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Geometric Phase in Photonics

Juan Carlos Loredo Rosillo

Propuesto para el Grado de Maǵıster en F́ısica

Resumen

Las fases geométricas son tema de investigación actual en diversas áreas de la f́ısica.

Interesa investigarlas tanto por razones de carácter teórico, cuanto por razones ligadas a

sus aplicaciones. Entre estas últimas resaltan las aplicaciones en información cuántica.

Un computador cuántico está basado en la posibilidad de generar, almacenar y manipular

bits de información codificados en los grados de libertad de sistemas cuánticos. Estos

son llamados qubits. Los qubits son superposiciones coherentes de dos estados fundamen-

tales. Mientras su contraparte clásica puede valer 0 o 1 excluyentemente, el qubit puede

tomar ambos valores 0 y 1 simultaneamente. Esto hace posible procesar información con

mucha mayor rapidez en comparación a una computadora clásica. El problema central

con los qubits es que son sumamente frágiles, de modo que su tiempo de vida media

es muy pequeño. El fenómeno que lleva a un estado de superposición hacia un estado

clásico se llama decoherencia. Para que un computador cuántico sea viable, es necesario

contar con qubits cuya vida media sea mayor que el tiempo que toma realizar opera-

ciones sobre ellos (computación). Una ruta muy promisoria es la que se basa en las fases

geométricas. Ellas permiten realizar operaciones que, de un lado, pueden ser muy rápidas

y, de otro lado, pueden ser inmunes o muy robustas frente a la decoherencia. Para imple-

mentar computación cuántica geométrica, es entonces necesario ser capaz de manipular

fases geométricas con gran versatilidad. Contribuyendo a este fin, esta tesis presenta

nuevos resultados en la manipulación de fases geométricas que aparecen cuando el qubit

está codificado en fotones polarizados. Esta tesis contiene dos partes principales. En la

primera parte hacemos un intento preliminar en manipular fases en estados de polarización.

Espećıficamente, tratamos a la fase de Pancharatnam (fase total) que resulta de evolu-

ciones unitarias arbitrarias. Discutimos los aspectos teóricos involucrados y mostramos

en detalle como hacer que un estado de polarización siga cualquier curva sobre la esfera

de Poincaré. Luego presentamos los métodos utilizados para llevar a cabo las mediciones

de la fase total acumulada a lo largo de la evolución del estado. En la segunda parte de

esta tesis, extendemos nuestros métodos y desarrollamos técnicas para suprimir localmente

las fases dinámicas que puedan aparecer durante la evolución del estado de polarización.

Esto nos permite observar y medir fases geométricas. Usando métodos similares a los

discutidos en la primera parte, mostramos finalmente que las fases geométricas observadas

experimentalmente coinciden con las predicciones teóricas con buena aproximación.
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Abstract

Geometric phases constitute a subject of active research embracing different aspects

of physics. The interest comes from both fundamental reasons and applications. Among

the latter one should highlight applications in quantum information. Quantum computers

are based in the possibility of generating, storing and manipulating bits of information

encoded into degrees of freedom of quantum systems. We call them qubits. They are

coherent superpositions of two fundamental states. Qubits differ from their classical coun-

terparts for which either 0 or 1 are the only possible values. A qubit can take both values

0 and 1 simultaneously. This makes it possible to process information much faster as com-

pared to classical computers. Such a feature gives a highly superior potential to quantum

computers. A main problem with qubits is that typically they are very fragile and their

mean life time is very short. The process that turns a coherently superposed state into

a single state is called decoherence. In order to make a quantum computer feasible, the

mean life time of qubits needs to be larger than the time needed for operating with them.

A very promising way to deal with the decoherence problem is based on geometric phases.

Using them one should be able to perform operations (with quantum phase gates) that

on the one hand could operate very fast and on the other hand should be immune to, or

highly robust against, disturbances that usually cause decoherence. In order to implement

geometric quantum computation, it is then mandatory that one can manipulate geometric

phases with great versatility. As an endeavor towards this direction, this thesis presents

some novel experimental results in manipulation of geometric phases appearing when the

qubit is encoded in polarization. This thesis contains two major parts. In the first part

we make an initial attempt to manipulate phases in polarized states. Specifically, we deal

with the Pancharatnam’s phase (total phase) arising from arbitrary unitary evolutions.

We discuss some theoretical considerations and show in detail how to experimentally bring

a polarization state to follow any path on the Poincaré sphere. Then, we present the two

methods Polarimetry and Interferometry used to carry out measurements of the accumu-

lated total phase. In the second part of this thesis, we extend our methods by developing

techniques to locally suppress dynamical phases that may appear during the evolution

of the state of polarization. This allows us to observe and measure geometric phases

solely. By using the same two methods discussed in the first part, we then show that our

measurements of geometric phases closely fit the theoretical predictions.
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Chapter 1

Introduction

Recent experiments have been realized exhibiting geometric phases based on super-

conducting qubits [1], trapped polarized ultracold neutrons [2] and other spin 1/2

systems [3]. Nevertheless, in all these cases the qubit’s evolution was restricted to

geodesics or to some specific circuits on the corresponding ray space (Poincaré or

Bloch spheres). In contrast, the experiments that will be discussed in this thesis are

capable of locally nullifying the dynamical component of the total phase by making

it zero at every point of the evolution, thereby ensuring that the accumulated phase

is purely geometric.

We should point out that the phenomena studied in this work can be interpreted

as pertaining to both the quantum and the classical domain. Even though our ex-

periments were performed using a classical laser source, the mathematical treatment

was developed within Dirac’s formalism of bra’s and ket’s and all calculations remain

valid for the single-photon case.

We shall now briefly discuss some basic concepts that will be used in this thesis

work.

1.1 The Quantum Bit

The smallest unit of information is the bit. This unit can be physically stored

in some given system that exists in one of two possible states. For instance, the

state of transistor switches in computer processors or the orientation of macroscopic

magnetic domains in hard drives.

The qubit is the quantum version of a bit, but unlike its classical counterpart,

it can exist in a superposition of two possible quantum states at the same time.

Ideally, this qubit is completely isolated, meaning that this two-level system does

not interact with the rest of the universe. In real life, however, such condition is not

1



feasible and thus systems can be used, in which the undesired interactions are weak

and become appreciable on time scales much longer than the desired interactions.

1.2 Qubit Encoding using Polarization

For several purposes, photons appear like isolated systems. Polarization encoded

qubits have a long decoherence time. Indeed, light from the farthest regions of the

observable universe arrive at Earth partially polarized.

For encoding the qubit into the polarization degree of freedom, one assigns the

0 and 1 quantum states to two linearly independent polarization states. We use

two orthogonal states and typically take the horizontal |H〉 and vertical |V 〉 po-

larizations. Using Dirac’s formalism, a pure qubit state in this {|H〉, |V 〉} basis is

written:

|Ψ〉 = α|H〉+ β|V 〉, (1.1)

with |α|2 + |β|2 = 1, α, β ∈ C. Accordingly, we may rewrite Eq. (1.1) in the form:

|Ψ〉 = eiδ
(

cos
θ

2
|H〉+ eiφ sin

θ

2
|V 〉
)
, (1.2)

with δ, θ, φ ∈ R. The representation in Eq. (1.2) allows the mapping of all single

qubit states onto the surface of the unit sphere, with θ and φ the polar angles, δ is

a global phase factor and is physically irrelevant. This sphere is called the Poincaré

sphere and provides a useful tool to vizualise qubits and their evolutions. The linear

polarized states lie on the equator and the right and left circular polarized states

are located at the north and south poles respectively.

1.2.1 Initialization and Transformations

For fixing a polarization state, out of an initially unknown polarized state, one

may use a polarizer (or a polarizing beamsplitter) to project whatever state to a

linear state which we may call horizontal or vertical. After this, we can manipulate

the state using wave plates that perform unitary evolutions U ∈ SU(2) acting on

single qubits. The wave plates used in experiments come in two types: half wave

plates (HWP) and quarter wave plates (QWP). Their matrix representation in the

2



{|H〉, |V 〉} reads:

ÛHWP (θ) = −i

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (1.3)

ÛQWP (θ) =
1√
2

(
1− i cos 2θ −i sin 2θ

−i sin 2θ 1 + i cos 2θ

)
, (1.4)

where the angle θ is the angle of the fast axis of the wave plate with respect to the

horizontal line.

In Chapters 3 and 4 we make a more detailed analysis of these transformations.
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Chapter 2

Phase Fundamentals

Let us think of a quantum system, for instance a polarized photon. Let s be the

parameter in terms of which the path of its evolution on the ray space is given.

Then this evolution is given by ρ(s) = |ψ(s)〉 〈ψ(s)|.
When a state ρ(0) = |ψ(0)〉 〈ψ(0)| undergoes a cyclic evolution it ends up in

eiϕ |ψ(0)〉 〈ψ(0)| e−iϕ = ρ(0), where it is assumed that the initial and final vector

states may differ at most by a phase factor. Since ρ(s) is used to calculate any

physical observable it is clear that |ψ(0)〉 and eiϕ |ψ(0)〉 represent the same physical

state and no measurement can determine the phase of a single state vector.

However, relative phases between states can be observed, as it was pointed out

in 1956 by Pancharatnam [4] when he introduced his definition of relative phase

between any two nonorthogonal polarized states. Although Pancharatnam’s phase

was originally introduced to deal with classical light beams, his definition is still valid

in the quantum mechanical scenario, where polarization is an intrinsic property of

the photon.

The phase factor ϕ in eiϕ |ψ(0)〉 is composed of two parts: a dynamical phase

proportional to the integral of the instantaneous energy and a geometric phase that

depends only on the set of states traced out in ray space and not on the rate of

evolution. This geometric phase was discovered by Berry but [5] restricted to cyclic

and adiabatic evolutions of pure quantum states. It was realized afterwards that

such restrictions are not necessary and geometric phases can be found under more

general conditions. So, in general it holds:

ϕtotal = ϕgeometric + ϕdynamical (2.1)

4



2.1 Pancharatnam’s Phase

Pancharatnam’s phase was introduced as early as 1956 and anticipated geometric

phases. However, it did not receive much attention at that time and had to wait

over 30 years, until Berry’s paper [6] appeared, in order to be properly appreciated

in its importance .

If we ask for the relative phase between |ψ〉 and eiϕ |ψ〉 we know immediately

that the answer is ϕ, but for the general case, i.e. the relative phase between |ψ1〉
and |ψ2〉 6= eiϕ |ψ1〉 the definition of relative phase is no longer trivial. This is the

case addressed by Pancharatnam, even though he worked in the classical domain of

polarization states.

Let us consider two nonorthogonal states |Ψ1〉 and |Ψ2〉 from the same Hilbert

space. Now, inspired on the case of |ψ〉 and eiϕ |ψ〉, the relative phase of |Ψ2〉 with

respect to |Ψ1〉 can be defined as the phase between the normalized component of

|Ψ2〉 along |Ψ1〉 and the original |Ψ1〉 state, i.e.:

|Ψ′1〉 =
|Ψ1〉 〈Ψ1|Ψ2〉
|〈Ψ1|Ψ2〉|

. (2.2)

We can easily see that ρ′1 = |Ψ′1〉 〈Ψ′1| = |Ψ1〉 〈Ψ1| = ρ1, and therefore |Ψ′1〉 and |Ψ1〉
represent the same state. Thus, they differ from one another at most by a phase

factor

|Ψ′1〉 = eiΦ |Ψ1〉 . (2.3)

Equation 2.3 leads us to an expression for the relative phase

eiΦ = 〈Ψ1|Ψ′1〉

⇒ Φ = arg 〈Ψ1|Ψ′1〉

⇒ Φ = arg
〈Ψ1|Ψ2〉
|〈Ψ1|Ψ2〉|

, (2.4)

since |〈Ψ1|Ψ2〉| ≥ 0 and Φ is the relative phase we are looking for, then

ΦP = arg 〈Ψ1|Ψ2〉 . (2.5)

Moreover, the difinition in Eq. (2.5) can be realized through the following in-

terferometric recipe. Suppose that |Ψ1〉 is submitted to a U(1) shift eiφ. Then, we

5



make eiφ|Ψ1〉 and |Ψ2〉 interfere and the resultant state has the intensity pattern:

I =
∣∣eiφ |Ψ1〉+ |Ψ2〉

∣∣2
∝ 1 + |〈Ψ1|Ψ2〉| cos (φ− arg 〈Ψ1|Ψ2〉) . (2.6)

Maximal interference in Eq. (2.6) will give the relative phase between |Ψ1〉 and |Ψ2〉.
The maxima of I are thus reached for φ = arg 〈Ψ1|Ψ2〉 = ΦP , then

ΦP = arg 〈Ψ1|Ψ2〉 . (2.7)

2.2 Geometric Phases show up

So far, we have presented Pancharatnam’s definition of the total relative phase. We

can use this definition to see how geometric phases are already on the table. For

this purpose we consider Pancharatnam’s optical experiment, in which a light beam

passes through a set of polarizers, then we ask for the phase between the final and

initial state.

Let |Ψ0〉 be the initial state, and |Ψk〉 〈Ψk| , k = 1, ..., N the projectors of the

N polarizers. The state after the first polarizer is |Ψ′1〉 = |Ψ1〉 〈Ψ1|Ψ0〉, after the

second polarizer |Ψ′2〉 = |Ψ2〉 〈Ψ2|Ψ′1〉 = |Ψ2〉 〈Ψ2|Ψ1〉 〈Ψ1|Ψ0〉, etc. Then, after N

polarizers, the final state will be

|Ψf〉 = |ΨN〉 〈ΨN |ΨN−1〉 〈ΨN−1|ΨN−2〉 ... 〈Ψ2|Ψ1〉 〈Ψ1|Ψ0〉 . (2.8)

Therefore, the phase between |Ψf〉 and |Ψ0〉 is

Φ = arg 〈Ψ0|Ψf〉

= arg 〈Ψ0|ΨN〉 〈ΨN |ΨN−1〉 〈ΨN−1|ΨN−2〉 ... 〈Ψ2|Ψ1〉 〈Ψ1|Ψ0〉 . (2.9)

Expressions like the one in Eq. (2.9) are known as Bargmann invariants [7]. Eq.

6



(2.9) can be put in a more useful form:

Φ = arg 〈Ψ0|ΨN〉+
N∑
k=1

arg 〈ΨN−k+1|ΨN−k〉

= arg 〈Ψ0|ΨN〉+
N∑
k=1

arg 〈Ψk|Ψk−1〉

= arg 〈Ψ0|ΨN〉 −
N∑
k=1

arg 〈Ψk−1|Ψk〉

⇒ Φ = arg 〈Ψ0|ΨN〉 −
N−1∑
k=0

arg 〈Ψk|Ψk+1〉 . (2.10)

At this point we should notice that the phase in Eqs. (2.9) and (2.10) remains

unaffected if |Ψk〉 → eiφk |Ψk〉, i.e. under local U(1) transformations, all dynamical

phases cancel in pairs. However, the phase does depend on the set of states the

system has passed through.

The phase in Eq. (2.10) was derived from the Pancharatnam’s phase between

|Ψf〉 and |Ψ0〉 for a case in which the evolution is not necessarily unitary. It holds in

particular for the unitary evolution, when the |Ψk〉 are intermediate states produced

by a unitary operator. In such a case the dynamical phase is not zero in general and

it happens to be
∑N−1

k=0 arg 〈Ψk|Ψk+1〉, as we will see in the next section.

Hence, the Pancharatnam and dynamical phases for an arbitrary evolution |Φk〉,
k = 0, ..., N are, respectively:

ΦP = arg 〈Ψ0|ΨN〉 . (2.11)

Φdyn =
N−1∑
k=0

arg 〈Ψk|Ψk+1〉 . (2.12)

And, in concordance with Eq. (2.1), the geometric phase Φg = ΦP − Φdyn reads:

Φg = arg 〈Ψ0|ΨN〉 −
N−1∑
k=0

arg 〈Ψk|Ψk+1〉 . (2.13)

These equations, valid for discrete evolutions, will lead us to the continuous evolution

formulas in the next section.
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2.3 Quantum Kinematic Approach

Mukunda and Simon [8] developed a framework for dealing with geometric phases

based entirely on kinematic ideas. In this section we summarize the most relevant

part of their work for our purposes.

Let us consider a Hilbert space H suitable for the description of a system and a

subset N0 ⊂ H consisting of normalized vectors |ψ〉:

N0 = {|ψ〉 ∈ H | 〈ψ|ψ〉 = 1} ⊂ H. (2.14)

Consider now a one-dimensional smooth curve C0 ⊂ N0 consisting of a family of

vectors |ψ(s)〉:
C0 = {|ψ(s)〉 ∈ N0 | s ∈ [s1, s2] ⊂ <} ⊂ N0. (2.15)

We can observe that N0 remains unchanged under U(1) transformations of |ψ〉,
i.e. |ψ〉 → |ψ′〉 = eiα|ψ〉, α ∈ <. We can pass now to the corresponding space of

equivalence classes, which arises from dividing N0 with respect to U(1). This is the

ray space:

R0 = N0/U(1). (2.16)

The curve C0 ⊂ N0 projects onto a smooth curve C0 ⊂ R0, and so does any other

curve C ′0 obtained by applying a gauge transformation U(1) to C0.

Mukunda and Simon define the geometric phase associated with C0 as:

Φg(C0) = arg〈ψ(s1)|ψ(s2)〉 − Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds, (2.17)

Φg = Φtotal − Φdyn.

This equation can be shown to be related to Eq. (2.10) by using two key results

of [8]: there exist curves ∈ R0, called geodesics, along which no geometric phase

arises; and any two points in ray space can always be connected by a geodesic.

In order to show the connection between Eqs. (2.17) and (2.10) we may consider

an open curve C̃0 made up of N geodesic segments G̃i ⊂ H connecting |Ψk〉, k =

1, ..., N + 1 that project onto geodesics in R0. Using Eq. (2.17), it holds for the

8



projection of C̃0:

Φg(C0) = Φtotal(C̃0)− Φdyn(C̃0)

= arg〈Ψ1|ΨN+1〉 −
N∑
k=1

Φdyn(G̃k)

= arg〈Ψ1|ΨN+1〉 −
N∑
k=1

[
Φtotal(G̃k)− Φg(G̃k)

]
, (2.18)

but Φg(G̃k) = 0, therefore:

Φg(C0) = arg〈Ψ1|ΨN+1〉 −
N∑
k=1

arg〈Ψk|Ψk+1〉, (2.19)

recovering Eq. (2.10).

Another important result is that there is no change of Φg if we calculate it either

for an open curve C̃0 or if we close this curve with another segment that projects

onto a geodesic in ray space. The last statement becomes evident by noticing that

adding a closing element |ΨN+2〉 = |Ψ1〉 affects Eq. (2.19) in such a way that:

arg〈Ψ1|ΨN+1〉 → arg〈Ψ1|ΨN+2〉

= arg〈Ψ1|Ψ1〉

= 0, (2.20)

and

−
N∑
k=1

arg〈Ψk|Ψk+1〉 → −
N+1∑
k=1

arg〈Ψk|Ψk+1〉

= −

(
− arg〈ΨN+2|ΨN+1〉+

N∑
k=1

arg〈Ψk|Ψk+1〉

)

= arg〈Ψ1|ΨN+1〉 −
N∑
k=1

arg〈Ψk|Ψk+1〉, (2.21)

leaving Φg unchanged.

We could also go the other way around and derive Eq. (2.17) starting from

Eq. (2.19). We can aproximate C0 by N consecutive segments joining |Ψk〉, k =

1, ..., N + 1. As N →∞, every two neighboring points |Ψk〉 and |Ψk+1〉 ∈ C0 will be

close enough to approximate such segments by geodesics. In such a case the discrete

formula 2.19 leads us to the expression of the geometric phase for the continuous
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case, for which we use |Ψ1〉 → |ψ(s1)〉, |ΨN+1〉 → |ψ(s2)〉 and |Ψk+1〉 ≈ |Ψk〉+∆s|Ψ̇k〉
in1:

Φg(C0) = lim
N→∞

{
arg〈Ψ1|ΨN+1〉 −

N∑
k=1

arg〈Ψk|Ψk+1〉

}

= lim
N→∞

{
arg〈Ψ1|ΨN+1〉 − arg

N∏
k=1

〈Ψk|Ψk+1〉

}

= lim
N→∞

{
arg〈Ψ1|ΨN+1〉 − arg

N∏
k=1

〈Ψk|
(
|Ψk〉+ ∆s|Ψ̇k〉

)}

= lim
N→∞

{
arg〈Ψ1|ΨN+1〉 − arg

N∏
k=1

(
1 + ∆s〈Ψk|Ψ̇k〉

)}

≈ lim
N→∞

{
arg〈Ψ1|ΨN+1〉 − arg exp

(
N∑
k=1

〈Ψk|Ψ̇k〉∆s

)}

= arg〈ψ(s1)|ψ(s2)〉 − arg exp

(
i Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds
)

⇒ Φg(C0) = arg〈ψ(s1)|ψ(s2)〉 − Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds, (2.22)

where we see that, although both Φtot and Φdyn are functions defined on C0; Φg, on

the other hand, is defined on C0. This becomes evident when we notice that Φg

is gauge U(1) invariant. That, if |ψ(s)〉 is submitted to a U(1) transformation, i.e.

|ψ(s)〉 → eiα(s)|ψ(s)〉, Φtot and Φdyn change according to:

arg〈ψ(s1)|ψ(s2)〉 → arg〈ψ(s1)|ψ(s2)〉+ (α(s2)− α(s1)) ,

Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds → Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds+ (α(s2)− α(s1)) , (2.23)

but Φg remais the same.

We will come back to the geometric phase in Chapter 4 with the calculations

and results of our experiments.

1Upper(lower) case letters are used to denote states for the discrete(continuous) evolution case.
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Chapter 3

Pancharatnam’s Phase in

Photonics

The experiments reported in this thesis [9] were designed to take a pure polarization

state, make it evolve unitarily and measure the accumulated phases, either Pan-

charatnam or geometric, during the evolution. Our phase measurements are largely

insensitive to mechanical and thermal disturbances because we came up with a sim-

ple idea that makes our interferometer work like an isolated one, without the need

to implement a stabilizing system. Such technique can be applied in several types

of interferometers, such as variations of Michelson, Sagnac or Mach-Zehnder arrays.

We use the latter in our experiments. Let us now take a look at the theoretical

calculations related to our experiments.

3.1 General Considerations

In the previous chapter we dealt with the general expression of the Pancharatnam’s

phase (see Eq. (2.11)). Now we will apply this to a particular case. Here, the pure

state we are working with is the polarization of light and we consider only unitary

evolutions. Therefore, the polarization space is spanned by the orthonormal basis

{|H〉 , |V 〉} (representing horizontal and vertical polarizations) and the evolution

operator Û is an elements of the SU(2) group.

We introduce two Euler parametrizations for Û , which we call XZX and ZXZ

(due to the optical Pauli matrices used to describe them). Each one is more conve-

nient than the other according to the purposes. First, the optical Pauli matrices in

11



the {|H〉 , |V 〉} basis are defined as

σ̂x = |H〉〈H| − |V 〉〈V |

σ̂y = |H〉〈V |+ |V 〉〈H|

σ̂z = −i |H〉〈V |+ i |V 〉〈H| . (3.1)

With this definition, the XZX parametrization is given by:

Û(β, γ, δ) = exp

(
i(
δ + γ

2
)σ̂x

)
exp (−iβσ̂z) exp

(
i(
δ − γ

2
)σ̂x

)
=

(
eiδ cos β −eiγ sin β

e−iγ sin β e−iδ cos β

)
. (3.2)

Such parametrization easily exhibits Pancharatnam’s phase. Indeed, taking as initial

state |i〉 = |H〉 the final state will be |f〉 = Û(β, γ, δ) |H〉. Then,

ΦP = arg 〈i|f〉

= arg 〈H| Û(β, γ, δ) |H〉

= arg
(
eiδ cos β

)
= δ + arg (cos β) , (3.3)

therefore

ΦP =

{
δ , if cos β ≥ 0

δ + π , if cos β < 0.
(3.4)

We write, more simply, ΦP = δ (modulo π) (experimentally, we measure ΦP modulo

π).

On the other hand, the ZXZ form is given by

Û(ξ, η, ζ) = exp

(
−iξ

2
σ̂z

)
exp

(
i
η

2
σ̂x

)
exp

(
−iζ

2
σ̂z

)
. (3.5)

This parametrization is useful for the optical implementation of Û . This is so because

any Û ∈ SU(2) can be built with three retarders [10], two quarter-wave plates

(QWP) and one half-wave plate (HWP). θ1,θ2,θ3 are the arguments of the first,

second and third retarder, respectively. We have:

Q̂(θ3)Ĥ(θ2)Q̂(θ1) = exp (−i(θ3 + 3π/4)σ̂z)

× exp (i(θ1 − 2θ2 + θ3)σ̂x) exp (i(θ1 − π/4)σ̂z) , (3.6)
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where Q̂ and Ĥ are QWP and HWP respectively.

After a comparison between Eqs. (3.5) and (3.6), it is clear how to experimentally

implement the ZXZ form:

Û(ξ, η, ζ) = Q̂

(
−3π + 2ξ

4

)
Ĥ

(
ξ − η − ζ − π

4

)
Q̂

(
π − 2ζ

4

)
, (3.7)

where the argument of a retarder is the angle between the fast axis of the wave plate

and the horizontal direction.

3.2 Interferometric Calculations

Wagh and Rakhecha proposed experimental methods to measure Pancharatnam’s

phase, based on interferometry and polarimetry. In this section we will apply the

interferometric one [11] to our case.

In Eq. 2.6 we stated that Pancharatnam’s phase may be obtained from general

interferometric configurations. Using the XZX and ZXZ representations in our

description we obtain for the intensity:

I =

∣∣∣∣ 1√
2

(
eiφ |H〉+ Û(β, γ, δ) |H〉

)∣∣∣∣2
∝ 1 + cos (β) cos (φ− δ) , (3.8)

for the XZX case, and

I =

∣∣∣∣ 1√
2

(
eiφ |H〉+ Û(ξ, η, ζ) |H〉

)∣∣∣∣2
= 1 + cos

(η
2

)
cos

(
ξ + ζ

2

)
cos (φ)

+ sin
(η

2

)
cos

(
ξ − ζ

2

)
sin (φ) , (3.9)

for the ZXZ case.

The parameters of one representation can be expressed in terms of the other. On

the one hand we have δ, which turns out to be equal to ΦP (modulo π), on the other

hand we have ξ, η and ζ, which are suitable for the experimental implementation.

These parameters are related by:

tan(δ) = tan
(η

2

) cos
(
ξ−ζ

2

)
cos
(
ξ+ζ

2

) . (3.10)
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Furthermore, in our experiments measurements of visibility were also performed.

Visibility is defined as:

v ≡ Imax − Imin
Imax + Imin

. (3.11)

Although from using Eq. (3.8) in Eq. (3.11) we see that the visibility v = cos β does

not depend on Pancharatnam’s phase when working with pure states. However, this

type of measurements may be useful in experiments with mixed states, in which one

extracts from the visibility some information about quantum phases. In terms of

the parameters of the ZXZ representation the square of the visibility is given by:

v2(ξ, η, ζ) =
1

2
[1 + cos ξ cos ζ − cos η sin ξ sin ζ] . (3.12)

Nevertheless, for the experimental implementation it is useful to have Eq. (3.11)

written in terms of the angles of the wave plates:

v2 (θ1, θ2, θ3) =
1

2
[1 + cos

(
3π + 4θ3

2

)
cos

(
π − 4θ1

2

)
− cos (2θ1 − 4θ2 + 2θ3) sin

(
3π + 4θ3

2

)
sin

(
π − 4θ1

2

)
](3.13)

Eqs. (3.8) and (3.9) show the expected output intensity for general interferomet-

ric setups. Let us now calculate such expressions specifically for our Mach-Zehnder

interferometer, taking into account the contributions of each part of the setup. The

Hilbert space is the product space spanned by {|H〉 , |V 〉} corresponding to the po-

larization degree of freedom and {|X〉 , |Y 〉}, corresponding to the spatial degrees of

freedom, i.e., the two different paths a photon can follow inside the interferometer.

Our interferometric setup is shown in Fig. (3.1). It contains some details that

will be explained later on; but let us say now that it mainly consists of a laser beam

passing through two beam splitters (BS) and two mirrors (M), and that there is a

phase shift in one arm. The operators that represent these elements are [12]:

ÛBS = 1P ⊗
1√
2

(|X〉 〈X|+ |Y 〉 〈Y |+ i |X〉 〈Y |+ i |Y 〉 〈X|) , (3.14)

ÛM = 1P ⊗ [−i (|X〉 〈Y |+ |Y 〉 〈X|)] , (3.15)

where 1P is the identity element of the polarization space. At this point, it is

important to note that Eqs. (3.14) and (3.15) are valid whether a quantum or
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Figure 3.1: Interferometric arrangement for testing Pancharatnam’s phase ΦP . Light
from a He-Ne laser (L) passes a polarizer (P )and enters a beam expander
(E), after which half of the beam goes through one polarizer (P1) and the
other half goes through a second polarizer (P2), orthogonally oriented with
respect to the first. The two collinear beams feed the same Mach-Zehnder in-
terferometer (BS: beam-splitter, M : mirror), in one of whose arms an array
of three retarders has been mounted (Q:quarter-wave plate, H: half-wave
plate), so as to realize any desired SU(2) transformation. This transforma-
tion introduces a Pancharatnam phase ΦP = δ on one half of the beam and
an opposite phase ΦP = −δ on the other, perpendicularly polarized half, so
that the relative phase of the two halves equals 2δ. From the relative shift
between the upper and lower halves of the interferogram that is captured by
a CCD camera set at the output of the array one can determine ΦP . Any
instability of the array affects both halves of the interferogram in the same
way, so that the relative shift 2δ is insensitive to instabilities.

classical bit is involved [13]. A phase shift in one or in the other arm is given by:

ÛX(φ) = 1P ⊗
(
eiφ |X〉 〈X|+ |Y 〉 〈Y |

)
, (3.16)

ÛY (φ) = 1P ⊗
(
|X〉 〈X|+ eiφ |Y 〉 〈Y |

)
, (3.17)

and if we place a transformation Û ∈ SU(2), given by an array of three retarders,

on arm X or Y of the interferometer, their representations are given by:

ÛX
P = U ⊗ |X〉 〈X|+ 1P ⊗ |Y 〉 〈Y | , (3.18)

ÛY
P = 1P ⊗ |X〉 〈X|+ U ⊗ |Y 〉 〈Y | . (3.19)
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Now, the total action of the Mach-Zehnder in Fig. (3.1) is given by:

Ûtot = ÛBSÛM Ûx (φ) ÛY
P ÛBS. (3.20)

Therefore, if we prepare a horizontally polarized beam in the X path, the projector

ρ̂0 = |HX〉〈HX| will describe the system initially (|HX〉 ≡ |H〉 ⊗ |V 〉). After the

interferometer, the polarization-path state is given by ρ̂f = Ûtotρ̂0Û
†
tot and if we put

a detector in, say, the X-output, the system collapses to ρ̂pol = 〈X|ρ̂f |X〉. Since no

polarizer is placed, the final intensity is given by:

I = Trpol [ρ̂pol] , (3.21)

where the trace is taken over the polarization degree of freedom. In a more explicit

form:

I = Trpol [ρ̂pol]

= Trpol [〈X|ρ̂f |X〉]

= Trpol

[
〈X|Ûtotρ̂0Û

†
tot|X〉

]
= 〈H| 〈X|Ûtotρ̂0Û

†
tot|H〉 |X〉+ 〈V | 〈X|Ûtotρ̂0Û

†
tot|V 〉 |X〉

= 〈HX| Ûtot |HX〉〈HX| Û †tot |HX〉+ 〈V X| Ûtot |HX〉〈HX| Û †tot |V X〉

=
∣∣∣〈HX|Ûtot|HX〉∣∣∣2 +

∣∣∣〈V X|Ûtot|HX〉∣∣∣2 . (3.22)

A straightforward calculation leads to :

IH =
1

2
[1 + cos

(η
2

)
cos

(
ξ + ζ

2

)
cos (φ)

+ sin
(η

2

)
cos

(
ξ − ζ

2

)
sin (φ)], (3.23)

using Û given in Eq. (3.5), or alternatively:

IH =
1

2
[1 + cos (β) cos (φ− δ)] , (3.24)

with Û given in Eq. (3.2).

In Eqs. (3.23) and (3.24) the intensity is written IH to indicate that the beam

was initially horizontally polarized. At this point we may assume that we have

the means to perform measurements of the accumulated phase ΦP = δ when an

initial state |i〉 = |H〉 evolves to |f〉 = Û(β, γ, δ) |H〉. This can be made, e.g., by

using a CCD camera as detector and taking a snapshot of the interference pat-
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tern when Û(β, γ, δ) = 1P . This will give us an interferometric pattern IH =
1
2

[1 + cos (β) cos (φ)]. Then, we can set any other Û(β, γ, δ) 6= 1P and this time we

get a second interferometric pattern IH = 1
2

[1 + cos (β) cos (φ− δ)]. By image pro-

cessing we can obtain the shift of the second pattern with respect to the first (ideally

shown in Fig. (3.2)), and having this, a measurement of the total accumulated phase

has been done.

-5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

Normalized Intensity

Figure 3.2: Idealized interference profiles after image processing (δ = 11π/18): First
interferogram with Û(β, γ, δ) = 1P (straight blue line) and second interfer-
ogram with Û(β, γ, δ) 6= 1P (dashed red line).

What was stated in the last paragraph may look to work fine. At least it does

in theory. Nevertheless, it has some experimental hindrances. The main problem

with this method is the instability of the interferometer itself. Even tiny vibrations

of any component will cause an appreciable drift on the interference patterns, there-

fore any shift measured will not be due to the evolution of the state alone but to

mechanical and thermal disturbances as well. One could counteract this problem

by different means. To name some: thermal and mechanical isolation of the entire

setup, implementation of a feedback system, or the usage of a Sagnac instead of

a Mach-Zehnder interferometer. However, all these methods either complicate the

setup or make the measurement process awkward.

Now, some complex problems may have simple solutions. If we could think of a

way to make this random extra shift affect both images equally, our problem would

be solved, though, without using what was mentioned in the last paragraph, this

is impossible for time-separated images. Then, what we need to do is to take two

images at the same time, in such a way that we can extract the phase information
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from these images.

Now, to finish overcoming our experimental hindrance we may recall that the

expression

IH =
1

2
[1 + cos (β) cos (φ− δ)] (3.25)

arises from considering a horizontally polarized initial state. We may now ask for

the intensity when we take a vertically polarized state. This is given by:

IV =
1

2
[1 + cos (β) cos (φ+ δ)] . (3.26)

After a comparison of Eq. (3.25) and (3.26) the solution to our problem is pretty

obvious: we should place the two orthogonal polarizations in the same beam (say

upper and lower halves orthogonally polarized) having IH and IV in the same picture

as they will be shifted 2δ one with respect to the other during all the measuring

process because all types of perturbations will affect the two halves of the beam

equally. Our measurements are therefore insensitive to instabilities and all we need

to do is to apply an accurate image processing method to obtain ΦP = δ (modulo π).

Such a method should give an accuracy similar to the one reached in polarimetry.

3.3 Polarimetric Calculations

The polarimetric approach to measure Pancharatnam’s phase was first proposed by

Wagh and Rakhecha [14] for pure states. Others have also proposed similar methods

when the state is no longer pure [15]. The polarimetric method is analogous to the

interferometric method in the sense that it can be understood as based on virtual

interference of two states. Below we describe what we mean by this.

First of all, in polarimetry all quantities that we directly measure are intensities.

We may now ask for the intensity of the simplest polarimetric array. This is an

arrangement in which a laser beam passes through the following steps:

Initial polarizer: it sets an initial linear state.

Unitary transformation: Û = Û(β, γ, δ) =

(
eiδ cos β −eiγ sin β

e−iγ sin β e−iδ cos β

)
.

Final polarizer: it projects and measures the final intensity.

Now, considering the polarizers to be aligned along the horizontal/vertical direction,
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such setup will result in one of the following intensities:

IH,H =
∣∣∣〈H|Û |H〉∣∣∣2 = cos2 β. (3.27)

IV,H =
∣∣∣〈V |Û |H〉∣∣∣2 = sin2 β. (3.28)

IH,V =
∣∣∣〈H|Û |V 〉∣∣∣2 = sin2 β. (3.29)

IV,V =
∣∣∣〈H|Û |H〉∣∣∣2 = cos2 β. (3.30)

As we can see, none of the last equations gives us information of ΦP = δ, neither will

do the usage of any other linear input/output polarizers. Therefore, the question

arises: What about considering an elliptically-polarized initial state and an elliptical

projector as well? In fact, Wagh and Rakhecha considered a left-circular state, which

can be attained by a π/2 rotation of the |H〉 state around the y axis of the Poincaré

sphere, this is:

|L〉 ≡ exp
(
−iπ

4
σ̂y

)
|H〉

=
1√
2

(|H〉 − i |V 〉) . (3.31)

To this state one can apply a phase shift to obtain the elliptical state:

|E〉 ≡ Ûshift(φ)|L〉

= exp

(
−iφ

2
σ̂x

)
|L〉

=
1√
2

(
e−iφ/2 |H〉 − ieiφ/2 |V 〉

)
=

e−iφ/2√
2

(
|H〉 − ieiφ |V 〉

)
. (3.32)

At this point it has been generated a phase shift φ between the components of |E〉,
just like the one between the states in each arm of the interferometer generated by

their length difference. Finally, we let the evolution operator U act on |E〉:

Û |E〉 = Û Ûshift(φ)|L〉

=
e−iφ/2√

2

(
Û |H〉 − ieiφÛ |V 〉

)
. (3.33)

Up to an irrelevant global phase factor, the state in Eq. (3.33) looks pretty much

like the one in (3.8). Now it is clear the analogy to the interferometric technique:

While in the interferometric approach we make the states eiφ |H〉 and Û(β, γ, δ)|H〉
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interfere, in the polarimetric approach the components of 1√
2

(
Û |H〉 − ieiφÛ |V 〉

)
are the ones that virtually interfere.

The intensity now arises from squaring the projection of Û |E〉 on |E〉:

I =
∣∣∣〈E|Û |E〉∣∣∣2 . (3.34)

A straightforward calculation taking Û as given by Eq. (3.2) leads us to:

I = cos2 (β) cos2 (δ) + sin2 (β) cos2 (γ + φ) . (3.35)

It is from this latest equation that we can extract the Pancharatnam’s phase. Indeed,

we notice from Eq. (3.35) that the minimal and maximal values of I with respect

to φ are given by:

Imin = cos2(β) cos2(δ), (3.36)

Imax = cos2(β) cos2(δ) + sin2(β). (3.37)

Therefore, solving for cos2(δ) in Eqs. (3.36)-(3.37) we can measure ΦP = δ (modulo

π) by:

cos2(δ) =
Imin

1− Imax + Imin

. (3.38)

In order to obtain I as given by Eq. (3.35) the following transformations are

involved:

I =
∣∣∣〈H| Ûtot |H〉∣∣∣2 ,

=

∣∣∣∣〈H| exp
(
i
π

4
σ̂y

)
exp

(
i
φ

2
σ̂x

)
U exp

(
−iφ

2
σ̂x

)
exp

(
−iπ

4
σ̂y

)
|H〉
∣∣∣∣2 .(3.39)

Now we want to find the array of retarders that generates the operators mentioned

above. For this, we may recall that:

Q̂(α) = exp
(
−iπ

4
(cos(2α)σ̂x + sin(2α)σ̂y)

)
, (3.40)

Ĥ(α) = exp
(
−iπ

2
(cos(2α)σ̂x + sin(2α)σ̂y)

)
. (3.41)
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From Eqs. (3.40) and (3.41) we find:

exp
(
−iπ

4
σ̂y

)
= Q̂

(π
4

)
, (3.42)

exp

(
−iφ

2
σ̂x

)
= Q̂

(π
4

)
Ĥ

(
φ− π

4

)
Q̂
(π

4

)
, (3.43)

exp

(
+i
φ

2
σ̂x

)
= Q̂

(
−π
4

)
Ĥ

(
φ+ π

4

)
Q̂

(
−π
4

)
. (3.44)

Using Q̂2
(
π
4

)
= Ĥ

(
π
4

)
we obtain:

Ûtot = Ĥ
(
−π

4

)
Ĥ

(
φ+ π

4

)
Q̂
(
−π

4

)
ÛQ̂

(π
4

)
Ĥ

(
φ− π

4

)
Ĥ
(π

4

)
. (3.45)

It was already discussed in section (3.2) that the ZXZ form is suitable for the optical

implementation of Û . This becomes explicit in Eq. (3.7). Now, using Û = Q̂ĤQ̂ in

Eq. (3.45) we end up with a total of nine wave plates to implement Ûtot.

Since we observe that four parameters determine the angles of nine wave plates

we expect this array to be reducible. Indeed, we can use the following relations:

Q̂(α)Ĥ(β) = Ĥ(β)Q̂(2β − α), (3.46)

Q̂(α)Ĥ(β)Ĥ(γ) = Q̂
(
α +

π

2

)
Ĥ
(
α− β + γ − π

2

)
, (3.47)

to find the reduced array of five retarders that implements Ûtot:

Ûtot = Q̂

(
−3π

4
− φ

2

)
Q̂

(
−5π + 2ξ

4
− φ

2

)
Q̂

(
−9π + 2 (ξ + η)

4
− φ

2

)
×Ĥ

(
−7π + ξ + η − ζ

4
− φ

2

)
Q̂

(
−π

4
− φ

2

)
, (3.48)

where we observe that the array has been found in such a way that all the retarders

have a common term φ/2, so one could use some mechanical apparatus to rotate

the entire setup of five wave plates simultaneously, spanning all the values of I as a

function of φ. Such an array is shown schematically in Fig. (3.3). The intensity in

terms of ξ, η, ζ and φ is given by:

I =
∣∣∣z 〈+| Ûtot |+〉z∣∣∣2

= cos2
(η

2

)
cos2

(
ξ + ζ

2

)
+

[
cos
(η

2

)
sin

(
ξ + ζ

2

)
cos (φ) + sin

(η
2

)
sin

(
ξ − ζ

2

)
sin (φ)

]2

. (3.49)
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Figure 3.3: Polarimetric arrangement for testing Pancharatnam’s phase ΦP . With an
array of five retarders (Q:quarter-wave plate, H: half-wave plate) and two
polarizers (P ) a relative phase φ between two polarization components |H〉
and |V 〉 can be introduced, on which any desired SU(2) transformation can
be applied. The five retarders are simultaneously rotated, thereby varying φ,
and the intensity I(φ) is recorded. From the maximum and minimum values
of I one can determine ΦP , according to cos2 (ΦP ) = Imin/(1− Imax + Imin).

With this array of five wave plates we can already extract the Pancharatnam’s phase

from Eq. (3.38) taking I as given by Eq. (3.49). On the other hand, for simplicity

we may consider first some particular cases of Ûtot, aiming to reduce the number of

retarders to simplify the experimental work.

In our first reduced array we set ζ = 2π. In such a case Eq. (3.48) reduces to:

Û ζ=2π
tot = Q̂ (φ) Q̂

(
−ξ

2
+ φ

)
Ĥ

(
η − ξ

4
+ φ

)
, (3.50)

where we have redefined (−3π − 2φ)/4→ φ, and from Eq. (3.38):

cos2(δ) = cos2(η/2), (3.51)

for all ξ. Therefore, the Pancharatnam’s phase (modulo π) turns out to be:

ΦP = η/2. (3.52)

If we instead fix ξ = −π, Ûtot simplifies to:

Û ξ=−π
tot = Q̂

(
3π + 2η − 2φ

4

)
Ĥ

(
−4π + ζ + η − 2φ

4

)
Q̂

(
−π − 2φ

4

)
. (3.53)

From Eq. (3.38) we find that:

cos2(δ) = cos2(η/2), (3.54)
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still holds valid, this time for all ζ, and again:

ΦP = η/2. (3.55)

The intensity in this particular case is given by:

I = cos2

(
ζ

2

)
cos2

(
η − 2φ

2

)
+ sin2

(
ζ

2

)
cos2

(η
2

)
. (3.56)

From Eq. (3.56) we observe that η = 0, ζ = π will result in a constant value for I,

which is useful for adjusting the setup1.

The experimental measurements of the Pancharatnam’s phase ΦP and the visi-

bility v will be discussed in the following section.

3.4 Experimental Procedures

We have performed measurements of the Pancharatnam’s phase by applying the

polarimetric and interferometric methods discussed in the previous section. In both

cases we have used a 30 mW cw He-Ne laser (632.8 nm) as the light source.

3.4.1 Interferometric Measurements

We used two interferometric arrangements. One of them was a Mach-Zehnder in-

terferometer and the other was a Sagnac interferometer. We started by mounting

both interferometers in the standard way, but adding an array of three retarders on

one arm for implementing any desired U ∈ SU(2).

Usually, phase shifts φ, as appearing in Eq. (3.8), originated from moving one

mirror with, e.g., a low-voltage piezotransducer. One can then record the interfer-

ence pattern by sensing the light intensity with a photodiode set at one of the output

ports of the exiting beam splitter. Alternatively, one can capture the whole interfer-

ence pattern with a charge-coupled device (CCD) camera. The Mach-Zehnder inter-

ferometer is easier to mount in comparison to the Sagnac interferometer. However,

it has the disadvantage of being more unstable against environmental disturbances,

thus requiring the application of some stabilizing technique such as, e.g., a feedback

system. In contrast, the Sagnac interferometer is very stable with respect to me-

chanical and thermal disturbances. Nevertheless, mounting a Sagnac interferometer

was not very useful for our purposes due to some geometrical reasons2.

1One has an idea of how well aligned the setup is depending on how constant I results when
varying φ.

2In the interferometric setup we need U to act on one of the arms of the interferometer. On the
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By using one or the other method, one can obtain two interferograms – one with

U = 1P and the other with U 6= 1P–. In our case, capturing the whole interference

pattern with a CCD camera – instead of sensing it with a photodiode – proved to be

the most convenient approach with both arrangements, Mach-Zehnder and Sagnac.

When working with the Mach-Zehnder array, we first implemented a feedback

system in order to stabilize the reference pattern. One of the two paths followed

by the laser beam was used for feedback. The feedback system should allow us

to compensate the jitter and thermal drifts of the fringe patterns that preclude a

proper measurement of the phase shift. The feedback system requires an electronic

signal, after proportional-integral amplification, to be fed into a piezotransducer

within a servoloop, so as to stabilize the interferometer, thereby locking the fringe

pattern. Although we succeeded in locking the fringe patter, the geometry of our

array severely limited the parameter range we could explore. We thus turned to a

different option, i.e., the one based on Eqs. (3.25) and (3.26). It required polar-

izing one half of the laser beam in one direction and the other half in a direction

perpendicular to the first one.

In order to exhibit the feasibility of our interferometric method, we performed

experiments with both Mach-Zehnder and Sagnac arrays. In both cases we obtained

similar preliminary results. However, the systematic recording of our results corre-

sponds to the Mach-Zehnder array shown in Fig. (3.1), as it was the simpler one to

mount and manipulate.

As shown in Fig. (3.1), the initially polarized laser beam was expanded, so that

its upper half passed through one polarizer P1 and its lower half through a second po-

larizer P2 orthogonally oriented with respect to the first. Each run started by setting

the retarders so as to afford the identity transformation: Q(π/4)H(−π/4)Q(π/4) =

1P , the corresponding interferogram was captured with a CCD camera (1/4′′ Sony

CCD, video format of 640× 480 pixels, frame rate adjusted to 30 fps) and digitized

with an IBM -compatible computer.

The upper and lower halves of this interferogram showed a small relative shift

stemming from surface irregularities and tiny misalignments. The initial interfer-

ogram served to gauge all the successive ones that correspond to transformations

U(ξ, η, ζ) 6= 1P . Each interferogram was evaluated with the help of an algorithm

that works as follows. First, by optical inspection of the whole set of interferograms

-corresponding to a given U(ξ, η, ζ)- one selects (by pixel numbers) a common region

R0 of the images the algorithm should work with (see Fig.(3.4)).

Having this region as its input the algorithm performs a column average of each

other hand, in the Sagnac interferometer both states trace the same path. Therefore they cross
the same wave plates that implement U .
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R0

Figure 3.4: Pancharatnam’s phase can be extracted from the relative fringe-shift be-
tween the upper and lower parts of the interferogram. The relative shift
equals twice the Pancharatnam’s phase. The left panels show the result of
performing a column average of the fringes plus the application of a Savitzky-
Golay filter to get rid of noise features. The column average is performed
after selecting the evaluation area R0 on the interferogram, as illustrated
on the right panel. The reported shifts are mean values obtained from four
different selections, R0, . . . , R3, of the evaluation area.

half of the interferogram – thereby obtaining the mean profile of the fringes – and

the output is then submitted to a low-pass filter (Savitzky-Golay filter) to get rid

of noisy features. The result is a pair of curves like those shown in Fig. (3.4). The

algorithm then searches for relative minima in each of the two curves and compares

their locations so as to output the relative shifts between the minima of the curves.

After averaging these relative shifts the algorithm produces its final output for each

pair of curves. We repeated this procedure for a series of regions (fixed by pixel

numbers): R0 . . . R3, so that we could estimate the uncertainty of our experimental

values.

No attempt was made to automate the selection of the working regions. Vi-

sual inspection proved to be effective enough for our present purposes. Some series

of interferograms showed limited regions that were clearly inappropriate for being

submitted to evaluation, as they reflected inhomogeneities and other features that
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Figure 3.5: Experimental results from the interferometric measurement of Pancharat-
nam’s phase. We plot cos2(ΦP ) as a function of ξ and η, with ζ being
held fixed to zero. In the upper panels we plot the single curves that are
highlighted on the surface shown on the lower panel. Dots correspond to
experimental values, some of which fall below and some above the surface.

stemmed from surface irregularities of the optical components. We applied the com-

plete procedure to a whole set of interferograms corresponding to different choices

of U(ξ, η, ζ). Our results are shown in Fig. (3.5). As can be seen, our experimental

results are in very good agreement with theoretical predictions.

A second, independent, algorithm was also used to check the above results. This

algorithm was developed as a variant of some commonly used procedures in im-

age processing. Like in the previous approach, the algorithm first constructs the

mean profiles of the fringes and submits them to a low-pass filter. But now, instead

of searching for relative minima, the algorithm does the following. First, it de-

termines the dominant spatial carrier frequency k0 by Fourier transforming curves

like those shown in Fig. (3.4). Let us denote these curves by îup(x) and îlow(x),

corresponding, respectively, to the upper and lower half of the interferogram. The

Fourier transforms are denoted by iup(k) and ilow(k). The goal is to determine

the relative shift ∆r = 2δ between îup(x) and îlow(x). It can be shown [16] that

∆r = ∆up−∆low ≈ Im[log(iup(k0))]− Im[log(ilow(k0))], up to a constant phase-offset

that is the same for all the interferograms pertaining to a given U(ξ, η, ζ).

The above expression for ∆r comes from observing that both iup(k0) and ilow(k0)

have the structure i(k0) = a(k0) + b(0) exp(i∆) + b∗(2k0) exp(−i∆), so that i(k0) ≈
b(0) exp(i∆) whenever |b(0)| � |b∗(2k0)|, |a(k0)|. Thus, the accuracy of the approx-
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imation for ∆r depends on how well one can separate the Fourier components of

i(k0). In the present case we applied this procedure only for the sake of checking our

results. An attempt to systematize this method would be worth only if one’s goals

require an automated phase-retrieval method. In our case, as we were interested in

giving a proof of principle only, the method of choice was not a fully automated one,

but a partially manual method which was envisioned to demonstrate the feasibility

of our approach.

Another series of tests was devoted to measuring the visibility v as given in Eq.

(3.13). The quantity v(θ1, θ2, θ3) was submitted to test by fixing two of its three

arguments. Our results are shown in Fig. (3.6). The left panels correspond to

v(θ1, θ2, θ3) as a function of θ2 and θ3, that is, the surface obtained by fixing θ1 as

indicated. In the right panels we compare the theoretical predictions against our

measurements of v(θ1, θ2, θ3), whereby two of the three arguments have been held

fixed. The interferograms were evaluated following a procedure similar to the one

already explained. However, in this case it was not the full cross section of the

beam that was submitted to evaluation, but a manually chosen region of the images

corresponding to a part of the input beam having almost uniform intensity. This

had to be so, because Eq. (3.13) presupposes a uniform profile of the input beam.

In order to test the visibility of the whole cross section of the beam, Eq. (3.13)

should be modulated with a Gaussian envelope. Such a refinement was however

unnecessary for our scopes. In any case, the experimental value of the visibility,

v ≡ (Imax − Imin)/(Imax + Imin), was obtained by choosing in each interferogram

several maxima and minima, so as to assess the accuracy of our measurements.

Thus, the error bars in the figures take proper account of the tiny variations in the

chosen region of the input-beam profile. As can be seen, the experimental values

closely fit the theoretical predictions.

3.4.2 Polarimetric Measurements

The polarimetric arrangement shown in Fig. (3.3) could have been designed so that

the five retarders (see Eq. (3.48)) could be simultaneously rotated by the same

amount. If one aims at systematically measuring Pancharatnam’s phase with the

polarimetric method, this would require having a custom-made apparatus on which

one can mount the five plates with any desired initial orientation and then submit

the whole assembly to rotation.

As our aim was to simply exhibit the versatility of the method and to compare

its accuracy with that of the interferometric method, we mounted a simple array

of five independent retarders so that each one of them could be manually rotated.
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Figure 3.6: Interferometric measurement of the visibility v(θ1, θ2, θ3). The left panels
show the surfaces obtained by fixing one of the three angles, θ1, as indicated.
The right panels show the experimental results that correspond to the curves
highlighted on the surfaces. The upper curve is obtained by fixing θ3 besides
θ1, the lower curve by fixing θ2 and θ1. In the upper curve all experimental
values fall below the predicted (maximal) visibility of 1. This is because Imin
is never zero, as required to obtain v = 1. By subtracting the nonzero average
of Imin the experimental points would fall above and below the theoretical
curve, as it occurs for the lower curve, which corresponds to v < 1.

With such an approach it takes some hours of painstaking manipulation to record

all necessary data, whenever the experiment is performed with the full array of five

retarders. For this reason, we initially restricted our tests to three retarders as

already mentioned. This could be achieved by lowering the degrees of freedom, i.e.,

by fixing one of the three Euler angles, as explained in the previous section (see

Eqs. (3.50), (3.53)). Having made measurements with three plates we performed

an additional run of measurements with the full arrangement of five retarders.

Our results are shown in Fig. (3.7). As expected (retarders and polarizers could

be oriented to within 10), the experimental values are within 3-6% in accordance with

the theoretical predictions, depending on the number of retarders being employed.
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Figure 3.7: Experimental results from a polarimetric measurement of Pancharatnam’s
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corresponds to the full array of five retarders set in the form QQQHQ.
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Chapter 4

Geometric Phase in Photonics

The Pancharatnam’s phase associated to any evolution accounts for all the con-

tributions to the accumulated phase, including dynamical factors such as rates of

evolution. Geometric phases, on the other hand, are completly determined by ge-

ometric properties. For instance, the geometric phase acquired in any closed curve

on the Poincaré sphere is proportional to the solid angle enclosed by such a curve.

Several works have been devoted to geometric phases. Some are theoretical

and aim at a better understanding of this phenomenon. To name a few: geometric

phases in orthogonal states [17], in mixed states [18], quantum computation based on

geometric phases [19], noise on geometric logic gates [20] and geometric manipulation

of trapped ions [21]. Experimental work refers to: observation of geometric phases in

classical states of light [22], in mixed states [23], in nuclear magnetic resonance [24],

or experimental demostrations of geometric quantum gates [25], [26]. In this chapter

we discuss the manipulation of geometric phases that appear when the qubit is

carried by a polarized photon.

4.1 General Considerations

After measuring Pancharatnam phase our work focussed on geometric phases in

photonics, where similar techniques to those explained in Chapter 3 were used and

some others were added. In this chapter we will show how to make a polarization

state of light trace an arbitrary path on the Poincaré sphere, as shown schematically

in Fig. 4.1, in such a way that the dynamical component of the Pancharatnam’s

phase gained during each step of the evolution vanishes, leaving an accumulated

phase that is purely geometric.

Let us now turn to the mathematical description of our problem. Following

Section 2.3, given a smooth curve C0 described by |ψ(s)〉, s ∈ [s1, s2] in the state
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Figure 4.1: Arbitrary paths over the Poincaré sphere. Curves C0 and C̃0, given by |ψ(s)〉
and eiα(s)|ψ(s)〉 respectively, project both onto the same C0 in the ray space.

space, which projects on another curve C0 that is described by |ψ(s)〉〈ψ(s)| in the

ray space, the geometric phase Φg acquired by |ψ(s)〉 is:

Φg(C0) = ΦP (C0)− Φdyn(C0)

= arg 〈ψ(s1)|ψ(s2)〉 − Im

∫ s2

s1

arg〈ψ(s)|ψ̇(s)〉 ds. (4.1)

We may now recall that Φg is a gauge U(1) invariant, i.e., it remains unchanged
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under |ψ(s)〉 → |ψ̃(s)〉 = eiα(s)|ψ(s)〉:

Φ̃g = Φ̃P (C̃0)− Φ̃dyn(C̃0)

= arg〈ψ̃(s1)|ψ̃(s2)〉 − Im

∫ s2

s1

〈ψ̃(s)| ˙̃ψ(s)〉 ds

= arg 〈ψ(s1)|ψ(s2)〉+ (α(s2)− α(s1))

− Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds− (α(s2)− α(s1))

= arg〈ψ(s1)|ψ(s2)〉 − Im

∫ s2

s1

〈ψ(s)|ψ̇(s)〉 ds

= ΦP (C0)− Φdyn(C0)

= Φg, (4.2)

This fact can be exploited to make the dynamical phase vanish at each point of

the evolution. We can achieve this by an appropriate choice of the gauge. That is,

Φdyn = 0 is fulfilled when α(s) is chosen such that:

Im〈ψ(s)|ψ̇(s)〉+ α̇(s) = 0. (4.3)

In chapter 3 we chose to use two different representations to describe the evo-

lution operators, one of which allowed us to easily handle the experimental imple-

mentation while the other had one of its parameters equal to ΦP . Instead of that,

from now on we will make our calculations using another parametrization, this time

suitable for identifying the specific path followed by the state on the Poincaré sphere

during its evolution. Such parametrization will be determined by the axis ~n(θn, φn)

and the angle s of rotation of the equivalent rotation operation. This is:

Ûn(s) = exp
(
−is

2
~σ · ~n(θn, φn)

)
, (4.4)

where ~n(θn, φn) = (sin θn cosφn, sin θn sinφn, cos θn) and θn, φn are the azimuthal

and polar angles of ~n on the Poincaré sphere, respectively.

As mentioned before, our aim is to follow completely arbitrary paths on ray

space. This is achieved by starting at an elliptically polarized state (from now on

we replace s1 → 0 and s2 → sf ):

ρ(0) = |ψ(0)〉〈ψ(0)| = 1

2
(1 + ~m0 · ~σ) , (4.5)

where 1 is the identity operator and ~m0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) repre-

sents ρ(0) on the Poincaré sphere.
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Then, any curve C0 given by |ψ(s)〉〈ψ(s)|, s ∈ [0, sf ] can be approximated by

submitting |ψ(0)〉 to a series of rotations Ûnk
(∆sk), k = 1, ...N one after the other,

so that in the limit N → ∞,∆sk ≈ length[C0]/N → ds the collection of geodesic

arcs approximates C0.

Even though what we have said before may serve to generate any curve C0 ⊂
R0, for practical reasons and for the experimental implementation we will do our

calculations related only to curves that arise from the rotation of an initial state

around one single direction ~n, which combined with the gauge gives us the most

general |ψ(s)〉.1 We will use:

|ψ(s)〉 = eiα(s)Ûn(s)|ψ(0)〉. (4.6)

Now, in order to make Φdyn = 0 locally we need to ensure that 〈ψ(s)|ψ̇(s)〉 = 0,

with |ψ(s)〉 given by Eq. 4.6. This leads to:

α̇(s) + Im〈ψ(0)|Û †n(s)
˙̂
Un(s)|ψ(0)〉 = 0. (4.7)

Therefore, using Eq. (4.4), given an initial state |ψ(0)〉 and an axis of rotation ~n,

the gauge α(s) should be chosen such that:

α̇(s) =
1

2
〈ψ(0)|~σ · ~n|ψ(0)〉, (4.8)

and taking α(0) = 0 we have

α(s) =
s

2
〈ψ(0)|~σ · ~n|ψ(0)〉. (4.9)

4.2 Interferometric Calculations

In this section we discuss and calculate the particular intensity I from which we can

extract the geometric phase Φg(s) acquired along ρ(s) = Ûn(s)|ψ(0)〉〈ψ(0)|Û †n(s)

with a similar method to the one exposed in Section 3.2.

In general, the initial state is elliptically polarized2 |ψ(0)〉 = |E〉. Then Φg(s)

can be extracted from the intensity that arises from making eiα(s)Ûn(s)|E〉 and |E〉
1|ψ̃(s)〉 is not used anymore. Instead, we use |ψ(s)〉 and 〈ψ(s)|ψ̇(s)〉 = 0 will give us a relation

similar to Eq. 4.3
2From now on |E〉 represents an arbitrary elliptically polarized state.
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interfere with each other, as we see below:

I =
∣∣∣eiµ|E〉+ eiα(s)Ûn(s)|E〉

∣∣∣2
∝ 1 + | 〈E| Ûn(s) |E〉 | cos

(
µ− arg 〈E| eiα(s)Ûn(s) |E〉

)
, (4.10)

where the phase µ appears due to the optical path difference between the arms of

the interferometer used to get I. From Eq. (3.11) we find that the visibility is in

general:

v = | 〈E| Ûn(s) |E〉 |. (4.11)

Now, using Eq. (4.9) we see that Φdyn vanishes, Φp = Φg, then:

Φg = arg 〈E| eiα(s)Ûn(s) |E〉

= α(s) + arg 〈E| Ûn(s) |E〉

=
s

2
〈E|~σ · ~n|E〉+ arg 〈E| Ûn(s) |E〉 . (4.12)

Such an expression is useful if we work with states and operators. It helps to visualize

these states and rotations on the Poincaré sphere. Then, it is worth having a relation

that involves the vectors ~m0 and ~n. A straightforward calculation leads us to:

α(s) =
s

2
~m0 · ~n, (4.13)

arg〈E|Ûn(s)|E〉 = − arctan
(

tan
(s

2

)
~m0 · ~n

)
, (4.14)

and accordingly:

Φg =
s

2
~m0 · ~n− arctan

(
tan
(s

2

)
~m0 · ~n

)
, (4.15)

which is the geometric phase3 accumulated along the curve ~m(s) given by4:

~m(s) = cos(s)~m0 + (1− cos(s)) (~m0 · ~n)~n+ sin(s) (~n× ~m0) , (4.16)

Finally, using Eqs. (4.10), (4.11) and (4.12) I reads:

I ∝ 1 + v cos (µ− Φg) . (4.17)

Just like in the case of measuring the Pancharatnam’s phase, also here we want

3Naturally, Eq. (4.15) is valid as long as we are careful with the discontinuity of tan(s/2) and
ensure that Φg is a smooth function of s.

4Eqs. (4.13)-(4.15) hold true in general and are valid for both the interferometric and polari-
metric approaches.
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to avoid any sort of perturbation to the experimental setup and isolate our measure-

ments from external disturbances. We use the same strategy explained in Section

(3.2). We need to find a way to obtain another intensity pattern I⊥:

I⊥ ∝ 1 + v cos (µ+ Φg) , (4.18)

so that we can extract the geometric phase Φg by measuring the relative shift between

I and I⊥ being twice Φg.

Eq. (4.18) is obtained from letting e−iα(s)Ûn(s)|E⊥〉 and |E⊥〉 interfere, with

|E⊥〉 a state orthogonal to |E〉:

I⊥ =
∣∣∣eiµ|E⊥〉+ e−iα(s)Ûn(s)|E⊥〉

∣∣∣2
∝ 1 + | 〈E⊥| Ûn(s) |E⊥〉 | cos

(
µ− arg 〈E⊥| e−iα(s)Ûn(s) |E⊥〉

)
∝ 1 + | 〈E⊥| Ûn(s) |E⊥〉 | cos

(
µ−

(
−α(s) + arg 〈E⊥| Ûn(s) |E⊥〉

))
,

(4.19)

It can be shown that the following relations hold:

| 〈E⊥| Ûn(s) |E⊥〉 | = | 〈E| Ûn(s) |E〉 |, (4.20)

arg 〈E⊥| Ûn(s) |E⊥〉 = − arg 〈E| Ûn(s) |E〉 . (4.21)

Using such relations and Eqs. (4.11) and (4.12):

I⊥ ∝ 1 + | 〈E| Ûn(s) |E〉 | cos
(
µ+

(
α(s) + arg 〈E| Ûn(s) |E〉

))
. (4.22)

Finally, I⊥ reads:

I⊥ ∝ 1 + v cos(µ+ Φg). (4.23)

Now, let us focus on the implementation of the states and operators used to

obtain I and I⊥. To begin with, given an initial linear state, say |H〉, any elliptically-

polarized state can be obtained by submitting |H〉 to the action of a quarter-wave

plate followed by a half-wave plate. This will place the state on some plane on

the Poincaré sphere (shown schematically in Fig. (4.2)) parallel to the equator

(x− y plane). The QWP fixes θ0 as ~m0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) and φ0 is

controlled by the argument of the HWP, where ~m0 points towards the projection of

|E〉 on the Poincaré sphere. It can be shown that the arguments of the QWP and

HWP needed to generate the state |E〉 that projects onto |E〉〈E| = 1
2

(1 + ~m0.~σ)
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Figure 4.2: Any point on the Poincaré sphere can be reached by submitting a horizon-
tally polarized state (red point at ~m0 = (1, 0, 0)) to the action of a QWP
followed by a HWP: Ĥ(θh)Q̂(θq)|H〉. θh = 0, θq ∈ [−π/4, π/4] projects onto
the red curve and once fixed θq (blue point) the blue curve is reached by
varying θh (θq = π/9).

are given by:

|E〉 = Ĥ

(
−π

8
+
θ0 + φ0

4

)
Q̂

(
π

4
+
θ0

2

)
|H〉

≡ ÛEH |H〉. (4.24)

If we want to implement Ûn(s) three waveplates Q̂ĤQ̂ are enough since we

already gave a recipe to generate any Û ∈ SU(2) (see Eq. (3.7)). That would

require to find how the arguments of the retarders and the parameters of Ûn(s) are

related to each other. This involves nonlinear relations. It is preferable to use a set

of retarders that generates Ûn(s) = exp
(
−i s

2
~σ · ~n(θn, φn)

)
in such a way that once

we fix θn and φn the rotation can be generated by rotating a single wave plate. Such
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an array is the following:

Ûn(s) = exp
(
−is

2
~σ.~n(θn, φn)

)
= Q̂

(
π + φn

2

)
Q̂

(
θn + φn

2

)
Ĥ

(
−π + θn + φn

2
+
s

4

)
×Q̂

(
θn + φn

2

)
Q̂

(
φn
2

)
, (4.25)

where we can see that if we fix the axis of rotation ~n(θn, φn) then the angles of the

four QWP’s are fixed while the angle of rotation s can be varied by rotating the

HWP. Now we only need to define the optical implementation of the U(1) elements

eiα(s) and e−iα(s).

In order to generate the action of eiα(s) on Ûn(s)|E〉 we may use some optical

element that works as a phase shifter inside the interferometer, for example, a piece

of glass, and then characterize the phase shift as function of its tilt. However, our

setup, being insensitive to perturbations, requires that we use two co-propagating

orthogonally polarized beams that pass through the same optical elements. Thus, it

would be complicated to place two small pieces of glass on the path of each beam,

one for eiα(s)|E〉 and the other for e−iα(s)|E⊥〉, and independently manipulate both

of them.

Alternatively, we may use a piezo-transducer to move the mirrors of the interfer-

ometer back and forth to change the optical-path difference between its arms. With

this, we could control the relative phase between the interfering states and perform

the action of eiα(s). However, this would affect the two co-propagating beams equally

and would implement eiα(s)|E〉 and eiα(s)|E⊥〉 instead of what we need, such an array

generates I but does not generate I⊥.

In either case, what exposed above is neither efficient nor easy to implement

and may introduce experimental errors significantly bigger than those due to other

optical elements. At this point we came up with a very simple idea that once on

the table appears to be the most immediate and obvious way to do. We just used

more wave plates, which are elements of SU(2), to perform U(1) transformations.

We can see that this works by noticing that

exp (iα(s)~σ · ~nE) |E〉 = eiα(s)|E〉, (4.26)

exp (iα(s)~σ · ~nE) |E⊥〉 = e−iα(s)|E⊥〉, (4.27)

where ~nE corresponds to |E〉〈E| and exp(iα(s)~σ · ~nE) can be built using Eq. (4.25)

with s/2 → −α(s). Therefore, we can carry out the implementation of elements
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U(1) as given in Eqs. (4.26) and (4.27) by using a SU(2) transformation such

that the incoming states are its eigenstates. This would imply to use 5 retarders,

but the lower the number of wave plates used the smaller the experimental errors.

Accordingly, using Eq. (4.24), we can perform eiα(s)|E〉 by:

eiα(s)|E〉 = ÛEHe
iα(s)|H〉

= ÛEH exp(iα(s)σ̂x)|H〉

= ÛEHQ̂
(
−π

4

)
Ĥ

(
π

4
+
α(s)

2

)
Q̂
(
−π

4

)
|H〉

≡ ÛEHÛα(s)|H〉. (4.28)

Hence, Eqs. (4.24)-(4.28) give us the recipe to generate the intensities I and

I⊥ (see Eqs. (4.17) and (4.23)) from which we can extract the geometric phase

Φg(s) acquired along ~m(s) (see Eq. (4.16)). The most general interferometric setup

needed to measure Φg(s) for an arbitrary ~m(s) is shown schematically in Fig. (4.3).

It requires 12 retarders. As our aim is to show the versatility of our method, we have

performed measurements for restricted non-geodesic curves such that significantly

reduce the number of wave plates employed.

The first kind of curves arises from taking as the initial point |H〉〈H| and rotating

it around an axis that lies on the equatorial plane of the Poincaré sphere (x-y plane).

We have thus ~m0 = (1, 0, 0) and ~n = (cosφn, sinφn, 0). Using Eq. (4.15) Φ
θn=π/2
g (s)

is plotted for some values of φn in Fig. (4.4) and is given by:

Φθn=π/2
g (s) =

s

2
cosφn − arctan

(
tan

s

2
cosφn

)
. (4.29)

For such a case only 6 retarders are needed because the ÛEH in each arm of the

interferometer are no longer required and Ûn can be reduced to

Û θn=π/2
n = exp

(
−is

2
(cosφnσ̂x + sinφnσ̂y)

)
= Q̂

(
−π

4
+
φn
2

)
Ĥ

(
π

4
+
φn
2
− s

4

)
Q̂

(
−π

4
+
φn
2

)
. (4.30)

The U(1) implementation is given by (see Eqs. (4.13) and (4.28)):

Û
θn=π/2
α(s) = Q̂

(
−π

4

)
Ĥ
(π

4
+
s

4
cosφn

)
Q̂
(
−π

4

)
. (4.31)

In the second type of curves that we used for our measurements we took an

arbitrary elliptically-polarized state |E〉〈E| as the initial state but constrained its

evolution to a non-geodesic circle contained in a plane parallel to the equator. In
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Figure 4.3: Interferometric arrangement for testing Geometric phase Φg. A light beam
from a He-Ne laser is expanded and enters the interferometer by the
left input with its lower and upper halves horizontally (continuous line)
and vertically (dashed line) polarized, respectively. The left arm imple-
ments Ûn(s)ÛEH(s)Ûα(s)|H〉 = eiα(s)|E(s)〉 and Ûn(s)ÛEH(s)Ûα(s)|V 〉 =

e−iα(s)|E⊥(s)〉 while the right one does eiµÛEH(0)|H〉 = eiµ|E(0)〉 and
eiµÛEH(0)|V 〉 = eiµ|E⊥(0)〉. A CCD camera is placed at one of the
outputs to capture the interference patterns I ∝ 1 + v cos(µ − Φg) and
I⊥ ∝ 1 + v cos(µ + Φg) simultaneously, from which Φg is measured with an
image-processing.

such a case ~n = (0, 0, 1) and ~m0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0), using again Eq.

(4.15) we obtain this time for Φθn=0
g (s):

Φθn=0
g (s) =

s

2
cos θ0 − arctan

(
tan

s

2
cos θ0

)
, (4.32)

which has the same structure of Eq. (4.29) and does not depend on the azimuthal

coordinate of the initial state. In order to obtain Φθn=0
g (s) an explicit implementation

of Ûn is not needed and we require only 7 retarders: 3 and 2 wave plates (Q̂ĤQ̂

and ĤQ̂ respectively) in one arm of the interferometer for eiα(s)|E(s)〉 and 2 wave
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Figure 4.4: Geometric phase Φ
θn=π/2
g (s) accumulated along a curve given by the rotation

of ~m0 = (1, 0, 0) around an axis ~n = (cosφn, sinφn, 0) being s the angle of
rotation.

plates (ĤQ̂) on the other arm for |E(0)〉. Using Eqs. (4.24) and (4.28), we see that

eiα(s)|E(s)〉 is given by:

eiα(s)|E(s)〉 = Ĥ

(
−π

8
+
θ0 + φ0

4
+
s

4

)
Q̂

(
π

4
+
θ0

2

)
×Q̂

(
−π

4

)
Ĥ
(π

4
+
s

4
cos θ0

)
Q̂
(
−π

4

)
|H〉. (4.33)

In Section 4.4.1 we show the results of our measurements of Φg. Let us first turn

to the calculations involved in the polarimetric approach.

4.3 Polarimetric Calculations

In this section we discuss the polarimetric method to measure Φg. Just like we did in

Section 3.3, in order to avoid an excessive number of wave plates in the experimental

setup we will make our calculations considering an initial linear-polarized state, say

|H〉.
As we discussed before, the polarimetric method consists on building a state

|S〉 = 1√
2

(|H〉 − ieiµ|V 〉) by introducing a relative phase µ5 between the initial state

and its orthogonal state (see Eq. (3.33)). We then apply the evolution operator to

5This phase has the role of the phase due to the optical-path difference between the arms of an
interferometer.
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obtain:

Û |S〉 =
1√
2

(
Û |H〉 − ieiµÛ |V 〉

)
, (4.34)

and finally project such state onto |S〉, thereby obtaining an intensity patter from

which maxima and minima with respect to µ give us information of the accumulated

total phase ΦP .

Now, in our case, where Φp = Φg, the evolving state is eiα(s)Ûn(s)|H〉 (α(s) as

given in Eq. (4.13)), hence, Eq. (4.34) must be changed to:

Ûn(s)|S〉 =
1√
2

(
eiα(s)Ûn(s)|H〉 − ieiµÛn(s)|V 〉

)
, (4.35)

and we should be able to obtain Φg from measurements of the maximal and minimal

intensity:

I = |〈S|Ûn(s)|S〉|2. (4.36)

To show that this is the case, we use Ûn(s) as given in Eq. (4.4) to explicitly calculate

I. A straightforward calculation gives:

I = cos2
(s

2

)
+ sin2

(s
2

)
[cos(θn) cos (µ− α(s))

− sin(θn) sin(φn) sin (µ− α(s))]2, (4.37)

which has its minimum and maximum values with respect to µ at:

Imin = cos2 s

2
, (4.38)

Imax = cos2 s

2
+ sin2 s

2

(
cos2 θn + (sin θn sinφn)2

)
. (4.39)

Using Eqs. (4.38) and (4.39) we can build the following expressions:

1− Imax

1− Imin

= (sin θn cosφn)2 , (4.40)

1− Imax

Imin

=
(

tan
s

2
sin θn cosφn

)2

. (4.41)

Now, noticing that the geometric phase Φg for this case, i.e., ~m0 = (1, 0, 0) and

~n = (sin θn cosφn, sin θn sinφn, cos θn), is given by (see Eq. 4.15):

Φpol
g (s) =

s

2
sin θn cosφn − arctan

(
tan

s

2
sin θn cosφn

)
, (4.42)

and using Eqs. (4.38), (4.40) and (4.41) we conclude that Φpol
g can be measured
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through:

Φpol
g = arccos

(√
Imin

)√1− Imax

1− Imin

− arctan

(√
1− Imax

Imin

)
. (4.43)

This expression is zero ∀s for two cases: ~m0 ·~n = 1 (entire evolution restricted to the

same point ~m0 = (1, 0, 0) on ray space) and ~m0 · ~n = 0 (great circles on ray space).

What we need to do now is to find the particular set of wave plates and projectors

that generate I as given by Eq. (4.37). To do this, we look back to Eq. (4.35) and

notice that the state

|S〉 =
1√
2

(
eiα(s)|H〉 − ieiµ|V 〉

)
(4.44)

is, up to a physically irrelevant global phase factor, equal to

|S〉 =
e−i(µ+α(s))/2

√
2

(
eiα(s)|H〉 − ieiµ|V 〉

)
=

1√
2

(
e−i(µ−α(s))/2|H〉 − iei(µ−α(s))/2|V 〉

)
= exp

(
−i
(
µ− α(s)

2

)
σ̂x

)(
1√
2

(|H〉 − i|V 〉)
)

= exp

(
−i
(
µ− α(s)

2

)
σ̂x

)
exp

(
−iπ

4
σ̂y

)
|H〉. (4.45)

Hence, I may be obtained from (see Eq. (4.36)):

I =
∣∣∣〈H|Ûtot|H〉∣∣∣2

= |〈H| exp
(
i
π

4
σ̂y

)
exp

(
i

(
µ− α(s)

2

)
σ̂x

)
×Ûn(s) exp

(
−i
(
µ− α(s)

2

)
σ̂x

)
exp

(
−iπ

4
σ̂y

)
|H〉|2. (4.46)

Using Eqs. (3.42)-(3.44) we can implement the total operator appearing in the last

equation as:

Ûtot = Ĥ
(
−π

4

)
Ĥ

(
µ− α(s) + π

4

)
Q̂
(
−π

4

)
×Ûn(s)Q̂

(π
4

)
Ĥ

(
µ− α(s)− π

4

)
Ĥ
(π

4

)
. (4.47)

However, with Ûn(s) as given in Eq. (4.25), Ûtot would require to employ eleven

retarders. This number can be reduced using relations like Eqs. (3.46) and (3.47)
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to finally find the array of seven wave plates that we used in our measurements:

Ûtot(θn, φn, s, µ) = Q̂
(π

4
+
s

4
sin θn cosφn −

µ

2

)
× Q̂

(
−π − φn

2
+
s

4
sin θn cosφn −

µ

2

)
× Q̂

(
π

2
− θn + φn

2
+
s

4
sin θn cosφn −

µ

2

)
× Ĥ

(
−θn + φn

2
− s

4
+
s

4
sin θn cosφn −

µ

2

)
× Q̂

(
π

2
− θn + φn

2
+
s

4
sin θn cosφn −

µ

2

)
× Q̂

(
π

2
− φn

2
+
s

4
sin θn cosφn −

µ

2

)
(4.48)

× Q̂
(
−π

4
+
s

4
sin θn cosφn −

µ

2

)
,

where we have explicitly written α(s) = (s/2) cos θn sinφn and Ûtot is given in such a

way that once we have rotated ~m0 = (1, 0, 0) around some ~n by an angle of s radians,

i.e., fixing θn, φn and s, we can run µ by rotating the entire set of retarders with the

help of some mechanical apparatus, thereby obtaining Imin and Imax, and therefore

Φg(s) (see Eq. 4.43). The experimental setup that we used in our measurements

of Φg by the polarimetric method is similar to the one in Fig. (3.3) but with seven

wave plates instead of five.

The results of our measurements for both the interferometric and polarimetric

methods are shown in the next section.

4.4 Experimental Procedures and Results

The experimental setup for measuring geometric phases is a modification of the

one used for the Pancharatnam’s phase measurements (it is the same with more

retarders). The experimental procedures in this section are therefore analogous to

those discussed in Section (3.4). Below we present the results of our measurements.

4.4.1 Interferometric Measurements

As we discussed in Section 4.2, we have performed measurements of the geometric

phase Φg accumulated along two types of curves. The first type arises from rotating

~m0 = (1, 0, 0) around ~n = (cosφn, sinφn, 0) by an angle of s radians. For such a

case, Φ
θn=π/2
g is given by Eq. (4.29).
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Any circle on the Poincaré sphere can be given in terms of the unit vector ~n that

goes through the center of the circle and the angle β between ~n and any point ~m0

on the circle (cos β = ~m0 ·~n). β determines the solid angle Ω subtended by the circle

through:

Ω = 2π(1− ~m0 · ~n). (4.49)

Therefore, the well known relation between the geometric phase acquired in cyclic

evolutions and the solid angle Ω, i.e., Φg = −Ω/2, implies that for a 2π rotation of

~m0 around ~n:

Φg(2π) = −π(1− ~m0 · ~n), (4.50)

which for our case (~m0 · ~n = cosφn) reduces to:

Φθn=π/2
g (2π) = −π(1− cosφn). (4.51)

If we set φn = 60◦, then β = 60◦ and Φg(2π) = −90◦. The path traced by the state

and our measurements of Φg (given in degrees for a better visualization) are shown

in Fig. (4.5). As we can see, Φg goes to −90◦ as s approaches to 2π.
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Figure 4.5: Left : Path traced on the Poincaré sphere by the polarization of light for

θn = 90◦ and φn = 60◦. Right : Measurement of Φ
θn=π/2
g for φn = 60◦.

The second type of curves is generated from rotating ~m0 around ~n = (0, 0, 1) by

an angle of s radians. Hence, β = θ0. For measuring Φθn=0
g (see Eq. (4.32)) we took

θ0 = β = 60◦. Again, Φg → −90◦ as s→ 2π. Fig. (4.6) shows the path traced and

the measurements of Φθn=0
g .
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Figure 4.6: Left : Path on the Poincaré sphere traced by the polarization of light for
θn = 0◦ and θ0 = 60◦. Right : Measurement of Φθn=0

g for θ0 = 60◦.

4.4.2 Polarimetric Measurements

Measuring the geometric phase by the polarimetric method discussed in Section

4.3 does not impose a constraint for ~n but it does require the initial state to be
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Figure 4.7: Left : Path on the Poincaré sphere traced by the polarization of light for
θn = 60◦ and φn = 45◦. Right : Measurement of Φpol

g for θn = 60◦ and
φn = 45◦.

~m0 = (1, 0, 0). We took θn = π/3 and φn = π/4 for our measurements of Φpol
g (see

Eq. (4.42)), in which case β ≈ 52◦ (cos β = ~m0 · ~n) and Φg →≈ −70◦ as s → 2π

(see Eq. (4.50)). The curve on the Poincaré sphere corresponding to this evolution

and our measurements of Φpol
g are shown in Fig. (4.7).
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The retarders and polarizers could be oriented to within 1◦. As expected, the

experimental results are within 3-7% in accordance with the theoretical predictions,

depending on the number of wave plates being employed.
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Chapter 5

Summary and Conclusions

In the first part of this thesis work (Chapter 3) we have carried out theoretical

calculations and the corresponding measurements of Pancharatnam’s phase by ap-

plying polarimetric and interferometric methods. In the second part (Chapter 4) we

have given a recipe to make the dynamical component of the phase vanish and to

measure geometric phases. Under the hypothesis of working with evolutions free of

decoherence and polarized photons as isolated systems, our experimental findings

were in very good agreement with the theoretical predictions.

Our interferometric setups are robust against thermal and mechanical distur-

bances, effectively isolating our interferometers from typical drawbacks. Our proce-

dure can be implemented with a Michelson, a Sagnac or a Mach-Zehnder interfer-

ometer. We have compared interferometric measurements with those obtained with

a polarimetric array, finding similar results in both cases. Our polarimetric arrays

simply consisted of two polarizers and five (for measuring Pancharatnam’s phase) or

seven (for measuring geometric phases) wave-plates. The whole Poincaré sphere of

polarization states could be explored with both our polarimetric and interferometric

arrays.

Additionally, we have tested theoretical predictions concerning fringe visibility

when applying the interferometric method, finding very good agreement with that

expected theoretically. This is interesting not only on its own, but also in view of

extracting quantum phases from visibility measurements in the case of mixed states.

Indeed, it has been proved [18] that, for mixed states, fringe visibility is a simple

function of Pancharatnam’s phase.

An immediate extension of this work would aim at replacing the classical laser

source by different single photon sources. Standard single qubit states or nonmaxi-

mally entangled states [27] could be used. We could then study and use geometric

phases under decoherence effects.
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