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Resumen

En el presente trabajo reportamos los resultados experimentales que
muestran la interacción entre visibilidad, distinguibilidad y grado
de polarización, estos gobernados por una reciente extensión del
teorema polarización y coherencia (PCT). Esta clase de teoremas
tratan dualidad en ambos escenarios tanto cuánticos como clásicos.
Nosotros particularmente nos enfocamos en el vector inherente natu-
ral del grado de libertad de polarización y mostramos varios efectos
que van mas allá del alcance original del teorema PCT. Nuestros
resultados exhiben caracteŕısticas que pueden ser compartidas por
fenómenos cuánticos y clásicos, siempre que estos fenómenos reflejen
alguna coherencia oculta o expuesta.
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We report experimental results that show the interplay be-
tween visibility, distinguishability, and the degree of polari-
zation, as ruled by a recent extension of the polarization
coherence theorem (PCT). Theorems of this kind address
duality in both quantum and classical scenarios. We par-
ticularly focus on the inherent vector nature of the polari-
zation degree of freedom and display various effects that lie
beyond the scope of the original PCT. Our results exhibit
features that can be shared by quantum and classical phe-
nomena, whenever these phenomena reflect some hidden or
exposed coherence. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.001052

Duality and entanglement are perhaps the most prominent
hallmarks of quantum mechanics. Both evoke a sense of weird-
ness which has been however no obstacle for their instrumen-
tation as powerful tools, useful not only for an accurate
description of physical phenomena but for many practical ap-
plications as well. It is thus important to elucidate the various
possible forms in which duality and entanglement manifest
themselves. Recent developments have shown that the defining
features of duality and entanglement may arise in both the
quantum and the classical domain. An important result in this
respect is the recently established polarization-coherence-
theorem (PCT) [1], which is one of the few quantitative state-
ments about those paradoxical features that have characterized
the quantum formulation since its very inception. The PCT
has a very simple mathematical structure: V 2 � D2 � P2.
Here, three different measures, visibility (V ), distinguishability
(D), and the degree of polarization (P), merge into an equality.
The two sides of duality, e.g., its wave-like and its particle-like
nature, are hereby mutually constrained. The underlying
scheme corresponds to a two-path interferometric setup, with
respect to which V and D are defined. While V measures the
visibility of the interferometric pattern, D measures the distin-
guishability of one path over the other. The third party, the
degree of polarization P, is the required marker of one or
the other path. Concurrence (C), a standard measure of entan-
glement, has recently—and quite unexpectedly—entered the
scene through its identification by Eberly and coworkers, as
a sort of polarization’s alter ego [2]. Indeed, these authors have

established the rather surprising relationship: C2 � P2 � 1,
which immediately leads to V 2 � D2 � C2 � 1, a variant
of the PCT in which the two aforementioned quantum hall-
marks, duality and entanglement, take part of one and the same
constraint [3].

A sort of preamble to the PCT was established years ago and
within a strictly quantum context, in the form of an inequality:
V 2 � D2 ≤ 1 [4–6]. Such a constraint is implied by the PCT,
as a consequence of P2 ≤ 1. Now, the PCT not only extended
the above inequality to a tight equality, it also extended its do-
main of applicability by embracing both the classical and the
quantum context. This should come as no surprise, if we recall
that wave-particle duality is nothing but a variant of the wave-
ray duality that so much steered the way in which de Broglie
and Schrödinger originally developed the quantum formalism.
Fermat’s principle in classical optics goes hand-in-hand with
Hamilton’s principle in classical mechanics. The two principles
are formulated in terms of paths, e.g., ray-like concepts. While
Fermat’s principle proved to be a limiting case of Maxwell’s
wave equation, Schrödinger’s equation arose as an attempt
to formulate a wave equation whose limiting case should be
Hamilton’s principle. Even though such a relationship was
never established, we may expect manifold manifestations of
a latent common ground shared by quantum and classical phe-
nomena. Latest developments in the realm of quantum and
classical optics are fully in line with these expectations [7–16].

The two aforementioned variants of the PCT brought to the
fore some links between concepts that so far seemed to be
unrelated to each other. A case in point is the link joining
polarization and concurrence. Their mutual interdependence
becomes clear after one realizes that completely polarized states
(P � 1) are necessarily unentangled (C � 0), as it follows from
C2 � P2 � 1. This is in line with the fact that a system in a
pure state cannot be entangled with a second one. Likewise,
full bipartite entanglement (C � 1) requires that each party
is in a fully unpolarized state (P � 0). Thus, even though
polarization is usually defined with reference to a single system,
there is a second system—called “environment” or otherwise—
that must be considered whenever P deviates from its extremal
value P � 1. An interferometric setup represents the possibly
simplest means to exhibit the interplay between two systems.
A binary path can be one system, while an “internal” degree
of freedom (DOF), e.g., polarization, may serve as the second
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system [17]. The corresponding interferogram can contain
much information. In relation to the path-DOF, we have
the relative phase-difference as the most obvious one. This
is a scalar quantity. On the other hand, polarization has an in-
herent vectorial nature, as evidenced by the corresponding
Stokes vector. By submitting this vector to different transfor-
mations, we may manipulate various features, e.g., geometric
phases in pure and mixed states [18]. We can also uncover
how quantities such as V , D, and P relate to one another when
the “marker” DOF is submitted to unitary transformations.
This is our main concern here. Our aim is to experimentally
exhibit an extension of the PCT [19], in which unitary trans-
formations leave their sign in the recorded interferogram. We
can recover the PCT by conveniently choosing the unitary,
thereby hiding it from observation. On the contrary, by expos-
ing the unitary, it becomes possible to exhibit additional fea-
tures of the interplay between the various DOFs that one
may access with a given setup.

In what follows, we first present the extension of the PCT.
We then discuss our experimental setup, which serves to display
different features of the extended PCT. Finally, we report our
results and comment on their most salient aspects.

As we said before, visibility and distinguishability are mu-
tually constrained by inequality V 2 � D2 ≤ 1, which was origi-
nally derived using the quantum formalism [4–6]. The
assumed physical framework is a two-arm interferometric
setup, supplemented with appropriate devices on each arm
to perform some unitary transformations, U 1 and U 2, as
shown in Fig. 1. These transformations apply to an “internal”
DOF, e.g., electron’s spin or photon’s polarization. Such an in-
ternal DOF can be represented in a two-dimensional Hilbert
space and, likewise, the binary path-DOF. We are thus dealing
with a two-qubit Hilbert space. We notice that these DOFs
have no quantum nature by themselves. They can be equally
assigned to both classical and quantum objects, depending on
the physical realization. In both cases, the internal DOF serves
as a path marker. The more effective this marker is, the more
distinguishable is one path from the other and the less visible is
the interferogram that can be registered at the output of the
arrangement. V and D are thus complementary features, the
relative importance of which is mediated by the marker
DOF, P in our case.

The above framework served to establish an extension of the
PCT [19]. This extension was derived as follows. Let us assume
that the system-qubit is in a pure state jΨin

S i � αj1i � βj2i,
and the marker-qubit is in a mixed state

ρinM � 1

2

�
σ0 � ~S in · ~σ

�
: (1)

Here, σ0 is the identity matrix and ~σ is the vector of Pauli ma-
trices. ~S in is the Stokes vector, the norm of which gives the
degree of polarization: P � �~S in · ~S in�1∕2. Before its submis-
sion to the unitaries, the two-qubit system is in the state
ρSM � ρinS ⊗ ρinM , with ρinS � jΨin

S ihΨin
S j. The polarization

DOF is submitted to different transformations, depending
on the arm of the interferometer. Polarization-unitary U 1 acts
on one arm and unitary U 2 acts on the other arm. The trans-
formation to which ρSM is submitted, is thus given by

USM � j1ih1j ⊗ U 1 � eiδj2ih2j ⊗ U 2, (2)

where δ is the relative phase-shift between arms. After having
been transformed by USM, the two-qubit system is in state
ρSM � USM �ρinS ⊗ ρinM �U †

SM . At this point, the path-system
is in the state ρS � TrM �ρSM �. The intensity at one output
port of the second beam-splitter (see Fig. 1) is given by

I � 1

2
fjαj2 � jβj2 � 2Re�α�βTrM �U 1ρ

in
MU †

2�eiδ�g: (3)

In terms of this intensity, we define visibility as

V � Imax − Imin

Imax � Imin � jTrM �U 1ρ
in
MU †

2�j � jTrM �UρinM �j, (4)

where we have set U � U †
2U 1, a transformation that can be

understood as a relative unitary. Similarly, the marker is in a
state

ρM � TrS�ρSM � � jαj2ρ�1�M � jβj2ρ�2�M , (5)

with ρ�k�M � Ukρ
in
MU †

k (k � 1, 2). Equation (5) shows that
ρM is given by the weighted sum of ρ�1�M and ρ�2�M , whereby
the relative weights depend on the system-qubit jΨin

S i �
αj1i � βj2i. The inherent distinguishability between the
two paths can thus be defined as

D � 1

2
Trjρ�1�M − ρ�2�M j � 1

2
TrjU 1ρ

in
MU †

1 − U 2ρ
in
MU †

2j

� 1

2
j~Sout1 − ~Sout2 j: (6)

In the first line above, we use the definition jAj �
ffiffiffiffiffiffiffiffiffi
A†A

p
for

any linear operator A and in the second line ~Soutk denotes the
Stokes vector that belongs to ρ�k�M . We can write ~Soutk � Rk

~S in,
where Rk is the 3D-rotation that is associated to Uk.
Hence, D� 1

2jR1
~S in −R2

~S inj� 1
2jR−1

2 R1
~S in− ~S inj. Rotation

R−1
2 R1 can be specified by a rotation angle γ and a rotation

axis n̂. Its associated unitary reads

U � U †
2U 1 � cos

�
γ

2

�
σ0 � i sin

�
γ

2

�
n̂ · ~σ: (7)

Using this parameterization, we calculate

D2 � P2 sin2�ϕ�sin2
�
γ

2

�
, (8)

Fig. 1. Mach–Zehnder-type interferometer. A product-state sys-
tem-marker is submitted to unitaries U 1 and U 2 that act on the
marker system alone. BS, beam-splitter; PS, phase shifter.

Letter Vol. 44, No. 4 / 15 February 2019 / Optics Letters 1053



V 2 � cos2
�
γ

2

�
� P2 cos2�ϕ�sin2

�
γ

2

�
, (9)

where ϕ is the angle between n̂ and ~S in. From the above ex-
pressions we get

V 2 � D2 � cos2
�
γ

2

�
� P2 sin2

�
γ

2

�
, (10)

as an extension of the PCT. The latter corresponds to the par-
ticular case γ � π. Equations (8)–(10) engage not only visibil-
ity, distinguishability, and the degree of polarization, but the
relative unitary U � U −1

2 U 1 � exp�iγn̂ · ~σ∕2�. In contrast
to the relative phase ei�φ1−φ2� between paths, which is a scalar,
U contains a richer, vectorial structure. Thus, by consideringU
we can uncover several features that remain hidden in the PCT.
Indeed, according to the PCT the marker should become in-
effective when it is in a fully random state (P � 0), because in
that case D � V � 0 as well. The extended version of the
PCT, on the other hand, allows us to see some new features.
Equations (8) and (9) show that P � 0 implies D � 0 and
V 2 � cos2�γ∕2�, so that the visibility is controlled by U
alone. This is a somewhat counterintuitive result, as in this case
the unitaries seem to have no polarized system on which to act.
However, a look at Eq. (4) makes clear what is going on. When
ρinM � σ0∕2, the visibility is given by V � jTrMU j∕2 �
jTrM �cos�γ∕2�σ0 � i sin�γ∕2�n̂ · ~σ�j∕2 � j cos�γ∕2�j. That is,
U can leave its imprint on the fully unpolarized part of the
state. So, even though a fully random marker-system becomes
useless for distinguishing one path from the other (D � 0), it
remains useful for driving visibility. We have experimentally
tested all the above predictions with an optical setup that
we describe in what follows.

Figure 2 shows our experimental setup. Light source is a
HeNe laser that delivers a horizontally polarized state jH i.
After having been submitted to a half-wave plate H �α�, state
jH i is transformed into cos�2α�jH i � sin�2α�jV i. A beam
displacer (BD) splits the beam into an “up” beam that is hori-
zontally polarized and a “down” beam that is vertically polar-
ized. These two states are simultaneously measured after having
been acted upon by polarization changing devices. Due to the
relative polarization weights carried by these “up” and “down”
components, measurement results correspond to those of the
mixed polarization-state

ρBDM � cos2�2α�jH ihH j � sin2�2α�jV ihV j

� 1� P
2

jH ihH j � 1 − P
2

jV ihV j

� 1

2
�σ0 � Pσ1�, (11)

where P � cos�4α�. With a half-wave plate and a quarter-wave
plate in the configuration H �π∕8 − ϕ∕2�Q�0�, we transform
ρBDM into the state

ρinM � 1� P sin ϕ

2
jH ihH j − iP cos ϕ

2
�jH ihV j − jV ihH j�

� 1 − P sin ϕ

2
jV ihV j

� 1

2
�σ0 � P sin ϕ σ1 � P cos ϕ σ3�: (12)

As for the unitary U †
2U 1, setting U 1 � H �γ∕8� and

U 2 � H �−γ∕8�, we get
U ≡ U †

2U 1 � cos�γ∕2�σ0 � i sin�γ∕2�σ3, (13)

so that U has rotation axis n̂ � �0, 0, 1�. Notice that we use
the optics convention: the diagonal Pauli matrix is
σ1 � jH ihH j − jV ihV j, so that linearly polarized states lie
on the equator of the Poincaré sphere. The Stokes vector that
belongs to ρinM is ~S in � Tr�ρinM ~σ� � �P sin ϕ, 0, P cos ϕ�. We
can then tune the angle ϕ that ~S in makes with n̂ by means of
the aforementioned configuration H �π∕8 − ϕ∕2�Q�0�.

The intensity at the output of the interferometer is given by
Eq. (3). The phase-shift δ is proportional to the voltage applied
to a piezoelectric transducer (PZT). By performing intensity
measurements, we obtain the visibility V , as defined in
Eq. (4). Similarly, by performing polarization tomography
we obtain the Stokes vector ~Soutk that is associated to path k,
whereby the other path is blocked. Equation (6) then gives D.

In our experiments, we first kept ϕ � π∕2 fixed and chose
different values of P ≤ 1 while changing γ. Our results are
shown in Fig. 3. As previously noted, when P � 0, D � 0,
so that in this case the variation of V arises from its dependence
on γ and not from a complementary interplay between V and
D. This has been confirmed by our results shown in Fig. 3,
left upper panel. In the general case, the interplay between

Fig. 2. All-optical setup, appropriate to manipulate a bipartite,
path-polarization state. The polarization state serves as a marker of
the two-path interferometer. Polarization transformations H�	γ∕8�
act as which-path markers. Visibility and distinguishability can be de-
termined by intensity measurements and polarization tomography.
BD, beam-displacer; BS, beam-splitter; Q/H, quarter/half-wave plate;
P, polarizer; PM, power meter; PZT, piezo-transducer.

(a) (b)

(c) (d)

Fig. 3. Experimental results for a fixed value of ϕ � π∕2 and three
values of P. The three cases are: (a) P � 0 � D, (b) P � 0.5, and
(c) P � 1. In case (d) P � 0.5 and γ � π∕2, while 0 ≤ ϕ ≤ π (in
this case, error bars are smaller than symbols).
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V and D reflects both complementarity and the action of the
polarization-unitary. The case shown in Fig. 3, left bottom
panel, corresponds to a fully polarized state: P � 1. While
in the case P � 0 we would expect the unitary to be ineffective,
in the case P � 1 we would expect the strongest manifestations
of the unitary. Our results prove wrong these expectations. We
have already commented on this point regarding the case
P � 0. Now we see that the case P � 1 runs also somewhat
counter-intuitively. Indeed, according to Eq. (10), if P � 1,
then D2 � V 2 � 1, irrespective of the action of the unitary.
That is, the unitary becomes ineffective precisely when we
could have expected it to be most effective, and vice versa.
Intermediate cases, e.g., P � 0.5, let us see in full the effects
captured by the general relationship that is given by Eq. (10)
(see Fig. 3, right upper panel). Furthermore, we could also sep-
arately test D and V in terms of their dependence on ϕ [see
Eqs. (8) and (9)]. To this end, we fixed γ � π∕2 and P �
0.5 while changing the phase ϕ in the initial Stokes vector.
The corresponding results are shown in Fig. 3, right bottom
panel. They illustrate how in this case variations of V and
D compensate each other so as to maintain D2 � V 2 constant.
Error bars in this case are much smaller than that in the pre-
vious cases. Such an accuracy level required a lengthy and pains-
taking procedure to sufficiently reduce the uncertainty of
intensity measurements, our dominant error source. This
was necessary, because otherwise error bars would intersect
the theoretical curves of D2 � V 2 and V 2. In the other cases
[Figs. 3(a)–3(c)] the accuracy of our measurements was enough
to show agreement between theory and experiment.

All the experimental results are in good agreement with our
theoretical predictions. We have thus exhibited the roles played
by the various features entering the generalized PCT given by
Eq. (10). As we have seen, by taking γ � π, we recover the
original form of the PCT: V 2 � D2 � P2. Thus, our results
provide an additional experimental display of the PCT.

We have experimentally displayed, in a classical framework,
the complementarity relation between visibility and distin-
guishability. Similar results should be expected in a quantum
framework, because the involved degrees of freedom can be as-
cribed to both quantum and classical systems. Indeed, the dual
nature of some physical phenomena resides in the involved de-
grees of freedom rather than in their quantum or classical
nature. This suggests the possibility of parallel developments
towards the exploitation of properties such as coherence, entan-
glement, etc., that may be used to accomplish various tasks
[20–22]. However, an appropriate bridge between commun-
ities working in quantum and classical optics is still lacking.
For instance, a forerunner of the PCT in its version involving
concurrence was proposed some years ago [23]. It came math-
ematically very close to said version of the PCT, but its physical
content markedly differed from the latter. A profitable dialog
between the aforementioned communities is thus largely
missing.

The extended version of the PCT that we have addressed in
this work brings into play some features that the original
version left untouched. The so-called marker system—in our

case the polarization degree of freedom—can have unitary
transformations that are capable of leaving their own imprint
in the interplay between visibility and distinguishability asso-
ciated with it. At least one of these measures of the wave-like
and particle-like (or ray-like) nature of the studied phenome-
non may survive the disappearance of the marker. As we have
seen, when the degree of polarization vanishes, while distin-
guishability vanishes as well, visibility may keep changing.
Changes are ruled in this case by the applied unitary. In con-
trast, when the degree of polarization attains its maximum
value, then the applied unitary does not manifest itself in
the interplay between visibility and distinguishability. Our ap-
proach allowed us to separately address visibility and distin-
guishability, thereby exhibiting how they depend on both
the marker system and its unitary evolution. We believe that
there is still much to be uncovered in relation to effects that
show up in connection to hidden and exposed coherences in
multipartite systems. The present work has brought just a
few aspects of a promising area of research to light.

Funding. CONCYTEC-FONDECYT (233-2015-2); DGI-
PUCP (441).
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Introduction

Duality and entanglement:

In 2017, Eberly and coworkers derived the polarization coherence
theorem (PCT) [1]

V 2 + D2 = P2 (1)

Previous work, in a strictly quantum context, constrained V and D by
inequalities such as [2-4]

V 2 + D2 ≤ 1 (2)

In 2018, F. de Zela found a extension of the PCT [5]

V 2 + D2 = cos2 γ

2
+ P2 sin2 γ

2
(3)
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Physical Framework

Figure: Mach-Zender interferometer. A product-state system-marker is submitted
to unitaries U1 and U2 that act on the marker alone. BS, beam-splitter; PS,
phase-shifter.
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Physical Framework

A two-arm interferometric setup with transformation (U1 and U2) in each
arm. These apply to an ”internal” DOF, e.g., electron’s spin or photon’s
polarization. Both DOFs can be represented in a two-dimensional Hilbert
space. The internal DOF serves as a path marker.

Note: More effective less visible is the interferogram and the marker then
more distinguishable.
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Theoretical Background

The system S is in the pure state |ψin
S 〉 = α |1〉+ β |2〉 then

ρinS = |ψin
S 〉 〈ψin

S | = |α|2 σ†σ +|β|2 σσ† + αβ∗σ† + α∗βσ (4)

with σ = |2〉 〈1| and σ† = |1〉 〈2|
The marker M is in the mixed state ρ

(0)
M . It can be represented as a

mixed state using Pauli matrices (σ0 and ~σ) and the Stokes vector (~S)

ρinM =
1

2
(σ0 + ~S in · ~σ) (5)

Fabio Joel Auccapuclla Quispe (PUCP) October 8, 2019 6 / 24



The whole system will be submitted through the no-local transformation
USM

USM = σ†σU1 + σσ†U2e
iφ (6)

where Ui is a polarization-unitary transformation in the arm i . Then, we
have the system in the state

ρSM = USM(ρinS ⊗ ρinU)U†SM (7)
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Path-System

In order to analyze the Path-System, we use ρS = TrM(ρSM). The
intensity at one output of the interferometer

I =
1

2

{
|α|2 +|β|2 + 2Re[α∗βTrM(U1ρ

in
MU†2e

iδ)]
}

(8)

Then, the visibility is defined as

V =
Imax − Imin

Imax + Imin
=
∣∣∣TrM(U1ρ

in
MU†2)

∣∣∣ =
∣∣∣TrM(UρinM)

∣∣∣ (9)

with U = U†2U1, it can be seen as a relative unitary transformation.

Fabio Joel Auccapuclla Quispe (PUCP) October 8, 2019 8 / 24



Marker-System

The Marker-System is in the following state

ρM = TrS(ρSM) = |α|2 ρ(1)
M +|β|2 ρ(2)

M (10)

where ρ
(k)
M = Ukρ

in
MU†k (k = 1, 2). In equation (10), ρM is a weighted sum

of ρ
(1)
M and ρ

(2)
M . Also, equation (10) suggests us to define the

distinguishability between the two paths as

D = 1
2Tr
∣∣∣ρ(1)

M − ρ
(2)
M

∣∣∣
= 1

2Tr
∣∣∣U1ρ

in
MU†1 − U2ρ

in
MU†2

∣∣∣
= 1

2

∣∣∣~Sout
1 − ~Sout

2

∣∣∣ (11)

where |A| =
√
A†A, A linear operator and ~Sout

k Stokes vector associated to

ρ
(k)
k .
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Marker-System

Writing ~Sout
k = Rk

~S in, Rk is a 3D-rotation that is associated to Uk .
Distinguishability

D =
1

2

∣∣∣R1
~S in −R2

~S in
∣∣∣ =

1

2

∣∣∣R−1
2 R1

~S in − ~S in
∣∣∣ (12)

All the calculation lies in the rotation R−1
2 R1. This rotation can be

parameterized by a rotation angle γ and a rotation axis n̂. R−1
2 R1 has a

unitary transformation associated U†2U1, whose expression is

U = U†2U1 = cos

(
γ

2

)
σ0 + i sin

(
γ

2

)
n̂ · ~σ0 (13)
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Marker-System

Using this parameterization, we compute the following relations

D2 =P2 sin2(φ) sin2

(
γ

2

)
(14)

V 2 = cos2

(
γ

2

)
+ P2 cos2(φ) sin2

(
γ

2

)
(15)

where φ is the angle between n̂ and ~S in.

Figure: φ: Angle between ~S in and n̂
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Marker-System

Adding (14) and (15)

D2 + V 2 = cos2

(
γ

2

)
+ P2 sin2

(
γ

2

)
(16)

Since P2 ≤ 1 we derive relations [2-4]

D2 + V 2 ≤ 1 (17)

If the Marker system is in pure state (P = 1) we derive Englert
relation [3]

D2 + V 2 = 1 (18)

If we fix γ = π we derivate Eberly-Qian-Vamivakas relation [1]

D2 + V 2 = P2 (19)
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Sagnac Interferometer

Figure: Experimental setup and detection
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Using a Half Wave Plate followed by a Beam Displacer we get the
following mixed state

ρBDM = cos2(2α) |H〉 〈H|+ sin2(2α) |V 〉 〈V |

=
1

2
(σ0 + Pσ1)

(20)

where P = cos (4α).

Figure: Polarization Beam Displacer
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We have ρinM = ρBDM , U1 = H(γ/8) and U2 = H(−γ/8). Then,

U = U†2U1 = cos (γ/2)σ0 + i sin (γ/2)σ3 (21)

so U has a rotation axis n̂ = (0, 0, 1). Since, the Stokes vector of ρinM is
~S in = (1, 0, 0) φ = π

2 fixed.

To measure V we changed the phase-shift δ using the PZT and
recorded intensity.

To measure D we performed polarization tomography to obtain ~Sout
k

associated to path k , whereby the other path is blocked.
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Results

Figure: Experimentals results for a fixed value of φ = π/2 and three values of P.
The three cases are: (a)P=0=D, (b)P=0.5, and (c)P=1.

Fabio Joel Auccapuclla Quispe (PUCP) October 8, 2019 16 / 24



Mach-Zender Interferometer

Figure: Experimental setup and detection
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Phase’s calculations

Actually, we just have one level here. To simulate the mixed state with
degree of Polarization (P)

ρmix
M =

1 + P

2
|h〉 〈h|+ 1− P

2
|v〉 〈v | (22)

we express ρinM as ρhh + ρvv . Both of them are generated by the following
set of angles in a Half-Wave Plate

α = ArcCos(P)
4 & α′ = 0 −→ ρhh

α = π
4 −

ArcCos(P)
4 & α′ = π

4 −→ ρvv .
(23)

Fabio Joel Auccapuclla Quispe (PUCP) October 8, 2019 18 / 24



As it was mentioned ρhh and ρvv evolve independently from each other
and they do not exist at the same time. In fact, each one is not a density
matrix by a constant multiplication factor. Anyway, both of them evolve
using a H(π/8− φ/2) followed by a Q(0)

ρ′hh =
1 + P

2

[
cos2(π4 −

φ
2 ) −i cos φ2

i cos φ2 sin2(π4 −
φ
2 )

]
(24)

ρ′vv =
1− P

2

[
sin2(π4 −

φ
2 ) i cos φ2

−i cos φ2 cos2(π4 −
φ
2 )

]
(25)
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Each one has an I out , replacing (24) and (25) in (8)

Ihh =
1 + P

2
(1 + cos

γ

2
cos δ − sin

γ

2
cos δ cosφ) (26)

Ivv =
1− P

2
(1 + cos

γ

2
cos δ + sin

γ

2
cos δ cosφ) (27)

Figure: Values of I out measured and post-processed data for P = 0.5, γ = π/2
and φ = π/4. Blue points and orange points correspond Ihh and Ivv , respectively.
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Measurements

What is important for us is ρinM = ρ′hh + ρ′vv

ρinM =
1

2
[σ0 + P sin (φ)σ1 + P cos (φ)σ3] (28)

thus ~S in = P(sinφ, 0, cosφ). We used the same transformations U with
rotation axis n̂ = (0, 0, 1). We had complete control over φ.

After processing Ihh and Ivv we calculate V .

To calculate D we measure each component’s polarization, i.e.
h,v ,d ,a,r and l , for ρ′hh and ρ′vv . Then, we just add I hhh,k and I hvv ,k to

get I hk , where k = 1, 2 represents path 1 or 2. We repeat the same

process for all the components, then we get ~Sout
k . Do not forget that

we blocked one path to measured the other.
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Results

Figure: For fixed values of P = 0.5 and γ = π/2, while 0 ≤ φ ≥ π

.
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Conclusions

In a classical framework we experimentally displayed the
complementarity relation between visibility and distinguishability.

We held φ = π/2, on the Sagnac interferometer, with different values
of P while changing γ. When P = 0 and D = 0 the variation of V
comes about from its dependence on γ and not from a
complementary interplay between V and D. In the general case, both
complementarity and the action of the polarization-unitary are
reflected in the interplay between V and D.

We tested separately D and V , on the Mach-Zender interferometer,
in terms of their dependences on φ.
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