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Abstract

The increasing ubiquity of Convolutional Sparse Representation techniques for several image pro-
cessing tasks (such as object recognition and classification, as well as image denoising) has recently
sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard non-
separable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However,
existing methods approximate a set of K non-separable filters via a linear combination of R (R << K)
separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need
to learn first the whole set of non-separable filters, and only then compute the separable set, which is
not optimal from a computational perspective.

In this context, the purpose of the present work is to propose a method to directly learn a set of K
separable dictionary filters from a given image training set by drawing ideas from standard Convolu-
tional Dictionary Learning (CDL) methods. We show that the separable filters obtained by the proposed
method match the performance of an equivalent number of non-separable filters. Furthermore, the com-
putational performance of this learning method is shown to be substantially faster than a state-of-the-art
non-separable CDL method when either the image training set or the filter set are large. The method and
results presented here have been published [1] at the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2018). Furthermore, a preliminary approach (mentioned at the
end of Chapter 2) was also published at ICASSP 2017 [2].

The structure of the document is organized as follows. Chapter 1 introduces the problem of interest
and outlines the scope of this work. Chapter 2 provides the reader with a brief summary of the relevant
literature in optimization, CDL and previous use of separable filters. Chapter 3 presents the details of
the proposed method and some implementation highlights. Chapter 4 reports the attained computational
results through several simulations. Chapter 5 summarizes the attained results and draws some final
conclusions.
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Chapter 1

Introduction

Several techniques in the field of image processing, such as feature extraction, object recognition and
image denoising (as well as the fields of machine learning and statistics) rely on the fact that a signal
of interest admits a sparse representation over some dictionary set. In general, a dictionary set aimed
to represent a signal can be either analytically constructed or learned from a collection of training
signals [4]. While analytical dictionaries allow for fast implementations with specific mathematical
properties, they fail to adapt to any specific class of signals [5]. Learned dictionaries, on the other hand,
arise from a set of training signals, which allows for greater adaptability, sparser representations and
in turn, better performance for several applications. However, the increased adaptability provided by
learned dictionaries comes at the cost of a high computational complexity in the learning process, and
optimizing and speeding up this process is still an active area of research.

Unsupervised approaches for dictionary learning can be generally divided into two categories: stan-
dard, patch-based representations, and more recently, convolutional formulations. When the interest
signal is an image, patch-based sparse representations (which model signals as linear combinations of
the learned dictionaries) involve independently computing the representations over a set of overlapping
image patches, thus increasing both the computational cost and memory requirements of the problem
[6]. Convolutional formulations, on the other side, model the image as a sum over a set of convolutions
between dictionary filters and their corresponding feature maps [7] (see Figure 1.1), and thus are intrin-
sically suited for handling whole images. Due to this fact, recent years have seen an increasing amount
of research in the field of Convolutional Sparse Representations, both in Convolutional Sparse Coding
(CSC) and Convolutional Dictionary Learning (CDL) [8].

A particular stream of research that has been gaining atention lately in the field of convolutional
formulations is the use of separable filters as an alternative to the standard non-separable dictionary
filter sets, due to their lower cost at performing the convolution operations. Separable filters have been
tested in applications such as Random Forest (RF) classification [3], Convolutional Neural Networks
(CNNs) [9], and Convolutional Sparse Coding [2], and found to provide significant improvements in
computational performance with respect to non-separable implementations, with little loss in accuracy
or reconstruction quality.

In general, most separable filter based methods rely on learning the separable filter set as an approx-
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Introduction

Figure 1.1: Convolutional Sparse Representation model, where {Hk} represents the dictionary filters,
{uk} represents the corresponding feature maps, and b̂ represents the reconstructed image

imation of a previously obtained (usually large) set of non-separable filters, by using the equivalence:

Hk ≈
R

∑
r=1

αkrGr k ∈ {1,2, . . . ,K}, (1.1)

which represents each non-separable filter {Hk} as a linear combination of a smaller number of separa-
ble filters {Gr} (R<<K) [3]. This approach, however, depends heavily on the quality of the originating
non-separable filters to obtain a good separable approximation. Furthermore, it implies a two step pro-
cedure: learning first the whole set of standard filters, and only then approximating the separable ones.

In this context, the objective of this thesis is to propose and evaluate an efficient separable filter
learning algorithm that can learn the separable set directly from an image training set, without the need
of a pre-computed set of non-separable filters. The method is derived through a reformulation of the
standard (non-separable) CDL problem, and compared against both standard non-separable dictionaries
and separable approximations obtained via (1.1). The filters learned through our method are shown to
match the performance of a standard non-separable set (and substantially outperform approximated
separable sets) when evaluated through denoising and inpainting tasks. Furthermore, the proposed
learning algorithm is shown to be faster than standard non-separable learning approaches for most
configurations.

Chapter 2 covers the relevant state of the art for both dictionary learning and separable filters, and is
distributed as follows: Section 2.1 presents some preliminary notions regarding the usual optimization
strategies used in CDL; Section 2.2 provides a brief review of the existing methods for dictionary learn-
ing in the literature, and Section 2.3 further details previous works on separable filter approximations.
Section 2.4 details a preliminary approach in which we assess the suitability of separable filters for CSC
tasks. Chapter 3 presents the details of our proposed algorithm and relevant information regarding its
efficient implementation. Finally, Chapter 4 reports the computational results obtained by comparing
our proposed method with existing state-of-the-art aproaches.
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Chapter 2

Convolutional Sparse Coding

As we mentioned in the previous Chapter, convolutional sparse coding (CSC) models an entire image
a as a sum over a set of convolutions between coefficient maps (of the same size as the target image)
{uk}, with their corresponding dictionary filters {Hk}. A common representation for CSC is through
the Convolutional Basis Pursuit Denoising (CBPDN) problem, namely:

argmin
{uk}

1
2

∥∥∥∥∥ K

∑
k=1

Hk ∗uk−b

∥∥∥∥∥
2

2

+λ

K

∑
k=1
‖uk‖1 (2.1)

where the `1 norm regulates the sparsity of the feature maps. The corresponding Convolutional Dictio-
nary Learning (CDL) problem for a given image training set {bs} is

min
{Hk,uk,s}

1
2

S

∑
s=1

∥∥∥ K

∑
k=1

Hk ∗uk,s−bs

∥∥∥2

2
+λ

S

∑
s=1

K

∑
k=1

∥∥uk,s
∥∥

1 (2.2)

s.t. ‖Hk‖2 = 1 ∀k ,

where the `2 constraint is used to avoid scaling ambiguities.

The main advantage of using the convolutional approach over the patch-based one is that the for-
mer provides a translation invariant representation, thus eliminating several redundancies occurring in
standard dictionaries. However, in most cases the dictionary filters are numerous and non-separable,
which implies a significant computational overhead. Some works [3, 10, 9] have addressed this issue
by using separable filter approximations (Figure 2.1) to improve runtime efficiency. In this chapter, we
give a brief summary of the existing methods for standard (non-separable) Convolutional Dictionary
Learning (CDL), as well as review recently proposed methods for approximating separable filters and
their applications.

6



Convolutional Sparse Coding

Figure 2.1: Sample dictionary sets. (a) Set of 121 standard (non-separable) filters, (b) Set of 25 separa-
ble filters used to approximate (a). Image taken from [3].

2.1 Preliminaries

2.1.1 Alternating Direction Method of Multipliers

The ADMM algorithm [11] is a well-known method, originally derived to blend the benefits of dual
decomposition and augmented Lagrangian methods for constrained optimization. The algorithm can be
employed to solve an optimization problem of the form

min
x,y

f (x)+g(y) s.t. Fx+Gy− c = 0. (2.3)

where f (·) and g(·) are convex. Several standard problems can be posed as (2.3) by simply splitting the
main variable into two parts, thus making ADMM a highly versatile method. The ADMM iterations
with scaled dual variable are given by (2.4)-(2.6)

x(n+1) = min
x

f (x)+
ρ

2
‖Fx+Gy(n)− c+ z(n)‖2

2 (2.4)

y(n+1) = min
y

g(y)+
ρ

2
‖Fx(n+1)+Gy− c+ z(n)‖2

2 (2.5)

z(n+1) = z(n)+Fx(n+1)+Gy(n+1)− c . (2.6)

where the Augmented Lagrangian parameter ρ determines the step size. The ADMM method has been
regularly used in the literature as an efficient solution for CSC problems.

2.1.2 Iterative Shrinkage-Thresholding Algorithm and variants

Another well-known approach for CSC problems is the Iterative Shrinkage-Thresholding Algorithm
(ISTA) and its ”Fast” variant (FISTA) [12]. These methods are devised for iteratively solving problems
of the form

min
x

f (x)+λR(x) (2.7)
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Algorithm 1 ISTA method.

Input: λ (parameter), x0 (initial guess)

for n≥ 0 do
µn ∈ [0, 1

‖DT D‖ ]

xn = shrink(xn−1−µn∇ f (xn−1)), tnλ)
end for

Algorithm 2 FISTA method.

Input: λ (parameter), L (Lipschitz constant of ∇ f (x)), x0 (initial guess)

y1← x0
β1← 1
for n≥ 0 do

xn← shrink(xn−1− 1
L ∇ f (x)|x=yn , λ

L)

βn+1←
1+
√

1+4βn
2

yn+1← xn + βn−1
βn+1

(xn−xn−1)
end for

where f (·) is usually a least squares fidelity term such as in the case of the `2 terms of Eqs. (2.1) and
(2.2) (its worth bearing in mind that the convolution operation can be cast as a linear operation).

The corresponding steps for ISTA and FISTA are depicted in algorithm 1 and 2, respectively. As can
be observed (and as the name suggests) both methods consist on iteratively updating the interest variable
through a gradient step and thresholding (shrinkage when R(·) is the `1 norm) the result. The main
difference between them is that FISTA employs an auxiliary linear combination of previous estimates,
which significantly accelerates convergence.

2.2 Non-separable (standard) dictionary learning

Since the CDL problem, as posed by (2.2), is non-convex when dealing with both variables ({uk,s} and
{Hk}) simultaneously, but becomes convex when keeping either of them constant, the most widely used
minimization approach consists in alternating between the updates for the feature maps {uk,s} (sparse
coding) and the filters {Hk} (dictionary learning). This section will address the main existing dictionary
learning update methods (for a thorough review and comparison of sparse coding and dictionary learn-
ing updates and their coupling mechanisms, see [8]), which require solving a constrained convolutional
form of the Method of Optimal Directions (MOD [13]), namely:

min
{Dk}

1
2

S

∑
s=1

∥∥∥∥∥ K

∑
k=1

Hk ∗uk,s−bs

∥∥∥∥∥
2

2

, s.t. ‖Hk‖2 = 1,∀k, (2.8)

for a given coefficient set {uk,s}.
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Convolutional Sparse Coding

Early methods solved this problem in the spatial domain, via variants of gradient descent [14]
and MOD [15], among others [16, 17]. More recent implementations solve the most computationally
demanding components of the problem in the frequency domain due to the associated speedup [8].

When performing the convolutions in the frequency domain, the filters must be zero-padded in order
to have an adequate spatial support. This requirement can be denoted by a zero-padding projection
operator P, and coupled with the normalization constraint into the constraint set:

CPN = {x ∈ RN : (I−PPT )x = 0,‖x‖2 = 1}, (2.9)

which allows to write the dictionary update in unconstrained form:

min
{Hk}

1
2

S

∑
s=1

∥∥∥∥∥ K

∑
k=1

Hk ∗uk,s−bs

∥∥∥∥∥
2

2

+
K

∑
k=1

ιCPN(Hk), (2.10)

where ιCPN(·) is the indicator function of the constraint set CPN . Several algorithms have been proposed
to solve (2.10), most of which are based on Augmented Lagrangian frameworks, differing primarily on
the approach they take to solve the `2 fidelity term sub-problem. [18] proposed an Alternating Direc-
tion Method of Multipliers (ADMM [11]) formulation, which [7] and [19] later improved by efficiently
approaching the aforementioned sub-problem using Iterated Sherman Morrison and ADMM consen-
sus solutions, respectively. Furthermore, [20] proposes an ADMM-consensus and a 3D formulation
that decouple the problem from the number of training images S, thus improving the computational
performance for the learning update.

There are also variants of these methods that perform the dictionary update in an online fashion
such as [21] and [22], in order to save either computing time or memory resources during the learning
process.

2.3 Separable from non-separable approximation

A straightforward approach to estimate Gr (as defined in Equation (1.1)) from a given set of standard
filters {Hk} was proposed in [3, 10] by placing a penalty on high-rank filters, namely

min
{Gr,αrk}

1
2

K

∑
k=1
‖Hk−

R

∑
r=1

αrk ·Gr‖2
F +λ

R

∑
r=1
‖Gr‖∗, (2.11)

where ‖ · ‖∗ is the nuclear norm. [3, 10] highlighted that the choice of λ is a challenging task, and that
convergence was slow when estimating high-rank filters. They also proposed a second approach based
on tensor decomposition [23] that provides faster performance:

min
{αrk,xr,yr}

1
2

K

∑
k=1
‖Hk−

R

∑
r=1

αrk · xr ◦ yr‖2
F , (2.12)

where xr and yr are rank-1 tensors and ◦ represents tensor outer product. A reformulation of this
problem as a special case of the low-rank basis problem was proposed in [24], but the authors reported
that the tensor approach was significantly faster and attained the same accuracy.
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Convolutional Sparse Coding

An auxiliary variable formulation of (2.11) given by:

min
{Gr,αrk,Fr}

1
2

K

∑
k=1
‖Hk−

R

∑
r=1

αrmGr‖2
F +

λ

2

R

∑
r=1
‖Gr−Fr‖2

F

s.t. rank(Fr) = 1 ∀r. (2.13)

was proposed in [25] along with an efficient SVD-based generation of the initial solution. The method
was shown to be faster than the tensor decomposition approach for small R (< 40) values while attaining
comparable accuracy.

2.4 Preliminary approach: Separable CSC

The convenience of using separable filters was initially assessed through machine learning tasks, such
as Random Forest (RF) image classification [3] and Convolutional Neural Network (CNN) acceleration
[9]. In both cases the use of separable filters proved to be an efficient alternative to their non-separable
counterparts, in the sense that a small set of separable filters provided comparable performance to a
larger set of non-separable ones.

Prior to the development of the proposed separable filter learning method, we derived in [2] a
FISTA-based CBPDN solver in order to assess the suitability of separable filter sets in CSC tasks
against the standard (non-separable) versions. The algorithm exploits the separability property by com-
puting the convolutions in the spatial domain, and enhances the convergence properties of the standard
FISTA method by incorporating the optimal step size rule of the Normalized Iterative Hard Thresh-
olding (NIHT) algorithm [26]. The method also incorporated and validated the use of an alternative
two-term penalty function combining the standard `1 norm and the Non-Negative Garrote [27] penalty
term.

In general, the proposed FISTA-based method is aimed at learning the feature map representation
of a target image with an approximated separable dictionary set by solving:

argmin
{uk}

1
2

∥∥∥∥∥ R

∑
r=1

Gr ∗

(
K

∑
k=1

αkruk

)
−b

∥∥∥∥∥
2

2

+λ

K

∑
k=1

p(uk) (2.14)

where p(x) = α‖x‖1 +βφnng(x) is the aforementioned two-term penalty function, and {Gr} and {αkr}
are the separable dictionaries and their corresponding linear coefficients, as described in section 2.3.
The method is also used to solve

argmin
{vk}

1
2

∥∥∥∥∥ R

∑
r=1

Gr∗vr−b

∥∥∥∥∥
2

2

+λ

K

∑
r=1

p(vr) (2.15)

which implies learning the feature maps directly from the separable filters, without the underlying rela-
tion to the non-separable set. This particular setup led to the highest gain in computational performance
with a small decrease in reconstruction quality with respect to solving (2.14). This was mainly due to
the fact that the separable filter set had been approximated from a non-separable one, and thus the sep-
arable filters had not been learned with the purpose of directly approximating images (its worth bearing
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in mind that at the time of publication of [2], there were no available methods to natively learn separable
filters). In general, both sets of experiments found that a small separable set performed competitively
with respect to a larger non-separable set, at a fraction of the computational run-time.
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Chapter 3

Separable Dictionary Learning

3.1 Proposed method derivation

The separable filter learning problem is given by replacing the dictionary term {Hk} in the CDL problem
presented in Chapter 2, with the vertical and horizontal filter components {vr} and {hr}, which yields:

min
{hr,vr,ur,s}

1
2

S

∑
s=1

∥∥∥ R

∑
r=1

vr ∗hr ∗ur,s−bs

∥∥∥2

2
+λ

S

∑
s=1

R

∑
r=1
‖ur,s‖1

s.t. ‖hr‖2 = ‖vr‖2 = 1 ∀r , (3.1)

Writing the dictionary update for (3.1) and coupling the norm constraint with the zero-padding restric-
tion described in Chapter 2.2 gives the unconstrained problem

min
{hr,vr}

1
2

S

∑
s=1

∥∥∥∥∥ R

∑
r=1

vr ∗hr ∗ur,s−bs

∥∥∥∥∥
2

2

+
R

∑
r=1

ιCPhN(hr)+ ιCPvN(vr), (3.2)

where ιCPN(·) is the indicator function of the constraint set defined in (2.9), and the zero-padding oper-
ator P is applied either along the horizontal or vertical dimension, depending on the filter set.

We approach the solution of (3.2) by alternating between updating the horizontal filters hr and the
vertical ones vr. Considering only the solution for the vertical filters vr (assuming fixed horizontal
filters), and reformulating the problem in ADMM-compatible form in a fashion reminiscent of [7] leads
to the following expression:

min
{vr,gr}

1
2

S

∑
s=1

∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s−bs

∥∥∥∥∥
2

2

+
R

∑
r=1

ιCPvN(gr)

s.t. vr−gr = 0,∀r, (3.3)

where u′r,s is the result of convolving the horizontal filters hr with the feature maps ur,s. The associated
subproblems would be:

12
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v(i+1)
r = argmin

vr

1
2

S

∑
s=1

∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s−bs

∥∥∥∥∥
2

2

+
ρ

2

R

∑
r=1

∥∥∥vr−g(i)r + f (i)r

∥∥∥2

2
(3.4)

g(i+1)
r = argmin

gr

R

∑
r=1

ιCPvN(gr)+
ρ

2

R

∑
r=1

∥∥∥v(i+1)
r −gr + f (i)r

∥∥∥2

2
(3.5)

f (i+1)
r = f (i)r + v(i+1)

r −g(i+1)
r (3.6)

It can be observed that (3.5) has the following form:

argmin
x

1
2
‖x−y‖2

2 + ιCPvN(x) = proxιCPvN
(y). (3.7)

where proxιCPvN
(·) is the proximal operator [28] of the indicator function ιCPvN(·). Thus the minimizer

for (3.5) is given by:

proxιCPvN
(y) =

PPT y
‖PPT y‖2

, (3.8)

For notational simplicity we rewrite (3.4) as

v(i+1)
r = argmin

vr

1
2

S

∑
s=1

∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s−bs

∥∥∥∥∥
2

2

+
ρ

2

R

∑
r=1
‖vr− zr‖2

2 , (3.9)

where zr = g(i)r − f (i)r .

When performing standard CDL [7], the non-separable equivalent of (3.9) is solved by switching to
the DFT domain and solving the associated linear system. In the separable case, however, it’s worth not-
ing that since the filters {vr} are 1-D, whereas the coefficient maps {u′r,s} are 2-D, moving directly onto
the frequency domain would require the DFT solution (v̂r) to be a 2-D matrix composed of replicating
columns, which would make the convolution operation in (8) have the form | | |

v̂r v̂r · · · v̂r

| | |

 .∗
 Û′r,s


This would mean including an additional constraint and further increasing the complexity of the prob-
lem. Instead we choose to rewrite the fidelity `2-norm term as a sum over columns:∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s−bs

∥∥∥∥∥
2

2

=
I

∑
i=1

∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s[i]−bs[i]

∥∥∥∥∥
2

2

, (3.10)

where u′r,s[i] and bs[i] are the i-th columns of the corresponding feature map and training image respec-
tively. Replacing the equality in (3.9):

argmin
vr

1
2

S

∑
s=1

I

∑
i=1

∥∥∥∥∥ R

∑
r=1

vr ∗u′r,s[i]−bs[i]

∥∥∥∥∥
2

2

+
ρ

2

R

∑
r=1
‖vr− zr‖2

2 (3.11)
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Separable Dictionary Learning

Switching to the DFT domain, and defining Û′r,s[i] = diag(û′r,s[i]) gives:

argmin
vr

1
2

S

∑
s=1

I

∑
i=1

∥∥∥∥∥ R

∑
r=1

Û′r,s[i]v̂r− b̂s[i]

∥∥∥∥∥
2

2

+
ρ

2

R

∑
r=1
‖v̂r− ẑr‖2

2 (3.12)

Defining:

Û′s[i] = (Û′0,s[i] Û′1,s[i] ...) v̂ =


v̂1
v̂2
...

v̂R

 ẑ =


ẑ1
ẑ2
...

ẑR

 (3.13)

the problem can be expressed as

argmin
vr

1
2

S

∑
s=1

I

∑
i=1

∥∥Û′s[i]v̂− b̂s[i]
∥∥2

2 +
ρ

2
‖v̂− ẑ‖2

2 (3.14)

Finally, to overcome the column indexing we define:

Û′s =


Û′s[1]
Û′s[2]

...
Û′s[I]

 . (3.15)

Substituting Û′s and recovering the full vectorized DFT training images b̂s leads to the problem
being expressed as:

argmin
vr

1
2

S

∑
s=1

∥∥Û′sv̂− b̂s
∥∥2

2 +
ρ

2
‖v̂− ẑ‖2

2 , (3.16)

with solution:
(∑

s
Û
′H
s Û′s +ρI)v̂ = ∑

s
Û
′H
s b̂s +ρẑ. (3.17)

Due to the commutativity property of the convolution operation, the update for the horizontal filters
hr can be easily derived by fixing the vertical filters, defining u′r,s = vr ∗ur,s, and following an analogous
chain of derivations as the one described in this section.

3.2 Implementation remarks

The most widely used method to deal with the non-separable equivalent of (3.17) is the Iterative Sher-
man Morrison (ISM) procedure from [7], which is designed for solving multiple diagonal block linear
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systems of the form (∑k AH
k Ak +B)x = c, namely

AH
0,0A0,0 +AH

1,0A1,0 + . . .+B0 AH
0,0A0,1 +AH

1,0A1,1 + . . . . . .

AH
0,1A0,0 +AH

1,1A1,0 + . . . AH
0,1A0,1 +AH

1,1A1,1 + . . .+B1 . . .

AH
0,2A0,0 +AH

1,2A1,0 + . . . AH
0,2A0,1 +AH

1,2A1,1 + . . . . . .

...
...

. . .



×


x0
x1
x2
...

=


c0
c1
c2
...

. (3.18)

where Ak = (Ak,0 Ak,1 . . . Ak,M−1), and both Ai, j and Bi are diagonal matrices. While (3.17) is
compatible with the ISM procedure, the additional column indexing we introduce here drastically in-
creases the number of terms in each block summation, which entails a significant computational over-
head for this method (about an order of magnitude slower than the non-separable scenario), rendering
ISM impractical for this task.

We thus solve the linear system given by (3.17) by applying Conjugate Gradient (CG) method [29],
which attains competitive or even superior computational performance with respect to the non-separable
scenario. Furthermore, in order to minimize the number of inner CG iterations, we use the solution for
each previous update as the initial value, as suggested in [8].

The full dictionary learning algorithm is implemented by combining the proposed update method
for {vr} and {hr} with the ADMM-based sparse coding update proposed in [7]. Based on standard
non-separable implementations, and the results provided by [20], we interleave a single iteration of
each update per outer loop, and transfer the auxiliary variables of each ADMM framework across the
other update steps, which has been shown to provide the most stable convergence ratio among the other
possible choices.
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Chapter 4

Results

In this section we assess the performance of the proposed separable dictionary learning method in
terms of reconstruction performance for denoising and inpainting CSC tasks, along with convergence
and computational runtime for the learning process.

4.1 Experimental framework

For the denoising tests, we used a set of 5 well-known images (see Figure A.1 in the Appendix) cor-
rupted with AWGN (σ = 0.2), to perform CBPDN using the following sets of filters of different sizes:

• Nat-sep: 36 Natively learned separable filters (our proposed method)

• Apr-sep: 36 Separable filters approximated from 36 non-separable ones via [25]

• Non-sep: 36 Standard non-separable filters learned via [7]

Since the CBPDN problem (as defined in (2.1)) has a tunable parameter λ, in order to ensure fair eval-
uation we solve for a grid of λ values in the range [10−1,1], and compare only the optimal performance
(in terms of the SSIM metric) for each of the evaluated filter sets. An example of the entire simulation
results for a single image is given in Figure 4.1.

For the separable dictionaries (nat-sep and apr-sep), we use the `1 version of the FISTA-based
CBPDN solver proposed in [2] that exploits filter separability by computing the convolutions in the
spatial domain. For the non-separable dictionaries (non-sep), we use the ADMM-based solver from
[7], which is considered to be state-of-the-art for this problem.

Our inpainting comparisons use a similar setup to the denoising ones. We use the same batch of 5
images as before and randomly discard half the pixels in each one, and evaluate the suitability of each
filter set to reconstruct the original images (to this end we use the inpainting CBPDN solver from the
SPORCO library [30]). In this case we also perform the evaluation across a grid of λ values in the range
[10−3,10−1], and report the optimal value attained by each filter set.

For the computational performance simulations, we evaluate the learning time for different training
set sizes (S) and filter set sizes (R = K) against a state-of-the-art ADMMM-based non-separable CDL
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Results

Dict.
Size barbara mandrill parrots boats goldhill Time

nat-sep
8x8 0.6175 0.5188 0.7188 0.6438 0.6709 40,77

12x12 0.6370 0.5248 0.7219 0.6532 0.6730 60,57
16x16 0.6285 0.5223 0.7197 0.6554 0.6728 70,11

non-sep
8x8 0.6189 0.5218 0.7207 0.6449 0.6732 70,3

12x12 0.6330 0.5300 0.7225 0.6507 0.6763 104,7
16x16 0.6283 0.5257 0.7218 0.6536 0.6741 112,6

apr-sep
8x8 0.6147 0.5015 0.7118 0.6335 0.6659 40,82

12x12 0.6122 0.5186 0.7132 0.6396 0.6640 60,64
16x16 0.6207 0.5157 0.7151 0.6502 0.6686 70,52

Table 4.1: Denoising performance (SSIM) for different filter sizes. For further detail, see Appendix A.

method [7]. The runtime performance of both methods is assessed for a fixed value of 200 iterations,
employing the Conjugate Gradient (CG) method to solve the main linear system in both cases. These
simulations were performed on an Intel Xeon E5-2640 CPU (2,50 GHz , 128Gb RAM, 2x NVidia Tesla
K40m GPU). Our matlab code [31] can be used to reproduce our experimental results.

4.2 Experiments

In Table 4.1 we illustrate the results of the denoising comparisons (in terms of SSIM metric) between
the 3 evaluated filter sets (each with 36 filters) for filter sizes 8×8, 12×12 and 16×16, and also report
the average runtime for each method across the grid of λ values. It can be observed that the natively
separable filters consistently outperform the approximated (separable) ones, and show equivalent per-
formance to the standard non-separable filters. The runtime results also show that solving the CSC
problem with separable filters is almost two times faster than doing it with non separable ones, which
is consistent with the results reported in [2]. As an example, we illustrate in Figure 4.1 the entire set of
denoising simulations across the λ grid for a single image. We also show in Figure 4.2 the reconstructed
images for the optimal λ value across this grid.

lambda

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

S
S

IM

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

36 nat-sep

36 apr-sep

36 non-sep

Figure 4.1: Denoising results on λ grid for ’barbara’ image, where apr-sep, nat-sep and non-sep are the
labels defined in Section 4.1
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(a) (b)

(c) (d)

Figure 4.2: Example of denoising perfomance for each filter category with barbara image. (a): Original
noisy image, (b): Reconstruction with non-sep filters with SSIM = 0.6330, (c) Reconstruction with
apr-sep filters with SSIM = 0.6122, (d) Reconstruction with nat-sep filters with SSIM = 0.6370. Results
taken at optimal value λ = 0.55

We report in Table 4.2 the results obtained in the inpainting simulations in terms of SSIM metric for
each evaluated filter set. As in the previous case, it can be observed that our natively learned separable
filters show no significant difference in performance with respect to the non-separable ones, and sub-
stantially outperform the approximated separable ones. Since the same solver from the SPORCO [30]
library was used for all the considered filter categories, the runtime performance was approximately
equivalent in the three scenarios and does not provide any relevant insight.

For illustrative purposes, we depict in Figure 4.3 an example set of each filter type for the size of
12× 12. Interestingly, it can be observed that while the non-separable filter set is mostly composed
of horizontal, vertical and diagonal edges, the separable ones consist of horizontal and vertical edges,
as well as ’checkerboard’ paterns. It’s worth noting that for the case of the natively learned separable
filters, this difference does not imply a decrease in reconstruction quality, as can be observed in Table
4.1 and Table 4.2.
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Results

Dict.
Size

barbara mandrill parrots boats goldhill

nat-sep
8x8 0.9432 0.8538 0.9719 0.9726 0.9311

12x12 0.9501 0.8495 0.9725 0.975 0.932
16x16 0.9445 0.8556 0.973 0.9746 0.9314

non-sep
8x8 0.9448 0.8607 0.974 0.9738 0.934

12x12 0.9485 0.8596 0.9742 0.9742 0.9337
16x16 0.9436 0.8645 0.9745 0.9741 0.9349

apr-sep
8x8 0.9354 0.8508 0.9684 0.9661 0.9273

12x12 0.9338 0.8432 0.9685 0.9734 0.9278
16x16 0.9277 0.8459 0.9706 0.9738 0.9288

Table 4.2: Inpainting performance (SSIM) for different filter sizes. For further detail, see Appendix A.

(a) Set of 36 non-separable filters of size
12×12

(b) Set of 36 approximated separable fil-
ters of size 12×12

(c) Set of 36 natively learned separable
filters of size 12×12

Figure 4.3: Example of a set of 36 filters of each evaluated category

We report in Figure 4.4 (a) and (b) the computational performance comparisons in the learning
process for two different CG tolerance values, in terms of runtime (seconds) vs image training set size.
We consider a fixed number of 36 separable and non-separable filters for this simulation, and measure
the runtime for both training methods for a fixed number of iterations (200). As can be observed in
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(c) Time vs filter set size

Figure 4.4: Computational performance (separable vs. non-separable) results for CDL simulations,
with termination at 200 iterations.
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Figure 4.4 (a), when the CG tolerance is 10−3 the proposed separable method is slightly slower than its
non-separable counterpart for small values of the number of images in the training set, and outperforms
it when such value increases. When the tolerance value is 10−5, the proposed method significantly
outperforms the other one as S increases. Figure 2 (c) depicts a similar runtime comparison where the
training set size is fixed (S = 20) and the dictionary size (number of filters) is varied (the tolerance
value used is 10−3). In this case it is also clear that the proposed method is substantially faster than the
non-separable method as the number of filters increases.

An example of the functional value behaviour for a training set size of S = 20 and a target set of
36 filters of size 12× 12 is shown in Figure 4.5 for 200 iterations. It can be seen from the graph that
the proposed separable method converges to a slightly higher functional value than the non-separable
method. This difference could be explained by the fact that the solution space of the separable filter
learning problem is more constrained than that of its non-separable counterpart, however, this does not
seem to have an impact on the performance quality of the learned separable filters, as can be seen on
Tables 4.1 and 4.2.
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Figure 4.5: Functional value bahaviour comparison for CDL task
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Chapter 5

Conclusions

A novel algorithm for natively learning separable filters without the need of a pre-learned set of non-
separable ones has been presented. We formulated the proposed approach as an extension of the stan-
dard Convolutional Dictionary Learning (CDL) problem, and used the knowledge of existing dictionary
learning techniques present in the literature as a base in the design of the method. The resulting ap-
proach has been published at the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2018) [1].

Our computational simulations show that the separable filters learned through our method, when
evaluated through denoising and inpainting Convolutional Sparse Coding (CSC) tasks, consistently
outperform approximated separable filters, and attain the same reconstruction quality as when using
standard non-separable filters. Moreover, the proposed separable learning method is more than 2 times
faster than its non-separable counterpart when either the training set or the number of filters to estimate
is large. These advantages constitute our learned separable filters into a competitive alternative to stan-
dard non-separable ones, which could in turn translate into significant speedups in several applications.
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Recomendations

• Since computational performance is of paramount importance for most CDL applications, a po-
tential path for further optimization of our approach would be to migrate our implementation to
more flexible languages such as C, C++, or Fortran.

• Another approach to further optimize runtime performance would be to derive a CUDA C version
of the proposed method, with explicit focus on the two computational bottlenecks: the ISM
approach in the CSC stage and the CG method in the CDL stage.

• Although this thesis work has been focused on deriving the separable filter learning method from
the most widely used non-separable approach, namely the ADMM framework, it would be inter-
esting to explore the benefits of learning the separable filters by taking as a basis other common
frameworks in the sparse coding literature, such as APG algorithms.
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Appendix A

Additional Figures and Tables

(a) barbara (b) mandrill (c) parrots (d) boats (e) goldhill

Figure A.1: Set of test images used for the denoising and inpainting simulations.

Dict.
Size

barbara mandrill parrots boats goldhill

nat-sep
8x8 22.87 20.86 27.36 23.76 24.60

12x12 23.13 20.94 27.59 24.05 24.77
16x16 23.09 20.92 27.50 24.07 24.83

non-sep
8x8 22.91 20.99 27.54 23.84 24.75

12x12 23.13 21.08 27.70 24.01 24.99
16x16 23.07 21.09 27.75 24.23 25.06

apr-sep
8x8 22.81 20.77 27.24 23.60 24.49

12x12 22.93 20.87 27.40 23.84 24.73
16x16 22.95 20.89 27.43 24.00 24.80

Table A.1: Denoising performance (PSNR) for different filter sizes
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Additional Figures and Tables

Dict.
Size

barbara mandrill parrots boats goldhill

nat-sep
8x8 9.37 6.12 12.60 11.50 14.77

12x12 9.63 6.16 12.74 11.79 14.94
16x16 9.59 6.18 12.74 11.81 15.00

non-sep
8x8 9.41 6.24 12.78 11.58 14.92

12x12 9.60 6.34 12.96 11.75 15.16
16x16 9.55 6.35 12.99 11.77 15.22

apr-sep
8x8 9.30 6.03 12.48 11.34 14.66

12x12 9.43 6.13 12.68 11.65 14.90
16x16 9.45 6.15 12.67 11.68 14.97

Table A.2: Denoising performance (SNR) for different filter sizes

Dict.
Size

barbara mandrill parrots boats goldhill

nat-sep
8x8 30.61 25.06 37.44 36.57 34.53

12x12 31.57 24.99 38.02 37.89 34.74
16x16 31.11 25.15 37.98 37.38 34.93

non-sep
8x8 31.04 25.29 38.82 36.80 35.05

12x12 31.51 25.28 39.38 37.92 35.35
16x16 31.01 25.37 39.41 37.45 35.44

apr-sep
8x8 30.14 24.91 36.55 34.88 33.94

12x12 29.92 24.66 37.66 37.15 34.50
16x16 30.17 24.80 37.88 37.03 34.69

Table A.3: Inpainting performance (PSNR) for different filter sizes

Dict.
Size

barbara mandrill parrots boats goldhill

nat-sep
8x8 17.10 10.31 22.68 24.31 24.70

12x12 18.27 10.24 23.26 25.53 24.90
16x16 17.50 10.40 23.23 25.12 25.09

non-sep
8x8 17.54 10.55 24.06 24.54 25.22

12x12 18.21 10.54 24.62 25.65 25.51
16x16 17.51 10.63 24.66 25.29 25.61

apr-sep
8x8 16.64 10.17 21.79 22.62 24.10

12x12 16.42 9.92 22.90 24.90 24.66
16x16 16.66 10.05 23.12 24.77 24.85

Table A.4: Inpainting performance (SNR) for different filter sizes
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