffee. As can be seen in Table 

4.10, the content of 5-HMF in specialty coffee extracts is very low in comparison to the amounts 

found in instant coffee. 

 

The quantitation of the compounds 1 – 6 in all coffee samples studied showed that there is a 

significant difference among the concentrations of compounds present in the APU coffees, 

Huayabamba coffees and instant coffee. In the case of trigonelline, APU Gourmet and APU 

Classic show significantly greater amounts of this compound than the other coffees, which may 

be an indication of a better quality (Stadler et al., 2002 b; Wei et al., 2011). APU Espresso 

differentiates from APU classic only in the roasting degree, and as such it shows a 25% 

concentration decrease in trigonelline. The result is consistent with the well-reported thermal 

degradation of trigonelline during roasting (Stadler et al., 2002 a,b). However, this change does 
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not take place in the case of Huayabamba coffees a and b, despite their different roasting times. 

These results confirm the diverse behavior probably due to changes in the chemical composition 

among coffees of different regions (Jaen - Cajamarca vs. Huayabamba - Amazonas). 

 

Both nicotinic acid and 1-methylpyridinium contents were higher for coffees with longer roasting 

times. This increase was particularly significant for nicotinic acid which shows a 25% variation. 

Results are in accordance with previous studies (Stadler et al., 2002 a), which suggests that the 

concentration of these compounds increases during roasting as a result of trigonelline thermal 

decomposition.  

 

APU coffees also show noticeably higher amounts of caffeine than the other coffees examined. 

This compound is known to contribute, as well as trigonelline, to the bitterness of the coffee brew 

(almost 30% of the bitter taste is associated with caffeine) (Clarke and Vitzthum, 2001). The 

variation among the samples was of the order of 10% (Wei et al., 2012), a value which coincides 

with similar reports available for C. arabica with different roasting degrees (Casal et al., 2000 a).  

 

Finally, the 5-caffeoylquinic acid content varies significantly among all of the samples. The 

greater contents were found for the APU coffees Gourmet and Classic, whilst Huayabamba 

shows the lower amounts. A consistent trend in 5-caffeoylquinic acid variation with the roasting 

time was not observed for comparable samples. However, in the case of APU coffee there is a 

concentration decrease of ~15 %, a value that can be corroborated with the reported data, which 

indicate that the concentration of 5-caffeoyl quinic acid decreases with increasing roasting times 

(Blumberg et al., 2010). The same can not be said for Huayabamba coffees.  

 

In the next section, a validated HPLC-DAD methodology is used to evaluate the NMR results 

presented here. 

 

 

4.1. Quantitative determination by HPLC  

 

High performance liquid chromatography (HPLC) is the most widely applied technique for the 

quantitation of small, non-volatile molecules such as compounds 1 – 5. Several strategies exist 

for this purpose, including some protocols already available for coffee analysis (Casal et al., 2000 

a,b; Ky et al., 2001; Yen et al., 2005; Alves et al., 2006). Therefore, this technique was selected 

to validate the results obtained by the non-classical NMR approach, discussed previously.  
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Coffee extract 
Roasting 

time 

Caffeine (4)   5-caffeoylquinic acid (5)e   5-hydroxymetylfurfuraldehyde 

NMR StCC ERETIC2 PDc%   NMR StCC ERETIC2 PDc%   ERETIC2 

Instant coffee unknown 20.822 ± 0.700 22.635 ± 0.819 8.71   16.251 ± 1.002 21.783 ± 0.648 34.04   1.959 ± 0.075 

Hayabamba coffee a t1d 
25.325 ± 2.168 24.259 ± 1.233 4.21   14.235 ± 1.835 15.147 ± 0.813 6.41   n.df 

Hayabamba coffee b t1d + 2min 28.035 ± 1.557 25.863 ± 1.063 7.75   12.690 ± 0.887 16.319 ± 1.206 28.60   n.df 

APU Espresso t2d + 2min 31.322 ± 0.393 31.575 ± 0.393 0.81   16.759 ± 0.281 21.698 ± 1.125 29.47   n.df 

APU Gourmet t2d  33.877 ± 0.347 35.547 ± 1.633 4.93   22.996 ± 0.643 26.547 ± 1.326 15.44   0.174 ± 0.007 

APU Classic t2d 
39.614 ± 1.475 39.500 ± 0.755 0.29   25.977 ± 0.593 30.718 ± 0.427 18.25   0.183 ± 0.032 

ᵃ Values are expressed in mg/g of ground material with at least n=4 for 1H-NMR and n=3 for HPLC ± standard deviation; ᵇ Values may be underestimated due to the low S/N 
ratio. This was confirmed by the DAD-HPLC results discussed later (Table 4.14); c PD = Percentage difference; d proprietary information; e Values may be overestimated due to 
the overlap of the signal with other CQA isomers. This was confirmed by the DAD-HPLC results discussed later (Table 4.14); f n.d = not detected. 

 

Table 4.10. Contentsa of compounds 1 - 6 quantified by 1H-NMR standard calibration curves as compared with ERETIC2 in six different types of 
coffee. 

Coffee extract 

Roasting time 

  Trigonelline (1)   Nicotinic Acid (2)b   1-methylpyridinium (3) 

    NMR StCC ERETIC2 PDc%   ERETIC2   NMR StCC ERETIC2 PDc% 

Instant coffee unknown   10.258 ± 0.235 10.416 ± 0.242 1.54   0.184 ± 0.022   2.186 ± 0.126 2.744 ± 0.100 25.53 

Hayabamba coffee a t1d   10.644 ± 1.197 11.475 ± 0.802 7.81   0.289 ± 0.042   3.561 ± 0.318 3.605 ± 0.284 1.24 

Hayabamba coffee b t1d + 2min   10.679 ± 0.445 10.734 ± 0.500 0.52   0.426 ± 0.015   4.451 ± 0.147 4.654 ± 0.169 4.56 

APU Espresso t2d + 2min   14.016 ± 0.058 14.107 ± 0.486 0.65   0.452 ± 0.017   4.823 ± 0.089 5.018 ± 0.260 4.04 

APU Gourmet t2d    18.522 ± 0.174 19.007 ± 0.205 2.62   0.359 ± 0.020   3.965 ± 0.112 4.489 ± 0.086 13.22 

APU Classic t2d   19.537 ± 0.225 20.061 ± 0.290 2.68   0.384 ± 0.019   4.459 ± 0.160 4.912 ± 0.055 10.16 
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In some of the studies available in the literature, the quantitation of compounds, such as 

trigonelline, nicotinic, caffeine and chlorogenic acids, using various solvents (Table 2.1) allowed 

validation (Farah et al., 2005; Alves et al., 2006; Tavares et al., 2006; Louarn et al., 2001; 

Fujioka and Shibamoto, 2008). As indicated earlier, when discussing Table 2.1, the limitation of 

most of these protocols is related to the solvents used, which are not amenable for LC-MS 

analysis, and to the fact that the columns used will not facilitate the selective retention of 1-

methylpyridinum ion, in the presence of trigonelline and nicotinic acid.  The identification of 1-

methylpyridinium by NMR in the samples studied here, suggested the need for a different HPLC 

column. In the literature, the HPLC-DAD protocol used for the quantitation of this cationic 

compound in coffee samples required an ion exchange column (Stadler et al. 2002 b). The 

objective of that study was only the detection and quantitation of alkylpyridinium ions. Another 

procedure is available in the literature which allows for the quantitation of trigonelline in the 

presence of 1-methylpyridinium ion in urine samples. This method required a hydrophilic liquid 

interaction chromatography column (HILIC column (Lang et al., 2010), column limited to very 

polar molecules.  

 

In this study, the simultaneous separation of polar and less polar molecules was needed. Hence a 

different type of column was necessary. Knowing that a regular C-18 column did not resolve 

cleanly trigonelline and 1-methylpyridinium ion (Maruenda et al., 2012), and keeping in mind 

that all the compounds of interest contain an aromatic skeleton, the phenyl-hexyl-Luna C18 

column represented a good option.  This phenyl moiety could be useful to selectively interact, 

through π-π bonding, with the aromatic compounds being pursued.  The solvent system selected 

for elution contained formic acid 0.3%, pH = 2.4 and methanol, since they facilitate LC-MS 

analysis. The latter study was used to corroborate the identity of other compounds present in the 

extract, as well as to confirm that no other compound lies underneath the peaks used for 

quantitation. 

 

The HPLC-DAD methodology developed as described above permitted the quantitation of all 

five standards with satisfactory precision, sensitivity and reproducibility results. These results are 

discussed in the following pages. 

 

 

4.1.1. HPLC-DAD method validation  

 

Adequate separation among the five standards selected for quantitation was successfully achieved 

in 30 min, by adapting an HPLC method previously developed by Maruenda et al. (2012). The 
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chromatograms are shown in Figure 4.18. 1-Methylpyridinium iodide and nicotinic acid are 

monitored at 260 nm, trigonelline and caffeine at 270 nm, and 5-CQA at 330 nm. UV spectra of 

these five compounds are shown in Figure 4.19.   

 

The linear regression parameters obtained for the five different calibration curves indicate a good 

linear correlation in the concentration range established for each compound (Table 4.11). 

Moreover, LOD values in the range of 0.203 - 1.472 μg/mL and LOQ values of 0.676 - 4.907 μg 

/ mL (Table 4.11) indicate good sensitivity. Reproducibility, in terms of retention time and peak 

area, was verified by intra-day and inter-day repetitive analysis (n=5) with satisfactory results, 

displaying a coefficient of variation (CV %) below 2 %, except for 1-methylpyridinium iodide, 

which reached 3.2 % (Table 4.12).  

 

 

 

 

  

 

Figure 4.18. Representative HPLC chromatograms at (A) 260 nm, (B) 270 nm and (C) 330 nm of 
the standard compounds under study. MP = 1-methylpyridinium iodide. 
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Figure 4.19. UV spectra of compounds 1 – 6. 

1-Methylpyridinium Nicotinic acid 

Trigonelline Caffeine 

5-CQA 5-HMF 
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Table 4.11. Calibration curves of analytes 1 - 5 and the sensitivity of the HPLC-DAD method. 

Compound Concentration range 
(μg/mL) 

Linear regression 
LOD 

(μg/mL) 
LOQ 

(μg/mL) y=mx+b R^2 

Trigonelline  50.3 - 402.4 2082.5x - 14.265 0.9998 0.203 0.676 

Nicotinic Acid  1.91 - 15.24 2602.1x - 2.2324 0.9990 0.808 2.694 

1-methylpyridinium  27.1 - 216.8 2550.5x - 28.472 0.9996 0.833 2.778 

Caffeine  90.27 - 722.2 5657.6x - 33.295 0.9994 1.472 4.907 

5-caffeoylquinic acid  30.15 - 241.2 9136.4x + 81.055 0.9965 1.379 4.597 

a
 Correlation coefficient;  

b
 LOD=Limit of detection (S/N=3); 

c
 LOQ=Limit of quantitation (S/N=10) 

 

 

Table 4.12. Precision of the retention time and peak area of the analytes 1 – 5a in the HPLC-DAD 
method.  

Compound 
Retention 
time (min) 

Intra-day precision (CV% n=5) 
 

Inter-day precision (CV% n=5) 

Retention time Peak area 
 

Retention time Peak area 

Trigonelline (1) 3.722 0.016 0.786   0.022 1.887 

Nicotinic Acid (2) 4.606 0.030 0.597   0.014 0.822 

1-methylpyridinium (3) 2.936 0.040 0.577   0.326 3.213 

Caffeine (4) 25.111 0.181 0.462   0.174 1.385 

5-caffeoylquinic acid (5) 20.853 0.081 1.155   0.131 1.563 

a Concentrations of the analytes were in the range of 0.062 to 1.860 mM.   

 

 

 

The results in terms of sensitivity and reproducibility for caffeine, trigonelline, nicotinic acid and 

5-CQA are comparable to another HPLC method reported in the literature for the quantitation of 

these four compounds in roasted coffee bean extracts (Alves, 2006). In the case of the 1-

methylpyridinium ion, a major product of trigonelline decomposition during roasting (Stadler et 

al., 2002 a, b), only a few studies have addressed its quantitation. To the best of our knowledge, 

none of these studies included a validated methodology for the 1-methylpyridinium cation in the 

presence of trigonelline, nicotinic acid, caffeine and 5-CQA - except for the study developed by 

Maruenda et al. (2012). Hence, the HPLC method developed in this study represents the first 

validated HPLC protocol for the simultaneous quantitation of these five particular compounds in 

coffee. 

 

To evaluate the accuracy of the validated-HPLC standard calibration curves, a sample containing 

known concentrations of the five standards was prepared and analyzed, obtaining errors of 1 %, 

except for nicotinic acid, which had an error of 3.2 % (Table 4.13). 
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Table 4.13. Standard calibration curve validation results for compounds 1 - 5. 

Compound 
Real concentration 

(μg/mL) 
Calculated concentration 

(μg/mL) 
Percentage 
error (%) 

Trigonelline  187.2 186.7 0.28 

Nicotinic Acid 7.62 7.37 3.20 

1-Methylpyridinium  100.8 102.0 1.24 

Caffeine  380.8 380.0 0.21 

5-Caffeoylquinic acid  133.3 134.3 0.77 

 

 

 

4.1.1. HPLC analyses of coffee samples 

 

 

4.1.1.1. Qualitative analysis by HPLC-DAD and LC-MS 

 

The HPLC profiles at 270 nm and 330 nm for each coffee extract are displayed in Figures 4.20 

and 4.21 (for more detailed information see Annexes 13 – 18). A preliminary inspection of the 

six chromatograms at 270 nm (Figure 4.20) allowed the identification of an additional, and well-

resolved, signal of all the coffee samples, between the signal of 1-methylpyridinium ion and that 

of trigonelline (highlighted in purple in Figure 4.20). Additionally, an intense signal at 12 min is 

present only in the chromatogram of the instant coffee. The UV of this compound (Figure 4.19) 

resembled that of 5-HMF with a maximum molar absorptivity at 280 nm (Lin et al., 2012). At 

330 nm, Figure 4.21, all the samples showed almost the same HPLC - profile. The peaks at 23.3 

and 23.7 min could not be resolved by the developed method (highlighted in purple). In order to 

unequivocally identify the nature of all of these signals, an LC-MS study was conducted.    

 

Figure 4.22 shows the LC-MS TIC spectrum (positive ion mode) profile of instant coffee and 

Figure 4.23 the MS and MS/MS spectra for the signal at 12.1 min (peak 7). The ion [M+H]+ at 

m/z 127.4 and its MS/MS fragment at m/z 109.5, due to the loss of a water moiety, confirm the 

presence of 5-HMF (MW = 126 g / mol), previously suggested by NMR (see section 4.2.4). This 

conclusion is based on an earlier study performed by Lin et al., (2012), who identified 5-HMF in 

vinegar through a detailed NMR and LC-MS/MS analysis. Hence, the unknown signal at 12 min 

in Figure 4.20 (peak 7, in Figure 4.22), corresponds to 5-HMF. As mentioned earlier, 5-HMF 

has been previously reported in instant coffee by del Campo et al. (2010). 
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Figure 4.20. Representative HPLC chromatograms at 270 nm of the six coffee extracts under 
study.  
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Figure 4.21. Representative HPLC chromatograms at 330 nm of the six coffee extracts under 
study. 
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Figure 4.22. LC-MS spectrum of the instant coffee extract: (1) quinic acid, (2) trigonelline, (3) 
nicotinic acid, (7) 5-HMF, (8) 3-CQA, (10) 5-CQA (11) FQA and (13) caffeine. Peaks 4, 5, 6, 9 and 
12 were not identified. 

 

 

 

 

Figure 4.23. MS (A) and MS2 (B) spectra of peak 7 in the LC-MS chromatogram of instant coffee.  

 

 

To investigate the identity of the other unknown signals, the negative ionization mode was used. 

Figure 4.24 shows the mass spectra for the selected signals in LC-MS analysis. It is important to 

indicate that the retention times of all of the compounds shifted in the LC-MS versus the HPLC-

DAD analysis.  

 

Quinic acid was assigned as the peak at 3.3 min in the HPLC chromatogram (A in Figure 4.24) 

by the presence of the ion [M-H]- at m/z 191.1 (MW = 192.17 g/mol). This result was 
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corroborated with HPLC-DAD by spiking the sample with the commercial standard (results not 

shown).  

 

Chlorogenic acid isomers are associated with the other four peaks, three of which (B, C and E in 

Figure 4.25) show the same molecular ion peak [M-H]- = m/z 353 and, accordingly, were 

assigned to the three caffeoylquinic acid isomers (3-CQA, 4-CQA and 5-CQA) (Clifford et al., 

2003). 5-CQA standard was already identified through comparison with the commercial standard, 

and assigned to the signal at 17.6 to 18.6 min (21.15 min in the HPLC chromatogram). 3-CQA 

was assigned based on the relative intensity of the ion fragments in the MS/MS spectra (Figure 

4.25). Clifford et al. (2003) and Xie et al. (2011) reported the ion fragment pattern for the three 

caffeoylquinic acid isomers. Finally, the small and broad signal at 19 - 19.3 min (peak 11 in 

Figure 4.22) , was identified as a feruloylquinic acid isomer because it shows a parent ion [M-H]- 

at m/z 367.1, characteristic of this type of compound (Clifford et al., 2003). 

 

 

Figure 4.24. MS spectra for selected signals in the LC-MS analysis. 

 

 

 

 
 

Figure 4.25. MS/MS (353.0) spectra of 3-CQA. 
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Figure 4.26. MS fragmentation pattern of 3-CQA (A) and 4-CQA (B). 

 

 

In summary, the HPLC method developed allowed the simultaneous quantitation of eight 

compounds: caffeine, trigonelline, nicotinic acid, 1-methylpyridinium, 5-CQA, quinic acid, 3-

CQA and 5-HMF. The last two compounds were not included in this study because they are not 

readily available in the laboratory. In the case of quinic acid the use of formic acid in the gradient 

system complicates its UV detection, given that both show a maximum absorption in the range 

from 200 to 210 nm. 

 

 

4.1.1.2. HPLC-DAD quantitative analysis of coffee extracts 

 

The HPLC quantitative study was performed in triplicate on the same six coffee extracts 

evaluated by NMR. The aim of this work was to validate the NMR quantitative results with 

classical methodology which is well-recognized as a quantitative tool: HPLC-DAD. 

 

The amount in mg / g of each compound was calculated based on the dried mass of the aqueous 

coffee extracts (Table 4.14). The percentage errors between these results and those obtained 

through 1H-NMR quantitation by standard calibration curves with a 9μs pulse width (PE1%), 

standard calibration curves with an optimized pulse width (PE2%) and ERETIC2 (PE3%) 

methods are summarized in Table 4.16. The results shown in Table 4.16 indicate that HPLC and 

NMR quantitation, for trigonelline, 1-methylpyridinium and caffeine, yield for the majority of the 

cases, comparable results (1 – 15%). These error values are of the same magnitude as those 

reported in a similar study for trigonelline and caffeine quantitation in instant coffee (del Campo 

et al., 2010). 
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The percentage error (PE%) obtained for all compounds quantitated by NMR, when compared to 

the validated HPLC-DAD data, indicate that they are highly dependent on the coffee sample 

matrix. The greatest variation observed was for caffeine. By the ERETIC2 method, values were 

as small as 3 %, in the case of caffeine, and as high as 25 % for instant coffee. With the 1H-NMR 

standard calibration curves, the values for this compound, PE1%, were not better: 5 – 23 %. 1-

Methylpyridinium exhibited a pronounced variation only when the ERETIC2 method was 

employed for quantitation (PE3%). These may be due to the inability to improve the baseline by 

the algorithms available in Topspin. The errors found by standard calibration curves, PE1% and 

PE2%, were in the range of 1 – 12 % and most of them were below 8 %. These may be the result 

of the baseline correction algorithm performed with the ACD software. The multiplicity of the 

signal monitored for the quantitation of 1-methylpyridinium (triplet) seems not to be a significant 

source of error. 

 

Percentage errors for trigonelline, also a quaternary salt, are, in general, in good agreement with 

HPLC results, with errors below 7% in most of the cases. In contrast to 1-methylpyridinium, the 

errors found by the ERETIC method (PE3%), were relatively small (0.2 – 12%). This may be due 

to the fact that the trigonelline signal employed for quantitation is not as much affected by the 

baseline distortion as the 1-methylpyridinium signal. For trigonelline, ERETIC2 and the 1H-

NMR standard calibration curves (9μs) (2 – 12 %) gave comparable results. This behavior was 

also exhibited by caffeine: PE1% varied from 5 – 22% and PE3% from 3 – 25%.  In the case of 

caffeine, the proton signal monitored was also aromatic and a sharp singlet. Caffeine content in 

Huayabamba coffee showed the higher errors.  

 

As mentioned above, the results are sample dependent. The chemical environment that all these 

molecules are experiencing is different, hence the nature and the amount of possible complexes 

(caffeine adducts with chlorogenic acids, availability of different counter ions for trigonelline, 1-

methylpyridinium) varies with sample, and so should the relaxation delay. This aspect should be 

evaluated in the future. 

 

Similar comparisons were performed with the data available for nicotinic acid and 5-CQA. The 

results were not included in Table 4.16 because, as previously foreseen, the errors were expected 

to be high with these compounds. They range from 50 to 150%: under-estimated for nicotinic 

acid and over-estimated for 5-CQA. The magnitude of the errors observed for these compounds 

are related to inherent matrix effects.  
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Table 4.15. Contents of compounds 1 - 5 quantified by 1H-NMR as compared with the HPLC-DAD method in six different types of coffee. 
 

Coffee Roasting time 
Trigonelline   1-Methylpyridinium   Caffeine 

PE1a (%) PE2b (%) PE3c (%)   PE1a (%) PE2b (%) PE3c (%)   PE1a (%) PE2b (%) PE3c (%) 

Instant coffee n.kd 10.20 5.07 11.84   12.35 5.62 41.01   5.04 15.44 3.22 

Hayabamba coffee a t1e 11.99 17.92 5.12   4.53 11.38 3.35   22.72 23.84 25.98 

Hayabamba coffee b t1e + 2 5.96 5.90 6.51   5.26 1.67 10.08   13.71 24.09 20.39 

APU Espresso t2e + 2 4.94 6.45 5.62   7.60 0.17 11.96   14.56 18.16 13.87 

APU Gourmet t2e  3.35 8.21 6.05   7.88 2.46 22.15   8.38 13.71 3.86 

APU Classic t2e 2.38 14.43 0.23   7.19 9.72 18.08   5.41 17.61 5.68 

a PE1=Percentage error between 1H-NMR and HPLC calibration curve measurements (9us); b PE2=Percentage error between 1H-NMR and HPLC calibration curve measurements 
with optimized pulse width; c PE3=Percentage error between ERETIC2 and HPLC measurements; d n.k = not known; e proprietary information. 

Table 4.14. Contentsa of compounds 1 - 5 quantified by the HPLC-DAD method in six different types of coffee. 

  

  

              

Coffee extract 
Roasting 

time 
Trigonelline Nicotinic Acid 1-Methylpyridinium Caffeine 5-Caffeoylquinic acid 

Instant coffee n.kb 
9.313 ± 0.233 0.450 ± 0.025 1.946 ± 0.023 21.928 ± 0.337 13.457 ± 0.138 

Hayabamba coffee a t1c 
12.094 ± 0.229 0.721 ± 0.025 3.730 ± 0.032 32.772 ± 0.089 10.483 ± 0.017 

Hayabamba coffee b t1c + 2min 10.078 ± 0.078 0.856 ± 0.045 4.228 ± 0.034 32.489 ± 0.161 8.429 ± 0.031 

APU Espresso t2c + 2min 13.356 ± 0.356 0.818 ± 0.008 4.482 ± 0.035 36.660 ± 0.217 12.604 ± 0.048 

APU Gourmet t2c  17.922 ± 0.190 0.636 ± 0.034 3.675 ± 0.032 36.975 ± 0.297 17.870 ± 0.170 

APU Classic t2c 
20.014 ± 0.318 0.709 ± 0.017 4.160 ± 0.036 41.877 ± 0.239 20.028 ± 0.108 

a Values are expressed in mg / g of ground material with n=3 for HPLC results ± standard deviation; b n.k = not known; c proprietary information 
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Figure 4.27 shows the linear regressions of the NMR standard calibration curve (9μs) (purple 

diamonds) and ERETIC2 results (red diamonds) versus concentrations determined by HPLC-DAD, 

through the entire range evaluated for trigonelline, 1-methylpyridinium and caffeine. As can be 

appreciated from the regression coefficient values, both above 0.9900 (0.9923 for standard 

calibration curves and 0.9914 for ERETIC2) overall, the agreement is highly encouraging to 

conclude that the NMR technique is a valuable and accurate tool for the quantitation of these three 

compounds in roasted coffee. 

 

 

 
 
Figure 4.27. Concentrations of all coffee extracts determined by 1H-NMR (standard calibration 
curves (purple diamonds) and ERETIC2 (red diamonds)) (Table 4.10) vs. concentration of the same 
coffees from HPLC-DAD (Table 4.14). 

 

 

In section 1.4.2, the 1-methylpyridinium / trigonelline ratio was pointed as a possible roasting 

indicator. To test this hypothesis, the HPLC-DAD results for these two compounds were compared 

among the six extracts. Table 4.16 shows the results obtained where it can be observed that both 

coffees with highest roasting degree, Huayabamba b and APU Espresso, show the biggest 

trigonelline / 1-methylpyridinium ratio. An almost equal ratio for APU Classic and APU Gourmet, 

despite their different quality, was also observed. These results may suggest that the trigonelline / 1-

methylpyridinium ratio is independent of the quality of the bean and that it may be only related to the 

roasting program employed, and in consequence it may be a useful indicator to monitor the coffee 
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roasting degree. Further investigations have to be conducted in order to establish the usefulness of 

this parameter. 

 

Table 4.16. Ratio 1-methylpyridinium / trigonelline for HPLC contents. 

Compound Roasting time 1-methylpyridinium (1-M) Trigonelline (T) Ratio 1-MP / T 

Instant coffee n.ka 
1.946 9.313 0.209 

Hayabamba coffee a t1b 
3.730 12.094 0.308 

Hayabamba coffee b t1b + 2min 4.228 10.078 0.420 

APU Espresso t2b + 2min 4.482 13.356 0.336 

APU Gourmet t2b  3.675 17.922 0.205 

APU Classic t2b 
4.160 20.014 0.208 

a n.k = not known; b proprietary information   

 

 

In summary, the quantitation by NMR proved to be convenient for caffeine and trigonelline and 1-

methylpyridinium. For nicotinic acid and 5-CQA, due to the high matrix uncontrollable effects, 

standard addition calibration curves need to be considered.  

 
Finally, from the comparison of the errors found for standard calibration curves with and without 

pulse optimization, since there is not a significant or consistent improvement of these values, and 

given that the optimization is a time-consuming process, it can be concluded that a standard 9μs 

pulse width is sufficient to obtain quantitative results. 
 

 

4.2. Principal Component Analysis (PCA) 

 

4.2.1. PCA of 1H-NMR results 

 

Principal component analysis was used to facilitate the visualization of the NMR data through score 

and loading plots from which similarities and differences between the chemical compositions of the 

different coffee samples could be established. The idea behind the use of PCA plots is to group these 

samples according to roasting degrees and coffee bean qualities. 

 

The 1H-NMR spectra (0 – 10 ppm) were divided into buckets of 0.02 ppm by using AMIX Bruker 

software. Since a variable in the data table should define the same property over all samples, these 
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spectra were then aligned in fifty regular intervals using the Icoshift tool available through Matlab 

(Savorani et al., 2010). The results can be visualized in Figure 4.28.  

 

 

 

Figure 4.28. 1H-NMR spectra of the coffee samples superimposed and aligned employing the 
Icoshift tool of MATLAB.  
 
 
 

As can be seen in Figure 4.28, the region 0 to 5 ppm shows signals with much greater intensity than 

those within 5 to 10 ppm. Since PCA is sensitive to intensity if no scaling is performed, then major 

features may obscure lower intensity signals which might also have important contributions in 

spectra differentiation. Pareto scaling is the recommended method for the scaling of metabolomics 

data (Trygg et al., 2007) and was the chosen method for for processing the 1H-NMR aligned spectra. 

It addresses the problem by dividing each bucket by the square root of its standard deviation, thereby 

up-weighting the lower intensity signals.  

 

Figure 4.29 A shows the score plot of the two principal components, PC1 and PC2. Both 

components explain almost 80% of the whole spectra variability. This plot shows significant 

separation among the first principal component (PC1) between instant coffee (red diamonds) and 

specialty coffees. On the other hand, PC2 does not seem to be determining for sample differentiation. 

To evaluate which compounds contribute to the groupings formed through PC1, and, consequently, 

could be pinpointed as statistically significant metabolites, i.e. coffee markers, PC1 loadings were 

also analyzed (B in Figure 4.29). The upper section of the loading plot represents the metabolites 

that were higher in the instant coffee (located in the positive site of the PC1 axis) whereas the lower 

section represents metabolites that were higher in specialty coffees. The loading plot indicated 5-

HMF, trigonelline, 1-methylpyridinium, formic acid, caffeine, quinic acid and lactic acid as the most 

influencing metabolites in the differentiation between instant and specialty coffees. A strong negative 
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correlation was observed between 5-HMF and the other metabolites, thus, 5-HMF was identified as 

responsible for the discrimination of the two sample sets. PC1 may be sufficient to correctly classify 

and differentiate between Peruvian roasted samples and instant coffee.  

 

 

 

Figure 4.29. (A) Score plot of PC1 vs. PC2 for 1H-NMR spectra corresponding to the six types of 
coffee under evaluation: IC (Instant coffee), HCa (Huayabamba coffee a), HCb (Huyabamba coffee 
b), AE (APU Espresso coffee), AG (APU Gourmet coffee) and AC (APU Classic coffee) (B) PC1 
loading profile for the same samples. 

 

 

Although discrimination between APU and Huayabamba roasted coffees can be appreciated from 

PC2 (A in Figure 4.29), no clear differentiation according to roasting degree was observed. As this 

might be due to the strong influence of 5-HMF, a new PCA was applied only to the specialty coffee 

data in order to investigate the metabolic differences among these coffees.  

A 

B 
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The resulting PCA score plot is shown in Figure 4.30 A, where, much better differentiation between 

specialty coffees is observed and well-defined clusters are evident. The sample from HCa (purple 

asterisk), closer to HCb coffee samples (blue circles) can be considered as an outlier that may be a 

consequence of an error in sample preparation.  

 

APU and Huayabamba coffees, which differ between each other particularly in geographic origin 

(Cajamarca vs. Amazonas), are separated among the first principal component of the PCA score plot, 

whereas the second principal component allows a better differentiation between coffees with 

different roasting degrees. To further understand which compounds are responsible for this 

differentiation, PC1 and PC2 loadings profiles (B in Figure 4.30) were examined.  

 

It is widely known that the geographical origin is a strong marker of the metabolic content of foods 

(Consonni et al., 2012). According to the PC1 loading profile, the features that explain the separation 

of Huayabamba and APU coffee are trigonelline (positive contribution), nicotinic acid and formic 

acid (negative contribution). These results are consistent with the NMR quantitation data (Table 

4.11) which shows greater amounts of trigonelline for APU coffees, whereas the nicotinic acid 

content is higher in Huayabamba coffees. It is important to highlight here that although these coffees 

were grown in two close regions of Peru, Cajamarca and Amazonas (see Figure 1.1), a good 

separation was achieved, and in consequence the model may be helpful for origin predictability. 

 

Formic acid was also identified as an important marker, however, as previously discussed, its 

quantification by 1H-NMR requires the modification of the sample preparation protocol. PC1 also 

allows a better separation of APU Gourmet and APU Classic which differ in quality. According to 

the loading plot in B, this may be, principally, the result of higher levels of trigonelline in APU 

Classic. 

 

As mentioned above, PC2 revealed clear separation between coffees with different roasting degrees 

which, as shown by the PC2 loading profile (C in Figure 4.30), is strongly influenced by 

trigonelline, caffeine, 1-methylpyridinium and lactic acid levels. The coffees with lower roasting 

times, Huayabamba coffee a (HCa), APU Gourmet (AG) and APU Classic (AC) coffees, are located 

in the positive side of this component whilst Huayabamba coffee b (HCb) and APU Espresso (AE) 

coffees were located on the negative side. These results are consistent with the NMR quantitation 

results (Table 4.11) and literature data, according to which, 1-methylpyridinium is one of the 
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principal thermal degradation products of trigonelline, and, in consequence, its concentration is 

increased by longer roasting times, whereas that of trigonelline decreases. 

 

 

 

 
 
Figure 4.30. (A) Score plot of PC1 vs. PC2 for 1H-NMR spectra corresponding to the five Peruvian 
specialty coffee samples under study. (B) PC1 and (C) PC2 loading profiles for the same samples. 

B 

A 

C 
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Lactic and quinic acid were also located in the lower section of the loading profile, which means that 

their concentration may increase during roasting. The increase in lactic acid levels with longer 

roasting times was previously reported by Wei et al. (Wei et al., 2012). In the case of quinic acid, it 

is well-known that its concentration increases in the roasted bean as a consequence of the chlorogenic 

acid cleavage during roasting, which releases the quinic acid moiety (Clarke and Vitzthum, 2001, 

Blumberg et al., 2010).   

 

In summary, both PCA results suggest that trigonelline, 1-methylpyridinium, caffeine and nicotinic 

acid, all of them quantified by HPLC-DAD and NMR in the present study, are important markers 

that have a major influence in the statistical differentiation of different populations, and could be 

useful for coffee classification as a function of quality and roasting.  

 

 

4.2.2. PCA of HPLC results 

 

A principal component analysis (PCA) was performed on the HPLC quantitation results (Table 4.11) 

taking into account the areas and concentrations of the compounds evaluated in the different coffee 

extracts.  Pareto scaling was applied prior to PCA analysis with the aim to balance the contribution of 

each compound to the overall variance, given the wide range of concentrations between them.  

 

The loading and score plot profiles corresponding to the first two principal components, which 

explain almost 100% of the total variance, are displayed in Figure 4.31. It is important to mention 

that HPLC PCA analysis does not consider the whole variability among the samples as in the case of 

NMR, instead, the measure of the variability is done only regarding the compounds that were 

quantified by this method, compounds 1 – 5 (Table 4.14). Previously, the results of the principal 

component treatment of the NMR spectra (Figure 4.30) suggested that compounds 1 – 4 may be 

enough to achieve a successful differentiation among the different coffees. This assumption was 

confirmed by the results shown in the PCA score plot (B in Figure 31), where good separation and 

clustering of the coffee samples is observed. In the biplot (A in Figure 4.31) the different compounds 

are projected in the plane of the score plot and in that way it can appreciated how, and to what extent, 

the different directions in the score plot are influenced by them.  
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As in the case of the 1H-NMR chemometric results, it becomes clear that the first principal 

component which explains almost 80 % of the total variability represents a strong positive correlation 

between caffeine and trigonelline. However in contrast to the loading plot of 1H-NMR (Figures 4.29 

and 4.30), 5-CQA shows a significant influence in coffee differentiation both, among PC2 and PC1, 

whereas the contributions of 1-methylpyridinium and nicotinic acid are less significant. 

 

As mentioned above, the distribution along the first principal component is strongly affected by 

caffeine (Caf), trigonelline (Trig) and 5-CQA and to a lesser extent by the 1-methylpyridinium ion 

and nicotinic acid, all of them positively correlated along PC1. APU coffees and instant / 

Huayabamba coffees are oppositely placed with respect to the vertical axis, which means that they 

have a negative correlation, particularly regarding to 5-CQA, caffeine and trigonelline (the most 

influencing variables). This is in agreement with the results shown in Table 4.15, where it can be 

seen that APU coffees have significant higher contents of 5-CQA, trigonelline and caffeine, 

especially in the case of APU Gourmet (light green squares) and APU Classic (green triangles), both 

clearly more displaced to the right. As expected from the results in Table 4.15, the influence of 1-

methylpyridinium and nicotinic acid is not critical for Huayabamba and APU coffee differentiation, 

which means that their variability is not closely related to quality and geographical origin.  

 

 

 

 
Figure 4.31. PCA score plot of PC1 vs. PC2 (A) and biplot (B) corresponding to HPLC quantitation 
results.  

 

 

A B 
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The second principal component which explains roughly 20 % of the data allows the differentiation 

between coffees with different roasting degree. As can be seen in the loading plot APU Gourmet and 

APU Classic are located in the upper site of the horizontal axis whereas APU Espresso (green 

circles) and Huayabamba coffees are located in the lower side. AG and AC have the same roasting 

time and are located in almost in the same position with respect to PC2, and Huayabamba coffee b, 

which have a longer roasting time than Huayabamba coffee a, is located below of it. These results 

suggest that APU Espresso and HCa may have similar grades of roasting, and that instant coffee may 

have the lowest roasting degree. To evaluate which compounds are responsible for this distribution, 

the loading plot must be examined. In contrast to PC1, a negative correlation between caffeine and 5-

CQA / trigonelline is observed. Additionally, 1-methylpyridinium and nicotinic acid contribute in a 

higher extent to the coffee discrimination than trigonelline, to which they are negatively correlated. 

This is in agreement with the reported thermal degradation of trigonelline during roasting into 1-

methylpyridinium and nicotinic acid, and with the quantitative HPLC-DAD results (Table 4.15) 

which show a higher content of both compounds in the coffees with the longer roasting times, 

Huayabamba coffee b and APU Espresso.  

 

In the present study, different coffee types were investigated according to their metabolic differences 

demonstrating effects of roasting time, quality and geographical origin, on the metabolite 

composition of coffee. It was demonstrated using two different methodologies, NMR and HPLC, 

coupled with multivariate statistical analysis that the chemical profile of the coffee extracts is 

strongly affected by variation in the content of compounds such as trigonelline, 5-HMF, nicotinic 

acid, formic acid, caffeine, 1-methylpyridinium, quinic acid and lactic acid. This analytical approach 

may be a useful and objective tool for understanding and tracing the metabolic profile variation of 

coffee during roasting in order to define appropriate roasting times and temperatures for the process. 

Additionally, it may be helpful to determine the geographic origin and reproducibility of production 

with the aim to guarantee a good and consistent quality of the final product.  
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5. CONCLUSIONS AND FUTURE WORK 

 

 

A new 1H-NMR quantitative protocol was developed for the simultaneous quantitation of 

trigonelline, caffeine, nicotinic acid, 1-methylpyridinium and 5-caffeoylquinic acid in various types 

of Peruvian specialty coffees. Unlike the NMR quantitative method available in the literature for the 

quantitation of these compounds, which employed 13C-NMR signals for quantitation, requiring 

longer acquisition times and the use of relaxing agents, the method developed in the present 

investigation was performed in only 11 min. 

 

Two methods were evaluated and compared for quantitative 1H-NMR: ERETIC2 and standard 

calibration curves. The percentage differences between these methodologies were in the range of 1 % 

to 15 % in more than 75 % of the cases. The differences varied with sample. The precision (n=5) of 

both methods was very high (small standard deviations). 

 

The HPLC methodology developed constitutes the first validated method for the simultaneous 

quantitation of trigonelline, caffeine, nicotinic acid, 1-methylpyridinium and 5-caffeoylquinic acid. 

The linear regression parameters indicate a good linear correlation, LOD values and LOQ values 

which indicate good sensitivity. The reproducibility, verified by intra-day and inter-day repetitive 

analysis, also showed satisfactory results. The 1H-NMR quantitative methodology developed was 

compared with the HPLC-DAD validated method, obtaining percentages errors below 15 % (in the 

majority of the cases), for trigonelline, 1-methylpyridinium and caffeine, when standard calibration 

curves where employed as the quantitative tool and below 20 % when ERETIC2 was used. 

 

The errors for nicotinic acid and 5-caffeoylquinic acid were very high compared to the results 

obtained by HPLC. Standard addition calibration curves for the quantitation of these two compounds 

are recommended. 

 

The great variability in the percentage errors among samples between HPLC and the quantitative 

NMR methodologies is associated with matrix effects. The optimization of the 90° pulse width of T1 

for each type of coffee and metabolite analyzed does not significantly improve the errors. 
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The Principal Component Analysis allowed the distinction among the various coffee beans studied, 

based on origin and roasting conditions. Trigonelline, 1-methylpyridinium, caffeine, 5- 

caffeoylquinic acid, 5-hydroxymethylfurfural, nicotinic acid, quinic acid, formic acid and lactic acid, 

seemed to be determinant for the clustering observed with major influence in the statistical 

differentiation of different populations and may be useful for classification as a function of quality 

and roasting. 5-Hydroxymethylfurfural was identified as the principle responsible for the 

differentiation between Peruvian specialty coffees and instant coffee.  

 

The HPLC method developed allowed the separation of eight compounds: caffeine, trigonelline, 

nicotinic acid, 1-methylpyridinium, 5-CQA, quinic acid, 3-CQA and 5-HMF. The last three 

compounds were confirmed by LC-MS-MS analysis. Additionally, the ratio of 1-methylpyridinium / 

trigonelline was calculated and proven to be a useful measurement of the roasting process, 

independent of the quality of the roasted bean. 

 

Formic acid, reported as an important contributor to coffee acidity and identified in the present study 

as a roasting marker from the PCA analysis, was also identified as a non-overlapped signal in NMR 

suitable for quantitation, but it was not quantitated in this study because its concentration was 

affected during lyophilization. Further work needs to be conducted in order to quantitate the volatile 

acids such as formic and acetic acid. Direct D2O extraction is recommended.  

 

It was demonstrated that the 1H-NMR and HPLC-DAD methodology developed could be used as a 

tool to optimize the roasting conditions of the different specialty coffees available in 

CENFROCAFE. Further studies must be done in order to relate the metabolic profile of the coffees 

with cup score values. 
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ANNEX 13.  HPLC-DAD chromatogram of an instant coffee sample. 
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ANNEX 14.  HPLC-DAD chromatogram of a Huayabamba coffee a sample. 
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ANNEX 15.  HPLC-DAD chromatogram of a Huayabamba coffee b sample. 
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ANNEX 16.  HPLC-DAD chromatogram of an APU Espresso coffee sample. 
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ANNEX 17.  HPLC-DAD chromatogram of an APU Gourmet coffee sample. 
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ANNEX 18.  HPLC-DAD chromatogram of an APU Classic coffee sample. 
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