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Abstract

From Maxwell equations (for a free of charge and current, isotropic and homoge-
neous medium) and the paraxial approximation, which is to suppose the beam
of light moves towards a preferred direction (longitudinal propagation), we ar-
rive at the paraxial wave equation, which depending of the constraints of the
situation, can be solved by different type of beams. We are intersested in higher-
order mode paraxial beams. If we solve the equation with cartesian coordinates,
we arrive at Hermite-Gauss beams, if we solve with cilindrical coordinates, we
obtain Laguerre-Gauss beams. Each of them has specific characteristics which
motivated their use in the two phenomenons presented here: Self Image and the
Simulation of a PR box.

We call self image to the phenomenon where we are capable of replicating an
initial image, over free space longitudinal propagation. What we propose here
is a self image produced by the collinear and coherent interference of paraxial
Laguerre Gauss (LG) beams, which constrasts with the usage of a fundamen-
tal Gaussain beam in Talbot’s self image. Gouy phases, which are the key
component that make this phenomenon possible, are exclusive of Higher-order
paraxial beams. We show, experimentally, the phenomenon of self image using
the superposition of 3 LG beams with specific mode orders. Because of the arct-
angent dependence of the Gouy phases, in Laguerre-Gaussian beams, self image
distances won’t be periodic over propagation and its number will be limited by
the mode orders of the LG beams. Additionally, we use this superposition of
the 3 LG beams as dots, to write a word, which can be read only in self image.
This application of self image can be thought of as concealing information, and
then revealing it only for specific distances.

The most controversial feature of quantum mechanics non-locality, has gain
much attention over the last years, because of the development of quantum
information. Nowadays non-locality is widely accepted and used in many other
exciting applications like teleportation, swapping, etc. Nevertheless, this opens
other questions, like why is nature just as non-local as to reach the Tsirelson’s
bound, but can’t surpass it. The algebraical maximum of the CHSH inequality is
4, and quantum mechanics can only reach up to 2

√
2. What happens in this gap

that seems empty and without a theory that can describe it? In 1993, Popescu
and Rhorlich proved that from non-locality and relativistic causality, quantum
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mechanics was not the only theory that emerged. Relativistic causality, meaning
that no information is transmitted with superluminal velocities. This means
that there are super-quantum correlations, that surpass the Tsirelson’s bound,
and are still causal. The super-quantum correlations that maximally surpass the
Tsirelson’s bound, making the Bell parameter S = 4, are known as PR boxes.
Markovitch et al, showed that, in a bipartite quantum system, post-selecting an
entangled state will fake the maximal surpass of the Tsirelson’s bound in the
Bell inequality. Here, we propose an experimental setup capable of simulating a
PR box using polarization and transverse-mode (Hermitian-Gauss beams of first
order) of light as vector spaces that are analogue to Hilbert spaces in quantum
mechanics.
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Chapter 1

Paraxial equation of light

The Maxwell equations of light give us its dynamical behaviour, if we consider
an homogeneous, isotropic and charge/current free medium, they become:

~∇. ~E(~r, t) = 0 (1.1)

~∇× ~E(~r, t) = −∂
~B(~r, t)

∂t
(1.2)

~∇. ~B(~r, t) = 0 (1.3)

~∇× ~B(~r, t) =
1

c2
∂ ~E(~r, t)

∂t
(1.4)

Having in mind that ~∇ × ~∇ × ~E = ~∇(~∇. ~E) − ∇2 ~E = −∇2 ~E, where we used
equation 1.1. This can be equaled to the rotational of equation 1.2, and also
using 1.4, we obtain:

~∇2E(~r, t) =
∂ ~∇× ~B(~r, t)

∂t
=

1

c2
∂ ~E(~r, t)

∂t
(1.5)

an analogous equation con be achieved for the magnetic field, so in resume we
have:

~∇2E(~r, t) =
1

c2
∂ ~E(~r, t)

∂t
(1.6)

~∇2B(~r, t) =
1

c2
∂ ~B(~r, t)

∂t
(1.7)

From now on, we will only analyze the electric field 1.6. Because of the willing
to describe a monocromatic beam propagating throught the a unique direction
(let’s asumme it is the z direction), a solution can be pictured as:

~E = U(~r)ei(kz−wt)ε̂ (1.8)

where ε̂ is the polarization vector, k is the wave number and U(~r)ei(kz−wt) is
the wave amplitude.Notice, we are assuming the temporal dependence appears
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only in the phase of the amplitude.

Using the solution 1.8 in 1.6, we obtain the Helmontz equation:

~∇2U(~r) + 2ikẑ.~∇U(~r) = 0 (1.9)

where ẑ is the unitary vector in the z direction. Again, the paraxial approxima-
tion is needed here because we are assuming a beam that propagates through a
single direction and its transverse section doesn’t change overt this direction.

Mathematically, the paraxial approximation is as follows:

∂2U

∂z2
<<<

∂2U

∂x2
+
∂2U

∂y2
+ 2k

∂U

∂z
(1.10)

Using the paraxial approximation (1.10) in 1.9:

~∇2
⊥U(~r) + 2ik

∂U(~r)

∂z
= 0 (1.11)

where ~∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 . This equation is known as the paraxial wave equation.

1.1 Solutions to the paraxial wave equation

1.1.1 Fundamental Gauss mode

The paraxial equation (1.11) admits many solutions [1], the one of less order is
known as the fundamental Gauss mode:

u(r) =

√
2

π

1

wz
exp

[
− r

2

w2
z

+ ik
r2

2Rz
− i arctan(z/zr)

]
(1.12)

where zr is the Rayleigh distance:

zr =
πw2

0

λ
(1.13)

where w0 is the beam waist.

Rz is the curvature radius of the beam:

Rz = z

(
1 +

z2r
z2

)
(1.14)

and wz is the beam diameter over propagation though z.

wz = w0

√
(1 +

z2r
z2

) (1.15)

Notice that the beam is characterized solely by w0 and λ through the whole
propagation.
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1.1.2 Hermite-Gauss mode

If the paraxial equation is solved with rectangular coordinates, the solution is
the Hermite Gauss modes :

HG(n,m)(x, y, z) =
Bmn
wz

e
− r2

w2
zHn

(√
2
x

wz

)
Hm

(√
2
y

wz

)
exp

[
−i
(
k
r2

2Rz

)]
eiφN (z)

(1.16)

where Bm,n =
√

2
πm!n!2n+m is a normalization constant. Hm and Hn are the

Hermite polynomials. φN = N arctan(z/zr) is the Gouy phase. N = (n +
m + 1)/2 is by definition the mode order. In Figure 1.1 we show the intensity
distribution images for different values of n and m.

Figure 1.1: Intensity profile for different HG(n,m) modes.

1.1.3 Laguerre-Gauss mode

If the paraxial equation is solved in cilindrical coordinates, the solution is called
Laguerre-Gauss mode, with orbital and radial orders l and p respectively, is:

LG(p,l)(r, θ, z) =
Clp
wz

exp

[
− r

2

w2
z

− ik
(
r2

2Rz
+ z

)]
L|l|,p

(
2r2/w2

z

)
e−ilθeiφN (z)

(1.17)

Where, having in mind that w0 is the beam’s waist, Clp =
√

2p!
π(p+|l|) is a nor-

malization constant, L|l|,p
(
2r2/w2

z

)
is the Laguerre polynomial with orders |l|

and p evaluated in 2( r
wz

)2, φN (z) = (N+1) arctan( zzr ) is known as Gouy phase,
where N = 2p+|l| is the mode order. The parameter p is known as radial charge
and determines the number of rings in the transversal mode. The parameter l
is called orbital charge, it determines the size of the rings. See Figure 1.2

Figure 1.2: Intensity profile for different LG(p,l) modes.
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Part II

Self image
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Chapter 2

Introduction: Self image

Self image is the phenomenon where we are capable of replicating an initial
image, over free space longitudinal propagation of a beam of light.

The concept’s history goes back to 1836 when William Fox Talbot discovered
that when a periodic diffracting grating was illuminated with a plane wave , the
image of the grating was repeated periodically. This effect appears when using
plane waves and fundamental gaussian modes of light. What we propose here is
self image using the superposition of various collinear paraxial Laguerre Gauss
beams with different mode orders.

In chapter 3, we review the ABCD matrices to represent different medium
setups made of lenses that will be useful for manipulating the LG beams. In
chapter 4 we study the propagation of a single Laguerre Gauss (LG) beam and
what happens with the intensity distribution (image) of the transverse section
compared to the initial one. With this result, we analyze the image obtained
from the superposition of various LG beams through propagation. Then we find
what condition the various LG beams need to obey so that self image would be
possible. In chapter 5 we show an experimental application of the LG beam’s
self image phenomenon: the revealing or concealing of information depending
on the distance the beams propagated.
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Chapter 3

Ray matrices or ABCD
matrices

In order to describe the propagation of paraxial optical beams through homo-
geneous optical media, we define matrices that help us predict its effect on the
beam’s parameters. For this purpose, we characterize a ray (paraxial beam)
with its displacement from the axis r and its slope r′ = dr/dz as in Figure 3.1.
Since we are gonna deal with paraxial beams, θ will be really small and we can
make the approximation tan θ ∼= θ, so the slope is r′ = θ. Let’s call r1 and r′1
(r2 and r′2) to the coordiantes of the incident (output) ray to the media [2].

Figure 3.1: Propagation of a ray through a general optical element

Then, the effect of the optical media can be described as:

r2 = A r1 +B r′1 (3.1)

r′2 = C r1 +D r′1 (3.2)

which can be summarized as: (
r2
r′2

)
= M

(
r1
r′1

)
(3.3)
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where M =

(
A B
C D

)
is the ABCD matrix, which represents the effect of the

optical homogeneous media on the optical ray.

If the optical media is a thin lens with focal length f , it is known that the
ABCD matrix is:

Mlens =

(
1 0
−1/f 1

)
(3.4)

where f > 0 for a converging lens and is negative for a diverging one. From now
on, we would suppose that f > 0 because we are interested only in converging
lenses.
In the same way, we define the ABCD matrix of free media propagation:

Mfree =

(
1 d
0 1

)
(3.5)

Now, if we want the ABCD matrix of a propagation through free media followed
by a thin lens with focal distance f , we have to multiply both ABCD matrices:

M+ =

(
1 0
−1/f 1

)(
1 d
0 1

)
(3.6)

=

(
1 d
−1/f (1− d/f)

)
(3.7)

So as to obtain the ABCD matrix for a sequence of medias, we have to multiply
their individual matrices, beginning from the right with the first media where
the ray arrives.

3.1 Telescope

If we arrange two thin lenses with focal lengths f1 and f2 and a distance be-
tween them of d = f1 + f2, we can reduce or augment the transverse section
of the beam. This is why this configuration is know as telescope. We used the
telescope to collimate our beam.

The ABCD matrix of the telescope is:

Mtel = Mf1MdMf2

=

(
1 0

−1/f1 1

)(
1 f1 + f2
0 1

)(
1 0

−1/f2 1

)
=

(
−f1/f2 f1 + f2

0 −f2/f1

)
(3.8)

Something important for the telescope to work is that the incident beam has
to be a paraxial beam propagating through the z axe. This will mean that the
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slope r′in is zero. So when we apply the telescope matrix on the incident beam’s
vector: (

r2
r′2

)
= Mtel

(
r1
0

)
=

(
−f1r0/f2

0

)
(3.9)

So we control the augmentation of the transverse section, with the relation of
the focal lengths of the thin lenses:

r2 = −f1
f2
rin (3.10)

3.2 Longitudinal displacement

We can also displace the transverse section of the beam a certain distance (de-
pendent of the focal lengths used)

The display is as follows. First, we have a free space propagation through
a distance d2, then a thin lens with focal length f3 = d2. Thirdly, another free
space propagation of distance d3 = 2f3. In addition a thin lens with focal length
f4 = f3. Finally an additional free space propagation of length d4 = f3.

The ABCD matrix of the longitudinal displacement is:(
r2
r′2

)
= Md2Mf3Md3Mf4Md4

(
r1
r′1

)
(3.11)

=

(
−1 0
0 −1

)(
r1
r′1

)
(3.12)

= −
(
r1
r′1

)
(3.13)

This means from that point (d = 4f3) forward, we have the same beam’s trans-
verse section propagation that we could have had right after the initial point
(d = 0). This is why we call this configuration, longitudinal displacement.
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Chapter 4

Propagation of a paraxial
LG beam through z

We are interested in the superposition of various paraxial Laguerre beams
through propagation. Let’s initiate by analyzing a single paraxial LG beam.

We can rearrange the previous LG beam equation (1.17) according to our
convenience:

LG(p,l)(r, θ, z) = e−iα(r,z)Ap,l(r, z)e
−ilθeiφ(z) (4.1)

Where the absolute value Ap,l(r, z) is:

Ap,l(r, z) =
Clp
wz

(
√

2
r

wz
)|l|e−(

r
wz

)2L

(
|l|, p, 2(

r

wz
)2
)

(4.2)

In the equation (4.1) we have divided the Laguerre-Gauss expression in 4
components, we differentiate them because of their behaviour over the propa-
gation across the z coordinate.

The first component e−iα(r,z) won’t be relevant in the analysis. Remember
that we are interested in the superposition of various Laguerre beams. This com-
ponent doesn’t have dependence on the radial nor the orbital modes (l and p).
So, through propagation, this component will be the same for all the LG beams.

The second component Ap,l(r, z) is the absolute value of the expression.
With an specific rescaling of the radial coordinate, that will be shown in the
next section, we can demonstrate that this component contributes with an am-
plification of the image while the beam propagates.

The third component e−ilθ is the only one dependent on the azimutal coor-
dinate θ, since it doesn’t depend on z, it won’t change over the propagation. It
will be different between LG beams only if their orbital mode l is different.
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The fourth component eiφ(z) is the one of most interest , where as stated
before φ(z) = N arctan(z/zr) is known as the Gouy phase. If between two
Laguerre beams, the mode order N = 2p + |l| + 1 of each of them is different
(N1 6= N2), then the Gouy phase will vary differently in each of them. But
because of the periodic behaviour of eiφ(z) it can be anticipated that gouy phases
for the both beams can coincide for certain values of z.

4.1 Behavior of Ap,l(r, z) when the beam propa-
gates though z

As we can see in equation 4.2, Ap,l(r, z) has a strong dependence on the term
r
wz

, having this in mind we can do a change of coordinate:

r

wz
=

r′

w0
(4.3)

, where w0 = wz(z = 0) and r′ is a different value of the radial coordinate.
Using (4.3), we can derive a new expression for the absolute value Ap,l(r, z):

Ap,l(r, z) =
Clp
wz

(
√

2
r′

w0
)|l|e−(

r′
w0

)2L

(
|l|, p, 2(

r′

w0
)2
)

(4.4)

=
w0

wz
Ap,l(r

′, 0) (4.5)

This means that the image in a different z position is the same as in the z=0
position, just with a different radial scaling ( r

wz
= r′

w0
) which depends on the

position z (wz = wz(z)).

Now we rewrite equation 1.17 using 4.5:

LGp,l(r, θ, z) = w0
wz e
−iα(r,z)Ap,l(r

′, 0)e−ilθeiφ(z) (4.6)

= w0

wz
e−i(α(r,z)−α(r

′,0))eiφN (z)LGp,l(r
′, θ, 0) (4.7)

If we calculate the intensity distibution of the Laguerre beam at position z,
using equation 4.7 we will get:

I(r, θ, z) = (
w0

wz
)2I(r′, θ, 0) (4.8)

This means the image, in the tranverse section, that we see as the beam propa-
gates through the z coordinate will be a magnification, in the radial direction,
of the original image (z=0). Additionally the proportionality value (w0

wz
)2 tells

us that, while the beam propagates it also looses intensity uniformly in the
transverse section (independent of r or θ).
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4.2 Interference of various Laguerre-Gauss beams

In the previous section we analysed the propagation of a single Laguerre-Gauss
beam through the z direction. Nevertheless, of much more interest is the prop-
agation of the superposition of 2 or more Laguerre-Gauss beams.

The expression for the superposition of q colinear Laguerre Gaussian beams
is:

usup(r, θ, z) = LG1(r, θ, z) + LG2(r, θ, z) + . . .+ LGq(r, θ, z) (4.9)

=

q∑
i

LGi(r, θ, z) (4.10)

where LGi = LGpi,li .

The equation 4.10 showcases that all the beams are colinear and are origi-
nated at the same position, so all have the same coordinates r, θ and z. Also,
all of them have the same beam waist w0 and the same wavelength λ. So the
only thing really differentiating them are the modes l and p (orbital and radial
modes respectively). For the beam LGi we will denote the orbital and radial
modes as li and pi respectively.

Using equation 4.7 in 4.10, we obtain:

usup(r, θ, z) =
w0

wz
e−i[α(r,z)−α(r

′,0)]

q∑
j=1

eiφjLGj(r
′, θ, 0) (4.11)

As we are interested in the image of the transverse section, we calculate the
intensity distribution over the transverse section, product of the superposition:

I(r, θ, z) = |usup(r, θ, z)|2 (4.12)

=

(
w0

wz

)2
∣∣∣∣∣∣
q∑
j=1

eiφj(z)LGj(r
′, θ, 0)

∣∣∣∣∣∣
2

(4.13)

Since w0 < wz,
(
w0

wz

)2
always decreases through propagation.

4.3 Self image with paraxial LG beams

We call self image to the phenomenom where, while the beam is propagating
through z, we recover the initial image z = 0 through constructive interference
of the many LG beams. But what is necessary for this phenomenon to occur?
Let’s go back to equation 4.13. By multiplying e−iφ1 to the expression inside
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the vertical bars, which doesn’t change the value of the intensity, we obtain:

I(r, θ, z) =

(
w0

wz

)2
∣∣∣∣∣∣
q∑
j=1

ei4φj (z)LGpj , lj(r
′, θ, 0)

∣∣∣∣∣∣
2

(4.14)

where 4φj (z) = φj(z)− φ1(z).

What we are accomplishing with equation 4.14 is focusing our analysis in
the relative values 4φj , which makes sense as we are dealing with interference
and the relative phases between the LG beams is what matters.

The intensity distribution at z = 0 is (4.13):

I(r, θ, 0) =

∣∣∣∣∣∣
q∑
j=1

LGpj ,lj (r
′, θ, 0)

∣∣∣∣∣∣
2

(4.15)

where we have used the fact that ∀j, if z = 0 then φj(z) = 0.

So, as we see from equation 4.14, the relative phases 4φj (z) are retaining
us from obtaining the initial intensity distributon (4.15) of the interference of
the Laguerre beams. So, the only way for us to recover the mentioned image is
if the Gouy phases φj(z) obey the following conditions:

4φ2(z) = 2n2π

4φ3(z) = 2n3π

. . . (4.16)

4φq (z) = 2nqπ

where n’s are integer numbers greater or equal than 1 , as we are suppousing
that the LG beam indexed with 1 (one), has the lowest order mode N , so that
4φj ≥ 0 will hold for all j.

What the previous equations express is a resincronization of the Gouy phases,
meaning that the difference between them is a multiple of 2π which allows the
constructive interference and the reaparence of the initial transverse distribution
of intensity (4.15). Obviously, when the difference between the Gouy phases is
not an integer multiple of 2π, we will obtain transversal configurations different
from the initial one. It may not be explicit, but the condition above brings
some very specific restrictions for the Gouy phases if we want Self Image to
happen. First of all, we remember that 4φj (z) = φj(z) − φ1(z) = 4Njφ0(z).
Where we are defining the difference of mode orders 4Nj = Nj − N1 and
φ0(z) = arctan(z/zr). So, applying this to 4.16, we arrive at:

φ0(z) =
2n2π

4N2

=
2n3π

4N3

= . . . =
2nqπ

4Nq
(4.17)
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Then again, because of its definition, |φ0| ≤ π/2, brings a minimum value for
the mode orders differences of the LG beams:

4Nj ≥ 4, ∀j, j = {2, ..., q} (4.18)

Because of the discrete nature of our condition (4.17), normally, self image
will occur at specific distances z = zu, where we are indexing with u = {1, ..., S},
where S: total number of self images. We are gonna start counting self images
from z = 0 until infinite. So we can rephrase condition 4.17 as:

φ0(zu) =
2nu,2π

4N2

=
2nu,3π

4N3

= . . . =
2nu,qπ

4Nq
(4.19)

=
2nu,jπ

4Nj
, ∀j (4.20)

where again, we are indexing with u = {1, ..., S} the number of self image we
are refering to, and with j = {2, .., q} the LG beam being analyzed.

This has as consquence:

4Nj = kjn kj is a positive integer (4.21)

nu,j = ukj

where n is a positive integer different from one. The equation 4.21 means that
all mode order differences 4Nj need to have an integer different from one (n)
as a common divisor.

Then, using 4.21 in 4.20:

φ0(zu) = 2π
u

n
(4.22)

This means “self image distances” zu are completely determined by the self
image we are refering to (u) and the common divisor n of the mode order
differences 4Nj :

zu = zr tan(2πu/n) (4.23)

The number of self images S is also determined by the n:

S = n\4 (4.24)

where “\” is integer division. Notice that this self image, using interference of
LG beams, is not periodic regarding the propagation coordinate z. Nevertheless
we can define a parameter or variable χ which is adimensional and won’t depend
on the dimensions of our experiment.

χ(zu) =
2

π
φ0(zu) =

4u

n
(4.25)
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where we have used 4.22. This parameter is limited 0 < χ < 1. When
z = 0 → χ = 0 and when z = ∞ → χ = 1. Self image is periodic regard-
ing this parameter χ.

4.3.1 Self image with 2 LG beams

Let’s consider the LG beams LGp1,l1 and LGp2,l2 .

Then, we have the condition:

φ0(z) = 2n2π/4N2
(4.26)

where 4N2
= N2 −N1 = 2(p2 − p1) + |l2| − |l1|

From 4.21 and choosing k2 = 1:

4N2 = n nu,2 = u (4.27)

The number of self images possible S is restricted by the difference of mode
orders 4N2 .

S = 4N2\4 (4.28)

where “\” is integer division. And the self image distances (4.23):

zu = zr tan(2πu/4N2
) (4.29)

are completely determined by the single mode orders difference 4N2

4.3.2 Self image with 3 LG beams

Given the 3 LG beams: LGp1,l1 , LGp2,l2 and LGp3,l3 . For self image to occur,
the condition is:

φ0(zu) =
2nu,2π

4N2

=
2u,3π

4N3

(4.30)

where nu,2, nu,3 are positive integers.
The modal order differences need to be greater or equal than 4:

4Nj ≥ 4, j = {2, 3} (4.31)

The differences of modal orders must have a common divisor “n”:

4N2
= k2n (4.32)

4N3
= k3n (4.33)

where k2, k3 are positive integers and n is a positive integer different than one.

We can predict the number of self images “S” by noticing that one of the
k′js must be one. Then:

S = n\4 (4.34)
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where “\” is integer division.

And the self image distances will be (4.23):

zu = zr tan(2πu/n) (4.35)

4.3.3 Example

An special case is presented here, the interference of 3 LG beams with mode,
radial and orbital orders:

LG1 : p1 = 0, l1 = 0→ N1 = 0

LG2 : p2 = 6, l2 = 0→ N2 = 12 (4.36)

LG3 : p3 = 12, l3 = 0→ N3 = 24

Notice that we have indexed the LG beams from lower to higher mode order N .
So the 4N ’s are:

4N2 = 12 4N3 = 24 (4.37)

S the common factor is n = 12 and k2 = 1 and k3 = 2.
The number of self images S is determined by n (4.34):

S = 12\4 = 3 (4.38)

And the self image distances will be (4.23):

z1 = zr tan(2π/12) (4.39)

z2 = zr tan(4π/12) (4.40)

z3 = ∞ (4.41)

We can also calculate the adimensional parameter for self images (4.25) of our
example:

χ1 = 4 ∗ 1/12 = 0.333 (4.42)

χ2 = 4 ∗ 2/12 = 0.666 (4.43)

χ3 = 4 ∗ 3/12 = 1 (4.44)

Notice that even though self imaging is not periodic in the propagation coordi-
nate z, it is periodic in the new parameter χ = χ(z).
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Images of the example for different distances

Using the modes of the 3 LG beams (4.36), we calculate the intensity distribu-
tions of the interference (4.14):

(a) χ = 0 (b) χ = 0.17 (c) χ = 0.33

Figure 4.1: Simulation of the intensity distribution for 3 different distances z.
a) is at z = 0. b) is in between z = 0 and the first self image. c) is at the first
self image.

Notice that at χ = 0 and at first self image (χ = 0.33) the intensity is con-
centrated in an small circle at the center of the beam. Away from self image
distances we obtain images like Fig. 4.1 b, where the intensity is more dis-
tributed towards the outer rings of the beam.
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Chapter 5

Application: Concealing
information using the
superposition of LG beams

5.1 Using superposition of LG beams to write a
word

The goal of the present work was to present an interesting application of the
self image phenomenon. The application presented here is the concealing of in-
formation, with the interference of LG beams, when z is different of a self image
distance zi (4.23). So we only recover the initial image, which can be seen as
revealing the information, at self image distances z = zi.

We decided the initial image to be a word: UFF (Universidad Federal Flu-
minense). The idea is that only for self image distances z = zi we will be able
to read the word. If z 6= zi we won’t be able to read it. We used the 3 LG
beams superposition of the previous example (4.36), as dots, to write the word
UFF. In Figure 5.1 we show a simulation of the image at z = 0.

5.2 Spatial Light Modulator: generation of the
superposition of LG beams

The SLM, for its initials Spatial Light Modulator, as its name says, modulates
the phase of the incident light. The SLM has two parts. First is the screen
made of pixels, where at the same time these pixels enclose a line of birrefrin-
gent crystals (a line of them for each pixel). Given the ammount of voltage we
apply to a pixel, the corresponding line of birrefringent crystals modulates the
light that falls upon it. The second part of the SLM is the controller that is
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Figure 5.1: Information: the word UFF, formed up by dots which in reality are
the superposition of LG beams at z = 0

connected to a PC. With an holographic map (picture of grays we make in the
PC) we can control the voltage that we apply to each pixel. To each color of
gray corresponds a voltage. From the reflection of a gaussian beam in the SLM
screen, where we put the specific holographic map for the job, we obtained the
desired superposition of the Laguerre beams.

The SLM used in this experiment was the PLUTO 2 model, made by Holeye.
It is a reflective type, with 8 bits pixels (256 gray colors) and that uses Liquid
Crystal on Silicon as the birrefringent crystal. See Figure 5.2.

Figure 5.2: Spatial Light Modulator used in the experiment: PLUTO-2, Holeye.

5.3 Experimental setup

Since in our analysis we supposed all Laguerre beams had the same wavelength,
this parameter is not critical in the interference of the beams, we could have
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used light with any wavelength available. We used a laser that provided gaus-
sian light (in the fundamental mode) with a wavelength of λ = 633nm.

We generated the superposition of LG beams using the aforementioned SLM
(Spatial Light Modulator).

We needed a bigger waist than the one obtained from the laser, for it to
reach more pixels of the SLM, which makes the obtained superposition of La-
guerre beams to have a better resolution. To solve this we used a telescope
display (equation 3.10), which collimated the beam and augmented its waist to
800 µm. We used f1 = 2f2 = d1/2 = 20cm. See Figure 5.3

We programmed the SLM to return a superposition of beams with a waist of
w0 = 200µm. This value was optimal since the self image distances depend on
the beam waist w0, and we had only half a meter to displace our CCD camera.
This let us record until the second self image of the case we wanted to analyse
(equations 4.39 and 4.40).

The SLM produces the paraxial LG beams from a diffraction grating, this
also means the modulated light we are interested in exits the SLM at an specific
angle from the axis of the SLM (Figure 5.3). To select only the modulated light,
we first used a lens (L3) in order to focus the light to a waist small enough that
with an iris we could select only the modulated light. Here, we are left with two
issues, first we have lost some centimeters of propagation of the superposition
of the LG beams, and because of the L3 lens we have a beam that is expand-
ing. Both issues are solved with an additional lens L4. We use this last lens to
displace the transverse section of the interference, according to equation 3.13
(notice that we need f3 = f4 = d3 = d4/2 = d5). By doing this we recover the
propagation of the transverse section from the beginning (z = 0). Also this last
lens L4 let us refocus the beam. We used f3 = 20cm

With a CCD camera, and an improvised rail to displace the camera, we
registered the images of the transverse section of the superposition of the beams
at different positions up until z′ = 0.5m. We decided that the best way to show
the propagation of the superposition of the LG beams was via a video, so we
recorded an image every 2mm. The points of major interest are the ones where
we can see self images.
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Figure 5.3: Setup

5.4 Experimental results

Using a CCD camera we registered through the propagation axis (z) the trans-
verse section of the superposition of 3 Laguerre beams. Here we present the
images at z = 0, first self image z = z1 and second self image z = z2. We also
present distances in between z = 0 and the self images.

Figure 5.4: χ = 0
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Figure 5.5: χ = 0.166

Figure 5.6: χ = 0.334: 1st self image

Figure 5.7: χ = 0.5

Figure 5.8: χ = 0.654: 2nd self image
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Chapter 6

Conclusions

In chapter 4 we calculated the behaviour of a single Laguerre beam propagating
through the z coordinate (longitudinal propagation). We saw that the trans-
verse image (intensity distribution) was an expanded version of the initial image,

with the decreasing factor
(
w0

wz

)2
. Then we analyzed the superposition of var-

ious coherent and collinear LG beams and showed that given a restriction on
the difference of its mode orders N = 2p+ |l|+ 1, we can produce the self image
phenomenon via the constructive interference of these Laguerre Gauus beams.
As with a single LG beam, we discovered that the image of the superposition of
LG beams expands through propagation, but with a rescaling of the radial com-
ponent we can arrive at the same intensity distibution. In chapter 5 we showed
an application for the self image with LG beams, we reveal information (a word)
everytime self image is obtained, and we conceal the information everytime we
loose the self image. We used the interference of 3 LG beams as dots to write
the word. Then displacing a camera we recorded images at various distances.
Self image distances were really close to the ones predicted. Experimentally, we
decided to use an Spatial Light Modulator, to obtain directly from it, the inter-
ference of the 3 LG beams used in the application. We could have produced the
LG beams individually and then try to interfere them, nevertheless this would
have complicated the experiment unnecessarily.

The third Self image was not presented here because , at that distance, the
expansion of the LG beams made the dots of the word UFF to interfere with
each other, making the whole word became illegible.
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Part III

PR box
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Chapter 7

Introduction: PR box

Bell inequality is a very famous and successful theoretical proof of the diver-
gence of results, between Classical (Local hidden variable theory) and Quan-
tum Mechanics. Using this tool, over the years many experimental works have
demonstrated that nature cannot be described with a local hidden variable the-
ory. The most controversial feature of quantum mechanics: non-locality, has
gain much attention over the last years because of the development of quantum
information. Nowadays non-locality is widely accepted and used in many other
exciting applications like teleportation, swapping, etc. Nevertheless, this opens
other questions, like why is nature just as local to reach the Tsirelson’s bound
but not go beyond? The algebraical maximum of the CHSH inequality is 4, and
quantum mechanics can only reach up to 2

√
2. What happens in this gap that

seems empty and without a theory that can describe it?

Popescu and Rhorlich proved that from non-locality and relativistic causal-
ity, quantum mechanics correlations were not the only correlations that emerged.
Relativistic causality meaning that no information is transmitted with superlu-
minal velocities. This means that there are correlations, capable of surpassing
the Tsirelson’s bound, that are still causal. The super-quantum correlations that
maximally surpass the Tsirelson’s bound, making the Bell parameter S = 4, are
known as PR boxes in honor of Popescu and Rhorlich. In chapter 8, we review
the concepts necessary to define a PR box.

Given that super-quantum correlations can’t be obtained from a closed quan-
tum ensemble, there are extra steps needed in order to obtain them. Markovitch
et al, showed that, in a bipartite quantum system, adding pre and post-selection
of maximally entangled states will fake the maximal surpass of the CHSH in-
equality. In chapter 9, we define a probability distribution of measurements in
between pre and post selection of other states using the Aharonov-Bergman-
Lebowitz formula.

In chapter 10 we propose an experimental setup, using spin-orbit modes of
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classical light, capable of simulating a PR box.
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Chapter 8

PR box: Non-locality
beyond quantum mechanics

8.1 Non-locality

Once taken as negative, non-locality has become one of the most important
aspects in quantum mechanics. An event here can have an effect at a very long
distance, instantly. This ”apparent” action at distance was the core of the critic
that Einstein-Podolsky-Rosen made against quantum mechanics in their very
famous paper [3]. For them, it seemed that quantum mechanics and its non-
locality didn’t respect relativistic causality.

For quantum mechanics to violate relativistic causality, there would need
to be an exchange of messages between parties faster than light. Uncertainty
makes the outcome of a measurement to be probabilistic, this makes impossible
to transmit messages using non-locality. The correlations between the distant
particles are blurry enough for a message not to be send. So nowadays, we
say that no-determinism (uncertainty) makes it possible for non-locality and
relativistic causality to coexist.

8.2 Entanglement and Non-locality

Though, entanglement and non-locality are related, it is now widely accepted
that they are two different concepts.

Entanglement refers to the impossibility of separating a bipartite state as a
product of 2 functions, where each one contain information about only one of
the parties.

|ψ〉 6= |ψ1〉 ⊗ |ψ2〉 (8.1)

Non-locality is the possibility of correlation between very distant objects
given that they share a common past. Using the Bell theorem, we say that if
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Bell parameter results greater than 2, there is non-locality.

|S| > 2 (8.2)

The relation between these two definitions is very well known for closed
bipartite systems. Non-entangled systems give a Bell parameter equal to 2, and
maximally entangled states (or Bell states) give the maximum violation of Bell
inequalities 2

√
2.

8.3 CHSH inequality

Bell inequalities are a powerful tool to witness non-locality. The CHSH inequal-
ity is derived from the Bell’s, but it has a more convenient structure for the
experimental work. Therefore is by non-offical concensus one of the more used
Bell type of inequalities. CHSH inequalities refer to experiments involving two
parties very distant from each other (analogue to two independet degrees of
freedom), in such a way that they are out of each other’s light cone. As usual
let’s refer to these parties as Alice and Bob.

Let’s suppose we give each of them a particle. These two particles share a
common past in such a way that we can say that now, they are correlated. We
define a quantity named correlation CAB as average values of the observables
(A for Alice and B for Bob) measured by each party. We are dealing with two-
possibility variables or bits, our measured values can be +1 or −1.

The correlations are expressed as:

CAB = 〈AB〉 (8.3)

= p(+1,+1|A,B) + p(−1,−1|A,B)− p(+1,−1|A,B)− p(−1,+1|A,B)(8.4)

where p(α, β|A,B) is the joint probability of measuring α if A was measured
by Alice and β if B was measured by Bob. α, β = {+1,−1} are the possible
outcomes of each measurement for Alice and Bob respectively.

With the correlations, we define the Bell parameter:

S = CAB + CA′B + CAB′ − CA′B′ (8.5)

where A′ and B′ are other arbitrary bases.
Using a local hidden variable theory, it can be shown that the predicted Bell

parameter in the CHSH structure is constrained by 2:

|Sclas| < 2 (8.6)

In the same way, Quantum Mechanic’s predicted Bell parameter has 2 as it
lower constraint.
Tsirelson [4] demonstrated that Quantum Mechanics also had an upper limit
value of 2

√
2 for the Bell parameter .

2 < |Sqm| ≤ 2
√

2 (8.7)
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8.4 Axioms of Quantum Mechanics

Why is quantum mechanics limited by 2
√

2 in the CHSH inequality? One
can say that mathematically it is because of the Hilbert structure. Popescu
and Rhorlich [5] suspected that it expressed a limit imposed by the relativis-
tic causality. Although they were wrong, this led them into an interesting result.

Under the suggestion of Aharanov, Popescu and Rhorlich questioned the
axioms attributed to quantum mechanics. These axioms were widely agreed
to be uncertainty and relativistic causality. And non-locality was seen as a
consequence of the ”axioms” mentioned above. If non-locality and relativistic
causality are taken as axioms, will quantum mechanics be the only theory that
emerges? Popescu and Rhorlich discovered that the answer was: No. This new
superquantum correlations violated Bell inequalities, they also could surpass
the Tsirelson’s bound, even achieving the maximum algebraic value 4. All this,
respecting the relativistic causality.

Super-quantum correlations still obey relativistic causality, the difference
with quantum correlations is that they are ”more” non local. Unfortunately,
the universe is not only causal and non-local. Even if this two axioms capture
the essence of the beauty of quantum mechanics, the lack of a mathematical
theory to, from a description of our physical reality, arrive to this super-quantum
correlations forces us to place them in an imaginary situation too far away from
our reality.

8.5 Black Box

Figure 8.1: Black box

Since what we are going to analyze is a theory outside the classical or quan-
tum realm, we need to avoid their formalism and stick to a very general defini-
tion of Bell inequalities. This can be achieved by using a black box as the space
where Alice and Bob do their respective experiments.

Our black box takes bits as inputs from each party, bit x for Alice and bit
y for Bob ; and returns bits as outputs to each party, bit a for Alice and bit b
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for Bob. We don’t know what happens inside the box. The information we can
extract from experiments Alice and Bob do with their respective bits is contained
in the probability distribution p(ab|xy). This is a conditional probability that
can be read as: ”the probability of Alice obtaining the bit a and Bob obtaining
the bit b, given that Alice introduced the bit x and Bob the bit y”.
This probabilities satisfy the non negativity condition:

p(ab|xy) ≥ 0, ∀a, b, x, y (8.8)

And the normalization condition:∑
a,b

p(ab|xy) = 1, ∀x, y (8.9)

Another condition is that there can’t be signaling between both parties. This
means that one partie’s output can’t depend on the other’s input. This is known
as the no-signaling condition. Since we are dealing with very distant parties,
signaling will mean relativistic causality violation.

Mathematically the no-signaling condition for Alice, can be expressed as:∑
b

p(a, b|x, y) =
∑
b

p(a, b|, x, y′) = p(a|x) ∀a, x, y, y′ (8.10)

And for Bob:∑
a

p(a, b|x, y) =
∑
a

p(a, b|, x′, y) = p(b|y) ∀b, y, x, x′ (8.11)

8.6 CHSH inequality: revisited

Now that we have defined another formalism for Bell tests, we rewrite the equa-
tions for correlations and Bell Factor.

The analogy between the Bell tests and these black boxes experiments is
that in both we are dealing with bits: two-possibility variables. In the Bell
tests, Alice and Bob select the observable of measurement (A or A′ for Alice
and B or B′ for Bob). This can be seen in the black box as Alice and Bob
selecting the input bit 0 or 1. Also, in the Bell tests they obtain an outcome (α
for Alice and β for Bob) that can have 2 values +1 or −1, which is the same as
in the black box where Alice and Bob obtain an output bit 0 or 1.

So, the analogy is:
p(ab|xy) ≡ p(α, β|A,B) (8.12)
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The input bits x and y take the place of the observables A and B, and the
output bits a and b replace the outcomes α and β.

This derives in re-expressing the correlations:

Cxy = p(00|xy) + p(11|xy)− p(01|xy)− p(10|xy) (8.13)

and the Bell factor as:

S = C11 + C01 + C10 − C00 (8.14)

8.7 PR box

Superquantum correlations appear when we take non-locality and relativistic
causality as axioms. We call PR box to the super-quantum correlations that
surpass maximally the Tsirelson’s bound (S = 4). To define the PR box we can
depart from the black box definition. So a PR box is a black box that has an
additional condition [6]:

x.y = a⊕ b (8.15)

where “ . ” is multiplication and “ ⊕ ” is known as addition modulo 2:

⊕ 0 1
0 0 1
1 1 0

This means that when x.y = 1 (which happens when x = y = 1), a and b can
only be different. And for all the other cases x.y = 0, a and b can only have the
same value. Also let us suppose that all possibilities are equiprobable. So the
probability distribution p(ab|xy) is:

Input (x, y) \ Output (a, b) 00 01 10 11
00 1/2 0 0 1/2
01 1/2 0 0 1/2
10 1/2 0 0 1/2
11 0 1/2 1/2 0

Table 8.1: Probability distribution p(ab|xy)

8.8 CHSH inequality: PR box

With the values of the conditional probabilities in Table 1, we construct the
correlations:

C00 = p(00|00) + p(00|11)− p(00|01)− p(00|10) = 1/2 + 1/2− 0− 0 = 1 (8.16)
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The same way goes for the other correlations, yielding in:

C01 = C10 = 1 C11 = −1 (8.17)

So, the Bell parameter will be:

SPR box = 4 (8.18)

8.9 PR-boxes in Communication Complexity

It has been shown that if PR-boxes were real, they could help solve many nowa-
day problems [7]. One of these possible applications concerns the ammount of
bits required for the communication between two parties. There is a very useful
function in Theory of Communcation, named the AND function.

We can use an example to illustrate the unbelivable consequences of PR-
boxes. Alice and Bob are friends distant from each other, and want to meet
some day of the year. To make the connection with the AND function, let us
suppose that what they want to know is if the number of days when they can
meet is an odd or an even number. If we denote x (y) the bit of information
for Alice (Bob), where this bit encodes the information of availability of each
party. The mentioned bit is 0 if the person is busy that day, and 1 if the person
is free. Using this notation, what they want to know is if

∑
i xiyi is even or

odd. The problem is that this value requires that at least one person has access
to the bits of the other party in order to calculate the summation and see if the
number is odd or even. In 2012, Wim van Dam [8], using the results from his
PHD thesis showed that using a PR box the above problem (which is known as
Inner Product function) could be simplified.
If PR-boxes were physically realizable, Alice and Bob’s laboratories could be a
black box and they could use the xi and yi as input bits for experiments yielding
in ai and bi as outcome bits. So using the PR-box definition, we would have:

xiyi = ai ⊕ bi ∀ i (8.19)

So the quantity we want to know if is even or odd can be re-expressed in terms
of the output bits a and b.∑

i

xiyi =
∑
i

ai ⊕ bi =
∑
i

ai ⊕
∑
i

bi (8.20)

Notice, we don’t know anything from the experiments that were made in each
laboratory to yield the output bits. We only know that the correlation, between
them and the input bits, is governed by the condition 1 of the PR boxes.
As stated in the previous equation, addition modulo 2 is also separable in sum-
mation, so the value of interest is separated in 2 bit values

∑
i ai and

∑
i bi. The

summation is made with addition modulo 2. This has the advantage that Alice
can calculate

∑
i ai by her own, same goes for Bob with

∑
i bi. It is necessary
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to remark that ai and bi are outcome bits obtained via experiments ruled by
super quantum correlations between the mentioned bits. Then Bob can send its
bit (0 if

∑
i bi is even, or 1 if it’s odd) to Alice, and Alice with her own bit (0 if∑

i ai is even, or 1 if it’s odd) can determine if
∑
i xiyi is even or odd.

As shown in the last paragraph Bob has to send only 1 bit to Alice for her to
determine if the value

∑
i xiyi is even or odd. This contrast with the raw case

of Bob having to send his 365 bits yi (one for each day of the year) to Alice, and
then her to determine if the value of interest

∑
i xiyi is even or odd. What is

even more surprising is that 365 is a number that arrived because of the nature
of the example we gave, it could have actually been any number and the PR-box
would still reduce it to only 1.
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Chapter 9

Simulation of a PR-box
using a Quantum
Mechanics ensemble

Super quantum correlations can’t be obtained directly from the Bell test in
a closed quantum mechanics ensemble. All the same, it was first showed by
Cabelo et al. [10] that, via the post-selection of two quibts out of a tri-partite
maximally entangled state (GHZ state), that we could simulate correlations
that maximally surpassed Tsirelson’s bound. An experimental work using this
approach was done by Chen et al. [11] using the polarization of three single
photons to form up a GHZ state. Another method, which is the one we use in the
experimental proposal of this work, involves pre and post-selection of bipartite
entangled states from a bipartite state. To describe the process we will use the
Aharonov-Bergman-Lebowitz formula, which yields the probability of a possible
outcome, given that there is pre and post-selection of states. Additionally we
need to evalute what states are pre and post-selected, they have respect the
no-signaling condition and also be able to replicate the probability distribution
of a PR box (Table 8.1). The observables to be measured are also important
and we need to select them accordingly.

9.1 Measurements in Quantum Mechanics

In quantum mechanics, we can’t predict the outcome of the measurement on
a system |ψi〉, we can only express the probability of each possible outcome.
Let C be the observable of the measurement, cj one of the eigenvalues and |cj〉
the respective eigenvector. Then, the conditional probability of the outcome cj ,
given that initially the system is described by |ψi〉 is:

p(cj |ψi) = | 〈cj |ψi〉 |2 (9.1)
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9.2 The Aharonov-Bergman-Lebowitz formula

Let us assume that we have knowledge of the quantum system in two different
moments: |ψi〉 and |ψf 〉, and we want to know the probability of a measurement
in between this two states.

The mathematical approach for this has been demonstrated for non-degenerated
[12] and degenerated [13] states. The probability of a measurement of the ob-
servale C giving the value cn between two other measurements, that yield |ψi〉
and |ψf 〉, is:

p(cj |ψi, ψf ) =
| 〈ψf |Pcj |ψi〉 |2∑
n | 〈ψf |Pcn |ψi〉 |2

(9.2)

where Pcj is the projection operator of the measurement of C that gives the
outcome cj . The way to arrive to the previous equation is to consider the prob-
ability as the joint probability of obtaining the middle state |cj〉 from |ψi〉 and
of obtaining the state |ψf 〉 from the middle state |cj〉.

Until now, we have asigned values of 0 or 1 to our bits. We did that because
it helped describe the PR box condition 8.15. But experimentally, they don’t
provide any insight. From now on, until we say otherwise, we will use the spin
notation.

In a Bell test context, Alice and Bob, manipulate a projector in each respec-
tive laboratory. First, we need to define the observable. For the measurement
of observable A, given that the 2 eigenvalues are +1 or −1, we can define 2
projectors :

PA=+ outcome : +1 (9.3)

PA=− outcome : −1 (9.4)

We can connect the Black box’s input values x = {0, 1} and y = {0, 1} with
the observables x = {A,A′} and y = {B,B′} that are controlled by Alice and
Bob in a Bell test. In the same way, the Black box’s outputs a = {0, 1} and
b = {0, 1}, will be the possible eigenvalues a = b = {+,−} ≡ {↑, ↓} which are
the outcomes of a measurement in the Bell test.

Our interest in bipartite states takes us to express the projector of measure-
ment as a tensorial product of 2 projectors, each one of a different vectorial
space (Alice or Bob). In Alice’s vector space the possible bases of measurement
are represented by x and the possible outcomes of the measurement as a, so
P(x=a) is the projector in Alice’s vector space for the outcome a in the base of
measurement x. Similarly goes for Bob’s vector space with y and b. So, using
the definitions from the previous paragraph, we define the ABL formula with
the bits x, y, a, b, and the initial and final states (|ψi〉 and 〈ψf |):

p(a, b|x, y, |ψi〉 , 〈ψf |) = p(a, b|x, y) =
| 〈ψf |Px=a ⊗ Py=b |ψi〉 |2∑

a′,b′ | 〈ψf |Px=a′ ⊗ Py=b′ |ψi〉 |2
(9.5)
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Since we are gonna use the same initial and final quantum states for all
the simulation (|ψi〉 and 〈ψf |), we can remove them from the notation of the
probabilities, but keeping in mind that these are still dependent on those states.
Nontheless, this still doesn’t simulate a PR box. We need a probability distribu-
tion as in Table 8.1. To accomplish this, we need specific pre and post selected
states |ψi〉 and |ψf 〉, and observables x, y.

9.3 With what quantum pre and post selected
states can we simulate a PR box?

No-signaling

Markovitch et al showed which combination of pre and post-selected ensembles
will make the probabilities (9.2) simulate the ones of a PR box [9]. Let’s start by
saying that there are 3 groups which satisfy no-signalling condition (eq. 8.10):

• Separable states (non-entangled)

|ψi〉 = |↑ ↑′〉 (9.6)

|ψf 〉 = |↑′′↑′′′〉 (9.7)

The disadvantage of this states is that, since they are not entangled, they
don’t exhibit non-locality, so they won’t be useful.

• Maximally entangled states (Bell states):

|ψi〉 =
1√
2

(|↑ ↑′〉+ eiθi |↓ ↓′〉) (9.8)

|ψf 〉 =
1√
2

(|↑′′↑′′′〉+ eiθf |↓′′↓′′′〉) (9.9)

• Same states, just with their amplitudes swapped:

|ψi〉 = α |↑ ↑′〉+ eiθβ |↓ ↓′〉) (9.10)

|ψf 〉 = β |↑ ↑′〉+ e−iθα |↓ ↓′〉) (9.11)

Maximal surpass of the Tsirelson’s bound

Nevertheless, the swapped states can’t achieve the maximal surpass of the
Tsirelson’s bound, so they are of no use in our simulation. That is why we
decided to use a pair of Bell states as initial and final states:

|ψi〉 =
1√
2

(|↑z↑z〉+ |↓z↓z〉) (9.12)

〈ψf | =
1√
2

(〈↑z↑x| − 〈↓z↓x|) (9.13)
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In the same way, this doesn’t work for every choice of base of measurement.
For this corresponding initial and final states (9.12 and 9.13), we chose the basis
of measurement:

x = {σx, σz}, y = {σz, σx} (9.14)

With our pre and post-selected states (9.12, 9.13) and obervables (9.14), we
construct probabilities following the ABL formula (9.5). This yields in the fol-
lowing probability distribution p(a, b|x, y, |ψi〉 , 〈ψf |) = p(a, b|x, y):

Input (x, y) \ Output (a, b) ↑↑ ↑↓ ↓↑ ↓↓
(σx, σz) 1/2 0 0 1/2
(σx, σx) 1/2 0 0 1/2
(σz, σz) 1/2 0 0 1/2
(σz, σx) 0 1/2 1/2 0

Table 9.1: Probability distribution p(ab|xy, ψi, ψf )

Table 9.1 is the same as Table 8.1, this gives us certainty that we will have
super-quantum correlations.

Cσx,σz = Cσx,σx = Cσz,σz = 1, Cσz,σx = −1 (9.15)

Resulting in a Bell parameter which maximally surpass the Tsirelson’s bound:

S = 4 (9.16)
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Chapter 10

Experimental Proposal to
simulate a PR-box using
polarization and transverse
mode spaces

10.1 Polarization and transverse mode as vector
spaces

In the previous chapter we showed a way to simulate a PR box using a bipartite
system. We used the spin notation, but obviously it works for any analogous
vector space.

We can use polarization and transverse mode (First order Hermite-Gauss
modes) as the 2 vector spaces. This type of light modes are also known as spin-
orbit modes [14]. An arbitrary vector of spin-orbit light mode can be written
as:

~E = c1HG1,0(~r)êH + c2HG1,0(~r)êV + c3HG0,1(~r)êH + c4HG0,1(~r)êV (10.1)

where the c’s are complex numbers satisfying the normalization condition (|c1|2+
|c2|2 + |c3|2 + |c4|2 = 1). And HG1,0 (HG0,1) is the horizontal (vertical) trans-
verse mode (equation 1.16); êH (êV ) is the horizontal (vertical) polarization.

Although entanglement is one of the fundamental features of Quantum Me-
chanics, it has been shown over the years that Maxwell or classical fields can
exhibit a similar feature that is sometimes called non-separability to differenti-
ate it. We can even describe the degrees of freedom of the classical fields with
the same mathematics of the qbits.
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So we can represent our spin-orbit mode using the quantum notation [14]:

|ψ〉 = c1 |H〉 ⊗ |h〉+ c2 |H〉 ⊗ |v〉+ c3 |V 〉 ⊗ |h〉+ c4 |V 〉 ⊗ |v〉 (10.2)

where |H〉 (|V 〉) represents the horizontal (vertical) polarization. And |h〉 (|v〉)
is the horizontal (vertical) transverse mode.

The following table shows the notation we are gonna use for the projectors,
on each vector space and its analogy with the spin notation:

Projector spin polarization TM
Pσz=↑ |↑z〉 〈↑z| |H〉 〈H| |h〉 〈h|
Pσx=↑ |↑x〉 〈↑x| |D〉 〈D| |d〉 〈d| where |D〉 = 1√

2
(|H〉+ |V 〉)

Pσz=↓ |↓z〉 〈↓z| |V 〉 〈V | |v〉 〈v|
Pσx=↓ |↓x〉 〈↓x| |A〉 〈A| |a〉 〈a| where |A〉 = 1√

2
(|H〉 − |V 〉)

Table 10.1: Analogy between vector spaces

10.2 Local Unitary Operations

A local unitary operation can be represented as a Jones matrix [15]:

U(n̂, γ) = cos(γ/2)1− i sin(γ/2)n̂.~σ (10.3)

where n̂ = (nx, ny, nz) is a unitary vector composed by real numbers, and
~σ = (σx, σy, σz) is a vector composed by the Pauli matrices. So n̂.~σ = nxσx +
nyσy + nzσz .

Bloch sphere

The previous definition (10.3) makes a lot of sense when we use the Bloch (or
Poincaré) sphere to graph our state (in one DOF) via the Stokes parameters.
Given an initial single q-bit state |ψ〉, we apply an unitary operation U(η̂, γ). In
the sphere, the unitary operation rotates the state (vector) around the rotation
axis given by the unitary vector n̂, and γ will be the rotation angle.

For example, if the rotation axis is n̂ = k̂ and the rotation angle γ = π, the
rotation, in the sphere, looks like in figure 10.1.

10.2.1 Local Unitary operators in polarization space

In polarization DOF (or space), experimentally, we can apply unitary operators
using optical elements known as birrefringent waveplates. This elements have
the propertie of dephasing orthogonal polarizations that incide in their rapid
and slow optical axis.
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Figure 10.1: Example of the rotation due to a local unitary operation, over a
single q-bit state |psi〉,with parameters n̂ = k̂ and γ = π.

The most common are the half wave plate (HWP or simply H) and the quar-
ter wave plate (QWP or Q). The names given refer to the amount of dephasing
they do to the orthogonal polarizations that incide on them. You can even
rotate this waveplates to give more complexity to the operation. The Jones’
matrix representation of these elements is as follows:

H(θ) = U(n̂′, π) = −i
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(10.4)

Q(θ) = U(n̂′, π/2) =
1√
2

(
1− i cos 2θ −i sin 2θ
−i sin 2θ 1 + i cos 2θ

)
(10.5)

where θ is rotation angle of each waveplate, and n̂′ = (sin 2θ, 0, cos 2θ).

In general, the type of operations done by the half and quarter waveplates
(equations 10.4 and 10.5) are known as π mode converter and π/2 mode con-
verter respectivelly. They receive these names because of the angle they rotate
the state in the Bloch spehere. They also can be fulfilled by optical elements in
the transverse-mode space.

10.2.2 Local Unitary operators in transverse-mode space

As in polarization DOF, in transverse-mode DOF we can arrange optical ele-
ments that act as π mode converter and π/2 mode converter. A Dove prism
inverts the transmitted image and, when rotated θ, rotates the image twice:
2θ. Eventhough the image is rotated, the polarization is not [16]. So, the Dove
prisms (DP) acts as a π mode converter in the transverse mode DOF. For the
π/2 mode converter you can use two identical cylindrical lenses of focal length
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f , distanced by
√

2f [17].

DP (θ) = U(n̂′, π) = −i
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
(10.6)

MCπ/2(θ) = U(n̂′, π/2) =
1√
2

(
1− i cos 2θ −i sin 2θ
−i sin 2θ 1 + i cos 2θ

)
(10.7)

where again θ is the angle of rotation, of the optical element, from its optical
axis and n̂′ = (sin 2θ, 0, cos 2θ)

10.3 Projectors

Given a closed system, a projector is defined due to an observable A = n̂A~σ,
with eigenvalues |ci〉 and its repective possible outcome ci. So the observable
A can be decomposed in its spectral descomposition: A =

∑
i ciPA=ci , where

PA=ci is the projector due to the measurement of the observable A and the
outcome ci. Also because of completness,

∑
i PA=ci = 1.

Given that our states are q-bits, we call {|+〉 , |−〉} to the eigenvalues of
A and +1,−1 to the respective possible outcomes. So the previous equations
become:

A = PA=+ − PA=− (10.8)

1 = PA=+ + PA=− (10.9)

So, the projectors are defined as:

PA=± =
1

2
(1±A) =

1

2
(1± n̂A.~σ) (10.10)

Experimentally we have arrangements of optical elements capable of doing pro-
jections in both spaces.

10.3.1 Polarizing beam splitter

In polarization DOF we have an optical element called polarization beam split-
ter (PBS), this are used to split polarized light into 2 paths. The PBS produce
a separation of 90o between the output beams. It transmits light with polariza-
tion parallel to the optical axis of the PBS, and reflects light with polarization
perpendicular to its axis. This definition, is represented by the following pro-
jections:

|H〉 〈H| , if we take the transmission path (10.11)

|V 〉 〈V | , if we take the reflexion path

Nevertheless this is too limited, a more general projection can be achieved,
selecting the transmission path, and putting the PBS in between 2 half wave
plates rotated the same angle (Figure 10.2):
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Figure 10.2: PBS+2HWPs form up a projector of the linear polarization |θ〉.

Upbs(θ) = H(θ) |H〉 〈H|H(θ) (10.12)

Upbs(θ) = |θ〉 〈θ| (10.13)

where |θ〉 = H(θ) |H〉 = cos(2θ) |H〉+ sin(2θ) |V 〉

This would be enough for the type of projections necessary in this work, as
we can see from the observables to be used in equation 9.14.

Alternately, to project linear polarization we can also use an optical element
known as polarizer. A rotation θ from its optical axis is represented in Jones
matrix:

P (θ) = |θ〉 〈θ| (10.14)

which is the same as our PBS + 2HWPS setup (Figure 10.2).

10.3.2 Transverse-mode beam splitter

A tranverse-mode beam splitter (TMBS) is feasible using a Mach-Zhender in-
terferometer with an additional mirror and a Half-wave plate in one arm (MZIM
+ HWP)[18].

The idea here is that, in the polarization DOF, a reflection produces a phase-
shift of π only in the horizontal polarization |H〉. In the same way, in the
transverse-mode DOF, a reflection produces a phaseshift of π only on the hor-
izontal Hermite-Gauss |h〉. This means that the bipartite state |Hh〉 will gain
a phase π twice, resulting in no phase gained; the same goes for |V v〉 which
doesn’t gain any phase at all. Both |Hv〉 and |V h〉 gain a π phase.

In summary, in a reflection, our bipartite states (polarization⊗transverse-
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Figure 10.3: TMBS. Given light coming from the |x〉 path, the transmitted
path will have transverse state |h〉 (HG1,0) and the reflected path will have |v〉
(HG0,1).

mode space) will gain phases as:

|Hh〉 −→ ei2π |Hh〉 = |Hh〉
|V v〉 −→ ei0π |V v〉 = |V v〉 (10.15)

|Hv〉 −→ eiπ |Hv〉 = − |Hv〉
|V h〉 −→ eiπ |V h〉 = − |V h〉

Additionally, a half wave plate at 0o adds a π phase to horizontal polarization
|H〉 compared to vertical polarization |V 〉. So if we consider a H(0o) and a
reflection, we will have the following phases:

|Hh〉 −→ eiπ |Hh〉 = − |Hh〉
|V v〉 −→ ei0π |V v〉 = |V v〉 (10.16)

|Hv〉 −→ ei2π |Hv〉 = |Hv〉
|V h〉 −→ eiπ |V h〉 = − |V h〉

The transformation in 10.16 can be expressed in Jones matrix or kets represen-
tation as:

Up =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


pol⊗tm

(10.17)

= |Hh〉 eiπ 〈Hh|+ |V h〉 eiπ 〈V h|+ |Hv〉 〈Hv|+ |V v〉 〈V v| (10.18)

As we can see, after passing through the H(0) and the reflection, |Hh〉 and
|V h〉 have the same π phase, and |Hv〉 and |V v〉 have the same null phase. This
difference in phases of the states is what makes possible the separation of the
orthogonal transverse modes |h〉 and |v〉 in the TMBS.

Using the Jones’ matrix representation of the various optical elements used
(Annex 15.1), and considering the path vector space {|x〉 , |y〉} where x is the
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horizontal path and y the vertical path, we are going to calculate the Jones
matrix of the whole Transverse-mode beam splitter, Figure 10.3.

We are going to use the path DOF as an ancilla. The objective will be that,
similar to a PBS, light with horizontal Hermite-Gauss mode |h〉 continues by
the same path and light with vertical Hermite-Gauss mode |v〉 changes path.

As we see in Figure 10.3, first we have a BS, followed by a conditional
operation inside the Mach Zhender, this conditional operation applies Up (10.16)
to light in the |y〉 path and a phaseshift eiφ, that can be adjusted using a
piezoelectric in the mirror, to the path |x〉 with respect to the path |y〉. We
choose the dephasing to be φ = −π/2. After this, comes a second BS. All this
is summarized in the ket representation of the whole transformation (see Annex
13.1):

Utmbs = Ubs.Umirr.(14x4 ⊗ |x〉 e−iπ/2 〈x|+ Up ⊗ |y〉 〈y|).Ubs (10.19)

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 i
0 0 0 0 0 0 −i 0


pol⊗tm⊗path

(10.20)

= 1pol ⊗ |h〉 〈h| ⊗ 1path + 1pol ⊗ |v〉 eiπ/2 〈v| ⊗ (|x〉 〈y| − |y〉 〈x|)

This means that if the light entering has horizontal Hermite Gauss mode
|h〉, it exits the TMBS without any change of polarization, transverse-mode or
path, only with an additional phase of π. On the contrary, if the light has ver-
tical Hermite Gauss mode |v〉, it would only change its path, with an additional
phase π if the light came from the path |x〉.

If light enters only from the |x〉 path, and at the end we select only the light
of the |x〉 path, we have the transformation (pol ⊗ tm):

Utmbs−h = 〈x|Utmbs |x〉 = 1pol ⊗ |h〉 〈h| (10.21)

More general projector

Same as in polarization space, in transverse mode space we can make a projector
that projects linear combinations of |h〉 and |v〉. (Figure 10.4)

Given that light comes in through from the |x〉 path, if at the end we select
only the light going to the |x〉 path, and sandwich the TBMS with 2 Dove prisms
with the same rotation angle, we will have:

Utmbs(θ) = DP (θ) |h〉 〈h|DP (θ)

= |g〉 〈g| (10.22)
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Figure 10.4: MZIM + HWP(0) in one arm form up a TMBS. If we sandwich
the transmission path with 2 Dove prisms we obtain a more general projector.

where |g〉 = DP (θ) |h〉 = cos(2θ) |h〉+ sin(2θ) |v〉

10.4 Stages to simulate a PR box

As stated before, the simulation consists in 3 stages: pre-selection, projective
measurements and post-selection.

Pre-selection Measurements (projections) Post-selection
|ψi〉 (Px=a ⊗ Py=b) |ψi〉 〈ψf | (Px=a ⊗ Py=b) |ψi〉

Table 10.2: We need 3 stages to simulate the PR-box. In this table we sketch
what happens with the quantum state over the 3 stages. First, the pre-selection
of the state |ψi〉. Secondly, the local-projections in the x and y observables that
give the a and b outcomes respectively. Thirdly, we select only states in the
final state |ψf 〉.

As we see in Table 10.2, after the post-selection stage, the probability of
outcomes, x = a (Alice measuring the x observable and obtaining a) and y = b
(Bob measuring the y observable and obtaining b) is proportional to:

p(a, b|x, y, ψi, ψf ) ∝ | 〈ψf | (Px=a ⊗ Py=b) |ψi〉 |2 (10.23)

Normalizing the previous equation 10.23, we obtain the ABL formula (equation
9.5).

10.5 Proposed Experimental Setup

There have already been experimental quantum displays capable of simulating
a PR box [11] [19] and even with classical light [20].
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What we propose here (Figure 10.5) is a very simple display that uses po-
larization and transverse mode of a beam of classical light. The pre-selection
made by a single optical element (S-plate), projective measurements are done
with polarizers. The post-selection is made by a CNOT (with polarization as
control and transverse mode as target) composed by 2 PBDs and a Dove prism
rotated 45o, a Transverse-Mode beam splitter (feasible with a Mach-Zhender
interferometer with an additional mirror and a HWP in one arm), and a PBS .

Figure 10.5: Complete setup for the simulation of a PR box, using polarization
and transversal mode as degrees of freedom in classical light. P: polarizer,
PBD: polarizing beam displacer, DP: Dove prism, BS: Beam splitter, H: half
wave plate, PBS: polarizing beam splitter, PWM: powermeter

10.5.1 Pre-selection

S-plate

The pre-selection is done by an S-plate, that transforms linear polarization into
radial polarization (Figure 10.6 and equation 10.25).

Figure 10.6: In a bipartite state, linear polarization is represented by a separable
state, while radial polarization, by the entangled state in equation 10.25

.

The Jones matrix of the S-plate is:

Ms−plate = |ψ〉radial 〈H|+ |ψ〉azim 〈V | (10.24)

where |ψ〉radial = 1√
2
(|Hh〉+ |V v〉) and |ψ〉azim = 1√

2
(|Hh〉 − |V v〉).
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Using the S-plate we can select the initial state. The method is to align
the S-plate optical axis with the horizontal polarization. This allows us, given
that the light coming from the laser in polarized horizontally |H〉, we obtain the
desired pre-selected state |ψi〉, which is also called radial vector beam:

|ψi〉 = |ψ〉radial =
1

2
(|Hh〉+ |V v〉) (10.25)

Figure 10.7: A laser emiting horizontal polarization and an S-plate are enough
to pre-select the initial state |ψi〉

10.5.2 Projective Measurements

The Bell test is designed for Alice and Bob to do projective measurements in
each respective laboratory. Nonetheless, because we are dealing with maximally
entangled states (Bell states), Alice could do the projection that corresponds to
Bob in her own laboratory (see Annex 13.2 and 13.3)

To do the projective measurement in the transverse mode, the usual pro-
cedure would be to use TBM (transverse mode beam splitter) and a pair of
Dove prisms (10.22). The combination of this optical elements would harden
the experimental procedure, because they would use an interferometer, that in
addition with the one in the post-selection, can difficult the control of the rela-
tive phases. Also, the Dove prisms, rotated in angles different from 0o or 45o,
induce small changes in polarization that would lead to different results from
the ones we anticipate.

Having this in mind, we propose doing both projections in the polarization
DOF, this saves us from having to use the TMBS and the 2 Dove prisms men-
tioned in the above paragraph. But let’s remember that this is possible because
the state over which we are going to make the projections is maximally en-
tangled (MES or Bell state). We propose using a pair of polarizers, the first
one to project on the transverse mode DOF and the second to project on the
polarization DOF. See Figure 10.8
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Figure 10.8: The projective measurements are made with a pair of polarizers,
with θ1 we control the projection in transverse mode DOF and with θ2 we
control the projection of the polarization DOF

For the projections corresponding to the transverse mode, the procedure is
as follows:

Spin projection Ket projection θ1
(Pσz=↑)tm |h〉 〈h| 00

(Pσz=↓)tm |v〉 〈v| 450

(Pσx=↑)tm |d〉 〈d| 22.50

(Pσx=↓)tm |a〉 〈a| −22.50

Table 10.3: Values of the angle θ1 to accomplish the different projections corre-
sponding to the transverse mode DOF.

In the same way, and more obviously, for the projection corresponding to
the polarization DOF:

Spin projection Ket projection θ2
(Pσz=↑)pol |H〉 〈H| 00

(Pσz=↓)pol |V 〉 〈V | 450

(Pσx=↑)pol |D〉 〈D| 22.50

(Pσx=↓)pol |A〉 〈A| −22.50

Table 10.4: Values of the angles θ2 to accomplish the different projections cor-
responding to the polarization DOF.

From the different possible combinations of angles θ1 and θ2 (Table 10.3 and
10.4), we can make the 16 possible projections, necessary to calculate the Bell
parameter:

(Px=a)pol ⊗ (Py=b)tm (10.26)
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10.5.3 Post-selection

This step is aimed at post-selecting the final state |ψf 〉 = 1√
2
(|Dv〉 + |Ah〉).

Notice that this in an entangled state, so its post-selection requires a non-
local type of operation. The post-selection has 2 parts: a CNOT gate and the
selection of the separable state |Hh〉. See figure 10.9

Figure 10.9: Setup that does the post-selection of the final state 〈ψf |

C-NOT

A controlled-not operation (C-NOT), in a bipartite state, applies a σx =

(
0 1
1 0

)
(known as NOT operation) over the target if the control DOF is in the state
|1〉 and the identity operation if the control DOF is in the state |0〉. The 4x4
matrix and the ket representation of the CNOT are:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (10.27)

= |0〉 〈0|control ⊗ 1target + |1〉 〈1|control ⊗ (σz)target (10.28)

In our display, we want to use polarization as the control and transverse
mode as the target. Mathematically, represented in the kets notation, in our
bipartite system, the operation we want the C-NOT to perform is:

CNOT = |D〉 〈D| ⊗ σx + |A〉 〈A| ⊗ 1 (10.29)

For this purpose we propose the use of a Polarizing Beam Displacer (PBD),
and not the usual Mach-Zhender setup (10.10) because we already have an
interferometer (MZIMs with half wave plate) in the complete setup (Figure
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Figure 10.10: A Mach Zhender interferometer and a Dove prism in one arm,
form up a CNOT with polarization as control and transverse mode as target.

10.5) and a second one would be detrimental for the stabilization of the relative
phases in the paths.
Figure 10.10 shows an alternitavely way of doing the CNOT, the twisted lines in
the PBS tell us that these are letting |D〉 polarization transmit and they reflect
the |A〉 polarization. This can be done rotating the PBS by 45o, or by puting a
HWP at 22.5o before the first PBS and after the second PBS.

Polarizing Beam Displacer (PBD)

A polarizing beam displacer (PBD) is a birrefringent optical element that sepa-
rates orthogonal polarizations of an incident light , like a PBS. The difference is
that a PBS separates them in paths making a 90o angle, but the PBD separates
them in collinear paths, a couple of centimeters away from each other. Just like
any other birrefringent element, when rotated, we can change the polarizations
that are separated.

If the optical axis of the PBD is paralel to the horizontal plane of our ex-
periment table, the PBD is going to transmit horizontal polarization (without
any change). But it will displace vertical polarization a few centimeters (this
distance depends on the manufacturing details), this displacement also adds a
relative phase to vertical polarization, because of the path travelled due to the
displacement. See figure 10.11

Figure 10.11: PBD with its optical axis paralel to horizontal polarization. It
lets |H〉 pass, and displaces |V 〉.
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CNOT using PBDs

The initial PBD@45, rotated 45o, will transmit, without displacing it, diagonal
polarization, but the antidiagonal polarization |A〉 will be displaced towards
the down level. A second PBD@225, rotated 225o, will displace the light with
antidiagonal polarization towards the up level, and won’t do anything to |D〉
polarization. So we can use the first PBD to separate the polarizations, then
place a Dove prism at 450, which operates as the first Pauli matrix in the
transverse mode space, to the diagonal polarization level. Finally the second
PBD recombines both levels into a single path beam. All this is again resumed
by the desired C-NOT operation (equation 10.29).

Figure 10.12: CNOT, with polarization as control and transverse mode as target,
using a pair of PBDs.

We can summarize the C-NOT effect over a bipartite state, by showing the
effect over the orthogonal base in which we are going to do the post-selection:

|ψf 〉 =
1√
2

(|Dv〉+ |Ah〉) CNOT−−−−→ |Hh〉 (10.30)

States we want to avoid


1√
2
(|Dh〉+ |Av〉) CNOT−−−−→ |Hv〉

1√
2
(|Dv〉 − |Ah〉) CNOT−−−−→ |V h〉

1√
2
(|Dh〉 − |Av〉) CNOT−−−−→ |V v〉

So our problem of post-selecting 〈ψf | from the other states of its basis, has
transformed into the post-selection of the separable state 〈Hh| from the other
separable states of the basis it composes.

Selection of the 〈Hh| state

To complete our post-selection process, we need to post-select 〈Hh|, for this
purpose we use a PBS and a TMBS, the combination of both optical ele-
ments let us separate spatially the 4 states of the separable orthonormal basis:
{|Hh〉 , |Hv〉 , |V h〉 , |V V 〉}. We measure light’s intensity, with a powermeter
(PWM), only on the |Hh〉 path, and loose the light of the other paths. See
figure 10.13. This concludes the post-selection process.
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Figure 10.13: TMBS+PBS. Using path as an ancilla, we obtain the state 〈Hh|
in one of the 4 exit paths.

CNOT + TMBS + PBS

The whole post-selection setup (combination of CNOT+TMBS+PBS) yields in
the following transformation:

POSTSELECT = |Hh〉 〈Hh| .CNOT
= |Hh〉 〈Hh| (|D〉 〈D| ⊗ σx + |A〉 〈A| ⊗ 1) (10.31)

= |Hh〉 〈ψf |

This transformation takes light only if it is in the state |ψf 〉 (and filtrates it
from its orthogonal states). Even though, it disentangles the bipartite state, it
gives us the corresponding intensity (probability) of the |ψf 〉 state.

10.5.4 Measuremente of the probability distribution

Now, gathering the 3 steps, pre-selection, projection and post-selection, at the
powermeter we will have an intensity porportional to:

IHh(a, b, x, y) ∼ | |Hh〉 〈ψf |Px=a ⊗ Py=b |ψi〉 |2 = p(a, b|x, y) (10.32)

So the probabilitiy distribution will be measured as:

p(a, b|x, y) =
IHh(a, b, x, y)∑

a′,b′=↑,↓ IHh(a′, b′, x, y)
(10.33)

where the possible values of the observables are x = {σx, σz} and y = {σz, σx}.
And the angles for the polarizers θ1 and θ2 that do the projections are in Table
10.3 and 10.4.
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Chapter 11

Discussions

11.1 PR boxes make bits share too much infor-
mation

If Alice and Bob could use the non-local correlations to exchange super-luminal
information, this will mean that if they choose an input bit, they would know
with certainty what the other party will obtain as an output bit (notice the
input bit for the last party doesn’t matter). Alice and Bob can’t use their bits
to communicate with each other. If they did, this will mean that nature wasn’t
respecting relativistic causality.
Nevertheless, PR boxes exhibit what can be called super correlations, or cor-
relations more non local than their quantum counterparts. This derives not
in super-luminal information exchange; but in extra-information being shared
between the correlated parts. For example Alice, knowing her input and otput
bit, can guess with utter certainty something about Bob’s output. To be more
precise with what this ”something” means, we can analyse as follows:

• If Alice chooses x = 0 as her input bit, given what bit a she obtains from
her experiment, she knows what bit Bob will obtain, it doesn’t matter
what Bob chose as his input y. More specifically here the something Alice
knows is that b = a. This can be seen in the condition 1 of the PR box.
If x = 0; the multiplication xy is always 0, it doesn’t matter the value of
y and b is always the same as a. Obviously this also holds true the other
way around, from the Bob’s point of view.

• If Alice chooses x = 1 as her input bit, given what bit a she obtains, she
knows the dependence of Bob’s output on his input bit. More specifically,
if a = 0 then b = y and if a = 1 then b = y ⊕ 1.
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11.2 Loopholes in Bell inequalities

Loopholes had already been used in the past to fake or simulate violations of
Bell inequalities [21]. In the same way, we have showed that they can be used
to fake a maximal violation of them.

Specifically, detection loophole has been used in many ways. For example,
forcing a dynamic variation of the source for the Bell test, this means that
depending on the probability you want to measure, you alter the state of the
source. This can be seen as a dynamic pre-selection for faking a Bell violation.
Other case is a post-selection, which is a selection after the change of basis, but
before the projections of the state to be measured. Finally the case we have
used, which is a post-selection after the measurement process, which goes more
hand in hand with the Black box formalism because we are doing the ”additional
step” after the Black box.

11.3 Opinion on the application of PR-boxes in
Communication Complexity

We have showed an interesting possible application of PR-boxes in a real prob-
lem (section 10.9). Also we showed that PR-boxes can be simulated using a
quantum mechanics ensemble by the exploit of loopholes (section 12.5). So
what stops us from using this simulation on a real world problem to take ad-
vantage of the benefits of PR-boxes?

Let’s talk specifically about the Communication Complexity application we
presented here and the simulation we proposed (pre and post selection of a
bipartite quantum ensemble). There are 2 type of loopholes we exploit when
simulating a PR-box as we proposed. The first one is the detection loophole,
when doing a post-selection of a quantum state, we are favouring the detection
of one quantum state over the others. If the desired post-selected state was sep-
arable, we would only need to use the detection loophole. Post-selection would
take place in each laboratory and a PR-box would be simulated. Unfortunately,
Markotvitch [9] showed that in order to simulate PR-boxes using post-selection,
the pre and post-selected states must be maximally entangled states. Because
of this, we need to make a Bell measurement, which means distinguish a Bell
state over the other 3 orthogonal Bell states. As showed, this if feasible with a
non-local operation. For this purpose, in our proposed setup, we added a CNOT
gate that functions as a dis-entangling operation. This yields in the exploit of a
locality loophole between Alice and Bob, because CNOT gate is a conditional
type of operation, meaning that the result of one party will depend on the input
of the other, which also doesn’t follow the no-signalling condition of a PR box.
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Chapter 12

Conclusions

In chapter 8 we reviewed the concept of the Bell type inequality: CHSH, and
its conection with a Black Box, which helped us define a PR box, name for the
superquantum correlations capable of surpassing the Tsirelson’s bound.

In chapter 9 we presented the ABL formula, which helped us define the prob-
ability distribution of a quantum ensemble capable of simulating a PR box. We
also choosed the quantum states to be pre and post selected, and the observ-
ables to be measured by Alice and Bob, that will be used for the simulation.

In chapter 10 we described some optical elements necessary for the exper-
imental simulation of a PR box, using spin-orbital laser modes of light. Then
we showed an experimental setup, consisting of 3 parts. First, pre-selection of
a maximally entangled state |ψi〉 using an S-plate. Then, instead of doing pro-
jections in each DOF, we proposed doing both projections on the polarization
degree of freedom, using 2 polarizers at different angles. Finally, we showed
how to post-select the maximally entangled state |ψf 〉, using a CNOT (polar-
ization as control, and transverse mode as target) which disentangles the state
to be selected and transforms it into |Hh〉, then a Transverse mode beam split-
ter (TMBS) followed by a polarizing beam splitter (PBS) that are capable of
post-selecting |Hh〉. By moving the polarizers of the projection part, we can
obtain the 16 necessary projections. We showed that by measuring the intensity
on each combination, at the end of our setup, we can construct the probability
distribution capable of simulating a PR box.
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Chapter 13

Annex

13.1 Jones matrix representation in the tripar-
tite space

13.1.1 Half wave plate’s

A half wave plate H(θ), which is rotated θ from its axis, only acts on the
polarization space:

Uh(θ) =

(
cos2θ sin2θ
sin2θ −cos2θ

)
pol

⊗ 1tm ⊗ 1path (13.1)

13.1.2 Mirror’s

Since we consider the path |x〉 as the horizontal and |y〉 as the vertical, the
reflection (by mirrors) on the corners of the MZIM, change the path to the
opposite. This can be represented with the first Pauli Matrix σx :

Umirr = 1pol ⊗ 1tm ⊗ (σx)path (13.2)

13.1.3 Beam Splitter’s

Ideally, Beam Spliters don’t change polarization nor transverse mode of an in-
cident beam. But they add phases depending of where did the beam come and
in which direction it is exiting.

Ubs = 1pol ⊗ 1tm ⊗
1√
2

(
1 i
i 1

)
path

(13.3)

13.2 Local unitary operations in a Bell state

Sometimes as an experimentalist, in a bipartite system, you don’t have access
to every local-unitary operation in one of the DOF’s (Alice’s). But when we are
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dealing with maximally entangled states (or Bell states) we can use the other
DOF (Bob’s) to apply a local-unitary operation (LUO) equivalent to an specific
LUO in the aforementioned DOF (Alice’s).

This can be seen as:

UA(n̂1, γ1)⊗ 1B |ψ〉 ≡ 1A ⊗ UB(n̂2, γ2) |ψ〉 (13.4)

where the subindexes tell us in which DOF the operator is being applied. And
n̂a = (na1, nb2, nb3), n̂b = (nb1, nb2, nb3),

It can be shown that for any bipartite quantum state |ψ〉, the unique solu-
tion for equation 13.4 is UA = UB = 1.

Nevertheless, for specific states, like the Bell states, it can be shown that we
can have local unitary operations in both DOFs that have an equivalent effects
over the aforementioned states.

Our state of interest being, |ψ+〉 = (|Hh〉+ |V v〉)
√

2. It can be shown that
the equivalence 13.4 holds for γa = γb and n̂a = n̂b only if na2 = nb2 = 0:

UA(n̂a, γa)⊗ 1B |ψ+〉 =


cos(γa/2)− ina3 sin(γa/2)
(−ina1 − na2) sin(γa/2)
(−ina1 + na2) sin(γa/2)

cos(γa/2) + ina3 sin(γa/2)

 (13.5)

1A ⊗ UB(n̂b, γb) |ψ+〉 =


cos(γb/2)− inb3 sin(γb/2)
(−inb1 + nb2) sin(γb/2)
(−inb1 − nb2) sin(γb/2)

cos(γb/2) + inb3 sin(γb/2)

 (13.6)

If we compare both results (13.5 and 13.6), they coincide when:

nb1 = na1, nb2 = −na2, nb3 = na3 (13.7)

In other words, given that we have the Bell state |ψ+〉, we can apply the LUO
in Alice’s space UA(na1, na2, na3, γa) and have the same result that if we applied
a similar LUO UB(na1,−na2, na3, γa) but in the other DOF.

But, if we have operations with n2 = 0, the LUO’s in both DOF’s is the
same.

UA(n̂, γ)⊗ 1B |ψ+〉 = 1A ⊗ UB(n̂, γ) |ψ+〉 , n̂ = (n1, 0, n3) (13.8)

For the other Bell states (|ψ−〉 , |φ+〉 , |φ−〉), it can be shown that LUO’s
parameters (n̂, γ) need to obey different conditions, than |ψ+〉, in order to obtain
the equivalence 13.4.
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13.3 Projections in a Bell state

Just like with local operators, we can show that a projection by Alice can have
the same effect over the bipartite state as a projection by Bob. Given that the
aforementioned state is a MES. For our purpose, the state is |ψ+〉

PA=± ⊗ 1 |ψ+〉 = 1⊗ PB=± |ψ+〉

1

2


1 + na3

na1 − ina2
na1 + ina2

1− na3

 =
1

2


1 + nb3
nb1 + inb2
nb1 − inb2

1− nb3

 (13.9)

The solution is that given the values for the projector in Alice’s space n̂a =
(na1, na2, na3), Bob’s values will be:

nb1 = na1, nb2 = −na2, nb3 = na3 (13.10)

A special case is when the observable is a combination of σ1 and σ3, so na2 =
nb2 = 0. Then A = B will satisfy 13.9.
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