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II Abstract 

In nature, vibrissae are tactile hairs of mammals used as sensor elements for 
the exploring the surrounding area. These hairs, also known as whiskers, 
can be found in different locations on an animals body. Mystacial vibrissae 
are distributed over a whiskerpad on a muzzle. Carpal vibrissae are located 
on the downside aspect of the forelimbs of mammals. The vibrissal hair 
has a conical shape and grows from a special heavily innervated hair follicle 
incorporating a capsule of blood. As the hair itself has no receptors along 
its length, the vibrissa may be considered as a system for transmitting forces 
and torques that arise from the contact between the hair and an object to 
sensory receptors inside the follicle. 

The present thesis deals with the vibrational motion of vibrissae dur- 
ing natural exploratory behaviour from the mechanical point of view. The 
phenomenon of the parametric resonance of the vibrissa is investigated the- 
oretically and numerically. In the first part of this thesis, two mechanical 
models of an elastic beam are presented based on findings in the literature. 
The first model considers a straight beam with the linearly decreasing radius 
of the circular cross-section. The second model takes into account the circu- 
lar natural configuration of the cylindrical beam. Within these models, the 
small transverse vibration of the beam under a periodic following force at 
the tip are analysed using the Euler-Bernoulli beam theory and asymptotic 
methods of mechanics. 

In the second part of the thesis, the numerical analysis of the problems is 
performed based on the finite element method using ANSYS 16.2 software. 
For each model, the dynamical response of the system on the parametric 
excitation is simulated for different frequency values. 

It is shown theoretically and numerically that at specific ranges of the 
excitation frequency the phenomenon of the parametric resonance of the 
beam takes place. That means that the amplitude of vibrations of the beam 
increases exponentially with time, when it is stimulated within one of the 
frequency ranges of the parametric resonance. These ranges depend on the 
geometrical and material parameters of the beam model, as well as the am- 
plitude of the periodic excitation. 
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III Kurzzusammenfassung 

Tasthaare von Säugetieren werden als Vibrissen oder Schnurrhaare bezeich- 
net. Sie dienen der Erkundung der Umgebung und befinden sich an ver- 
schiedenen  Stellen  des  Tierkörpers.   Mystaziale  Vibrissen  sind  im  Bereich 
der Schnauze zu finden. Karpale Vibrissen befinden sich an der Unterseite 
der Vordergliedmaen von Säugetieren.  Das Vibrissenhaar hat eine konische 
Form  und  wächst  aus  einem  speziellen,  stark  innervierten  Haarfollikel,  der 
in einem Blutsinus eingegliedert ist. Da das Haar selbst keine Rezeptoren 
hat, kann es als ein bertragungssystem für Kräfte und Momente zum Rezep- 
torsystem im Follikel betrachtet werden.  Kräfte und Momente entstehen aus 
dem Kontakt des Haars zu einem Objekt. 

In der vorliegenden Masterarbeit wird die Schwingung der Vibrisse während 
eines  natürlichen  Erkundungsprozesses  aus  dem  Blickwinkel  der  Mechanik 
untersucht.  Das Phänomen der parametrischen Resonanz der Vibrisse wird 
analytisch und numerisch betrachtet. Im ersten Teil der Arbeit werden 
zwei Modelle eines elastischen Balkens aus der Literatur verwendet. Das 
erste Modell besteht aus einem geraden Balken mit einer kreisrunden Quer- 
schnittsfläche mit linear abnehmenden Radius.  Im zweiten Modell wird die 
natürliche Krümmung der Vibrisse in Form eines zylindrischen Balkens mit 
kreisbogenförmiger Stabachse berücksichtigt.  Unter Verwendung der Euler- 
Bernoulli-Balkentheorie und asymptotischen Methoden der Mechanik wer- 
den kleine transversale Schwingungen des Balkens analysiert. Sie werden am 
Stabende durch eine periodische, der Verformung folgenden Kraft ausgelöst. 

Im zweiten Teil der Arbeit folgt die numerische Analyse des Problems 
mit Hilfe der Finiten Elemente Methode. Verwendet wird das Programm- 
paket  ANSYS  16.2.    Für  jedes  Modell  wird  die  dynamische  Antwort  der 
parametrischen Erregung für verschiedene Frequenzwerte simuliert. 

Es wird analytisch und numerisch gezeigt, dass für spezifische Wertebere- 
iche der Erregungsfrequenz das Phänomen der parametrischen Resonanz des 
Balkens  entsteht.   Das  heit,  die  Schwingungsamplitude  des  Balkens  wächst 
über  die  Zeit  exponentiell  an,  wenn  es  mit  einer  Frequenz  aus  dem  Bereich 
der  parametrischen  Resonanz  erregt  wird.  Dieser  Bereich  ist  abhängig  von 
geometrischen Parametern, Materialeigenschaften und von der Amplitude 
der periodischen Erregung. 
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V Symbols and Abbreviations 

A Cross-section area 
a Amplitude 
a0 Averaged amplitude 

c Stiffness of the spring 
d Diameter of the beam 
E Youngs modulus 
ėx, ėy, ėz Cartesian basic vectors 

Ḟ (t) Periodic force 

F0 Amplitude of the force Ḟ (t) 

f (t) Displacement function 
G Shear modulus 
g Gravitational acceleration 
Iz Moment of inertia of a cross-section 

k Timoshenko shear coefficient 
L Length of the beam 
l Length of the pendulum 

Ṁ 
bz Bending moment 

m Mass of a system 
m0 Mass of the beam’s element 

Ṅ Normal force 
ṅt Normal to the cross-section at the tip 

Q̇y Transverse shear force 
q external load 
R0 Radius of the arc 

R(ω0) Rayleigh’s quotient 
rb Radius of the beam at the base 
rt Radius of the beam at the tip 

s Natural length parameter 
t Time 
tc Characteristic time 
v Transverse displacement 
x, y, z Cartesian coordinates 

 
β Eigenvalue parameter 
γ Dimensionless excitation frequency 
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γ(x, t) Shear angle 
δ Radius ratio 
ε Dimensionless parameter 
θ(t) Angular displacement 
θ(x, t) Angle of rotation of the beam axis 
κ0 Curvature of the beam 
λ Eigenvalue 
ν Ordinary frequency (in Hz) 
ρ Density 
τ Dimensionless time 
φ Phase angle 
ϕ Angle of the arc 

Ω Angular excitation frequency 
ω Angular frequency 
ω0 Natural vibration frequency 

 
DOF Degree of freedom 
FEM Finite element method 
FSC Follicle-sinus complex 
CCB Circular cylindrical beam 
MPC Multi-point constraint bonded contact 
PDE Partial differential equation 
SCB Straight cylindrical beam 
TCB Truncated conical beam 
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1 Introduction and motivation 

Vibrissae are tactile hairs of mammals used as sensor elements for the explor- 
ing the surrounding area. These hairs, also known as whiskers, can be found 
in different locations on an animals body. Mystacial vibrissae, for example, 
are distributed over a whiskerpad on a muzzle and well organized in rows and 
columns. Carpal vibrissae are located on the downside aspect of the fore- 
limbs of mammals. The vibrissal hair has a conical shape and grows from 
a special heavily innervated hair follicle incorporating a capsule of blood, 
called follicle-sinus complex. As the hair itself has no receptors along its 
length, the vibrissa may be considered as a system for transmitting forces 
and torques that arise from the contact between the hair and an object to 
sensory receptors inside the follicle. This information is then sent by nerves 
to the brain. 

Scientists, biologists and engineers would like to understand the func- 
tional principles of the vibrissal sensing system from different aspects. Neu- 
roscientists would like to figure out how nerve impulses from vibrissae are 
processed to the brain and how an animal encodes the information. They 
perform laboratory experiments with living creatures. Biologists usually de- 
scribe the anatomy and morphology of vibrissae from species to species. They 
believe that the vibrissal sensing system played an important role during evo- 
lutionary development of mammals. For the engineers, the biological vibrissa 
gives an inspiration to design various artificial tactile sensors and find possi- 
ble applications for them. 

The present thesis deals with the vibrational motion of vibrissae during 
natural exploratory behaviour of mammals. It may be seen as a part of 
the scientific research within the project ”Technische, nicht-visuelle Charak- 
terisierung von Substratkontakten nach dem biologischen Vorbild carpaler 
Vibrissen”. 

In this work, the phenomenon of the parametric resonance of the vibrissa 
is considered from the mechanical point of view. The main aim is to present 
numerical investigations that should provide a basis for the theoretical studies 
produced in the project. 

The thesis starts with the brief introduction of the biological paradigm 
of vibrissae. The Chapter 2 gives a short overview of the current state of 
the art in characterization and modelling of vibrissae. 

In Chapter 3, the resonance phenomenon in forced and parametrically 
excited vibrations is described by giving examples of simple mechanical sys- 
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tems. 
In Chapters 4 and 5 of the thesis, two theoretical models of an elastic 

beam under an parametric excitation are presented. They take into ac- 
count variable radius of the cross-section and natural configuration of the 
beam/vibrissa. 

The Chapters 6 presents the results of numerical simulations of consid- 
ered problems that are performed based on the finite element method. 

Finally, general conclusions of the work are drawn in Chapter 7. 
Appendix A contains the report preview of the simulation in ANSYS 

16.2 Workbench. 
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2 The biological paradigm 

2.1 Vibrissae — tactile biological sensors 

Vibrissae are specialized tactile sensor hairs. In nature, these hairs, also 
known as whiskers, can be found in different locations on a mammals body. 
Mystacial vibrissae are distributed over a whiskerpad on a muzzle and well 
organized in rows and columns. Carpal vibrissae are located on the downside 
aspect of the forelimbs of mammals (Fig. 2.1). Each vibrissa is embedded 
in and supported by its own special heavily innervated hair follicle, called 
follicle-sinus complex (FSC). Vibrissae are sometime called sinus hairs, be- 
cause the FSC contains a circular blood sinus, which ensures the viscolelastic 
foundation of the vibrissal hair (Fig. 2.2). 

 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Vibrissae in mammals: a) Mystacial pad of vibrissae of a house 
cat [1]; b) Triple of carpal vibrissae at a forelimb of Rattus norvegicus [2] 

 
There results of experimental measurements of the vibrissa diameter at 

different locations indicate that the diameter decreases linearly along the 
length [3, 4]. Figure 2.3 shows cross-sections of a macro vibrissa at the 
base. A hollow medulla is observed from the base to approximately half of 
the overall length, which is then partially filled by compact tissue, until it 
disappears completely near the tip [4]. 

According to [3], the vibrissae can be approximately as a thin, conical 
(tapered) rod, with a length up to 10 mm, and the diameter decreases linearly 
from the base to the tip between 0.1 mm to 0.001 mm. It is shown that 
approximately 60-70% of the vibrissae are planar and their shape can be 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: a) The FSC of a vibrissa [1]; b) Schematic drawing of neighboring 
mystacial follicles [5, 6] 

 
approximated by a parabola [7]. In [8], the variation in Young’s modulus 
along the length of a rat vibrissa is observed experimentally. The averaged 
value of Young’s modulus for tip segments is reported to be larger than for 

base segments: 3.96±1.60 Gpa and 2.90±1.25Gpa, respectively. 

2.2 Functional role of vibrissae 

The functional role of vibrissae vary from animal to animal and is best de- 
veloped in rodents, especially rats, squirrels and mice. These tactile hairs 
are particularly important for navigation, detection of objects and texture 
discrimination during natural exploratory behaviour of mammals. Vibrissae 
provide an anaimal with information about spatial existing boundaries in 
the environment. In [9, 10], it has been found that rats and seals use their 
mystacial vibrissae actively for tactile sensing. The FSC of some groups of 
vibrissae are motile due to specialized surrounding musculature [5, 6]. Using 
two types of muscles (intrinsic and extrinsic), an animal can repetitively move 
vibrissae back and forth (Fig. 2.2). This behaviour is known as whisking. 

The vibrissal hair has no receptors along its length, since it made of 
dead material. Hence, all tactile signals at the tip of the vibrissa must be 
transmitted mechanically to sensory receptors inside the FSC. How vibrissae 
sense this information, and how it is encoded by the brain, are not known 
exactly, although the vibrissa system has been studied for over a century. 

Nowadays, there are several competing hypotheses to understand the 

(b) 
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Figure 2.3: Top: share of components of a macro vibrissa at base, mid and 
tip. Bottom: pictures of cross-sections of two macro vibrissae [4] 
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mechanism of texture discrimination and tactile encoding by vibrissae. These 
hypotheses assume that mechanical interactions between the vibrissa and an 
object, as well as the shape of both, generate different complex patterns of 
vibrissa vibration and different coding strategies in the nervous system. 

In the resonance hypothesis introduced in [3, 11, 12], vibrissae are re- 
garded as elastic beams whose natural resonance frequency varies with pa- 
rameters describing their structure (in particular, with length, radius, Young’s 
modulus, etc.). When a vibrissa sweeps across a surface at a given velocity, 
the spatial texture generates vibrations of the vibrissa at a temporal fre- 
quency. Resonance vibrations are proposed to build up in vibrissae whose 
resonance frequency matches this temporal frequency of the surface struc- 
ture. Because resonance frequency varies for vibrissae within one mystacial 
pad, each vibrissa is tuned to resonate for a specific range of textures. The 
amplification of tactile signals by resonance drives spatial neural activity in 
the sensors inside the FSC relative to the amplitude of resonance vibrations. 

In the other hypotheses such as the mean speed theory [13, 14, 15] and 
the slip-stick theory [13, 16, 17], mechanical resonance properties of vibris- 
sae play no special role in coding. Instead, the friction interaction between 
the vibrissal tip and surfaces generates complex, temporal patterns of vib- 
rissa motion. These patterns represent mean speed of vibrissa vibration [15] 
and irregular high-velocity motions called vibrissa slips and sticks [13]. The 
texture coding in the sensory system follows these features of the patterns 
correlative by changing the fire rate of neural activity. 

Which coding mechanism is exactly responsible for the tactile discrim- 
ination of different textures remains an open question [18]. Attempts to 
distinguish these hypotheses are made in [15, 16] by measuring vibrissae vi- 
brations and neural responses in awake, behaving animals. 

 
2.3 State of the art in modelling of vibrissae 

From the engineering point of the view, the vibrissa as a biological object 
leads to the abstraction of rigid body models or elastic continuum models. 

In [19], the movement of a rigid rod vibrissa in a pinned connection in- 
fluenced by spring and damping elements is investigated theoretically. The 
authors in [1, 20, 21] improved rigid rod models for vibrissa due to the im- 
plementation of more complex boundary conditions. They introduce specific 
spring and damping elements considering the characteristics of the skin and 
the FSC (Fig. 2.4). 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Mechanical models of the vibrissa as a rigid rod from [1, 20, 21]: 
a) model with one degree of freedom; b) model with three degrees of freedom. 

 

Continuum models of a vibrissa as an elastic deformable beam following 
Hooke’s law are closer to the biological paradigm, since they are able to take 
the inherent dynamical behaviour and the bending stiffness of the vibrissa 
into account, e.g.,[1, 8, 22] (Fig. 2.5). 

 
 
 

Iz, A, ȡ 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Mechanical models of the vibrissa with a high level of detail with 
regard to support conditions [1, 23] 

(b) 
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Analytical investigations made in [24, 25] show that it is possible to re- 
construct a profile contour by one single quasi-static sweep of the straight 
elastic beam along the object through the calculating the clamping forces 
and bending moment (Fig. 2.6). 

 
y 

 
 
 
 
 
 
 
 
 
 
 
 

x 
 

Figure 2.6: Elastic beam under large deflection for quasi-static object scan- 
ning [25] 

 
Applications of tactile sensors following the functional principle of vibris- 

sae is the recent focus in robotics. Figure 2.7 shows developed prototypes of 
mobile robot that use artificial tactile hairs for object localization. 

 

(a) (b) (c) 
 
 
 
 
 
 
 

Figure 2.7: Examples of artificial tactile sensors in mobile robots: a) exper- 
imental platform [26]; b) mobile robot Amouse [28, 27]; c) SCHRATCHbot 
[29, 30] 

object force 

s ϕ(s) 

s 

E, Iz, 
L 
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2.4 Discussion 

In the present thesis, I would like to concentrate on the resonance phe- 
nomenon of vibrissae vibrations during texture discrimination and the me- 
chanical explanation of it. 

As the vibrissa sweeps across an object, frictional interactions between 
the tip and a roughness profile generate oscillations of the vibrissal hair 
(Fig. 2.8). The arising friction force, like any other function of time, can 
be decomposed into the frequency components with the Fourier transform 
spectrum. The first several harmonic terms of it may sufficiently reproduce 
this force function. Further on, to investigate the phenomenon of parametric 
resonance, periodic force functions are of primal interest. In the theoretical 
and numerical investigations, the vibrissal hair will be modelled as an elastic 
Euler-Bernoulli beam. The following mechanical models will be considered: 
an elastic beam with the straight neutral axis and circular cross-section, and 
a curved elastic beam with the circular natural configuration and circular 
cross-section. 

Throughout this work, it is assumed that the roughness profile exerts 

a cosinusoidal force F (t) = F0 cos(Ωt) that is applied perpendicular to the 

cross-section at the tip of the beam. The frequency Ω of the force coincides 
with one of the harmonic components. Results of the behavioural experi- 
ments with rats discriminating regular grooved plates are presented in [31]. 

Figure 2.9 shows the context of the thesis in the vibrissa research field. 
 

 
Figure 2.8: Vibrissae sweeping along the textured plate [31] 
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Figure 2.9: The context of the thesis in the vibrissa research field [32] 
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3 Resonance phenomenon 

In physics, resonance is the tendency of a system to respond at greater am- 
plitude at a specific preferential frequency. It is caused by the possibility of 
a system to store and transfer energy between two or more different stor- 
age modes. Resonance phenomena develop with all types of vibrations or 
waves. There is mechanical resonance, acoustic resonance, electromagnetic 
resonance, etc.  Resonant systems can be used to originate vibrations of  
a specific frequency, or analyze specific frequencies from a complex vibra- 
tion containing many frequencies. However, resonance may cause volient 
catastrophic failure of systems (bridges, buildings and airplanes, etc.). This 
phenomenon is known as resonance disaster (Fig. 3.1). 

 

 

Figure 3.1: Collapse of the Tacoma Narrows Bridge in Washington [33] 
 

 
3.1 Resonance in forced vibrations 

Consider one type of vibrations, where an external time-varying force Ḟ (t) is 

applied to a system.  The simplest form of the force Ḟ (t) is harmonical.  In all 
real systems, energy is dissipated, which means the system is damped. But 
often the damping is very small, so we consider systems without damping. 
Such forced undamped systems with one degree of freedom (DOF) are shown 
in Fig. 3.2. 

The derivation of the equation of motion is achieved by considering forces 
acting on a mass point, when it is regarded as a free body. Forced vibrations 



12  

√ 

 
 
 
 
 

 

 
Figure 3.2: Forced undamped systems with 1 DOF 

 
of a simple spring-mass system with 1 DOF are described by the following 
equation: 

ẍ(t) + ω  2x(t) =  
F0 

cos (Ωt), (3.1) 
0 m 

 

where ω0 = c/m is called the undamped natural frequency of free vibra- 
tions, m is the mass of the system, c is the stiffness of the spring, F0 is the 

amplitude of the force, and Ω is the excitation frequency. 
Equation (3.1) is an inhomogeneous linear second-order differential equa- 

tion with constant coefficients. The solution of it is the sum of two parts: the 
homogeneous solution xh(t) and the particular solution xp(t). The homoge- 

neous solution is obtained by setting the right-hand side of the equation (3.1) 
equal to 0: 

ẍh(t) + ω0
2xh(t) = 0. (3.2) 

A solution of (3.2) describes harmonic, undamped, free vibrations of the 
mass, and it has the following form: 

xh(t) = A cos (ω0t − φ), (3.3) 

where the constant A is the amplitude of response and φ is the phase angle. 



13  

0 

p 

0 

p 

 
 
 

 

A particular solution of the equation (3.1) is obtained by assuming 
 

xp(t) = B cos(Ωt), (3.4) 
 

where B is an unknown constant. Substituting it into equation (3.1), we find 

   F0/m  
B = , (3.5) 

ω 2 − Ω2 

and the required particular solution  becomes 

   F0/m  
x (t) = cos(Ωt). (3.6) 

ω0
2 − Ω2 

Thus, the complete solution of the equation (3.1) is the sum of (3.3) and 
(3.6): 

   F0/m  
x(t) = A cos(ω t − φ) + cos(Ωt). (3.7) 

ω0
2 − Ω2 

The arbitrary constants A and φ are found from the initial conditions 
x(0) = x0 and ẋ(0) = ẋ0. 

It is seen that a system under the action of the periodic force executes a 
motion, which is a combination of two oscillations. The first term of (3.7) 
represents free vibrations with the natural frequency ω0. The second term 
corresponds to the forced vibrations of the system with the external fre- 
quency Ω. The structure of the particular solution xp(t) depends on the 
relation between ω0 and Ω. Defining γ = Ω/ω0, equation (3.6) takes the 
form 

  F0  x (t) = cos(Ωt). (3.8) 
c(1 − γ2) 
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Figure 3.3: Frequency response of an undamped system 

 
In this expression, (F0/c) represents the displacement that the disturb- 

ing force would produce, if acting statically, and the factor cos(Ωt)/(1 γ2) 

accounts  for  the  dynamic  nature  of  the  force  Ḟ (t).   Fig.  3.3  shows  the  de- 

pendence of the amplification ratio X = F0/(c(1 − γ2)) on the frequency 
ratio γ = Ω/ω0. 

When the external forcing frequency Ω nears the natural frequency of the 
system ω0 (γ 1), the amplitude of forced vibrations rapidly increases and 
gets extremely high. This phenomenon is called resonance. 

Consider the case of resonance, when a system is excited with the reso- 

nant frequency Ω = ω0. Then, the particular solution of the inhomogeneous 
equation (3.1) has the form: 

   F0  x (t) = t sin(ω t). (3.9) 
2mω0 

 

It means that the amplitude of oscillations in resonance grows proportional 
with the time. It should be noticed that the resonance takes place even when 
initial conditions are exactly zero (x(0) = 0 and ẋ(0) = 0).  The graph of the 
resonance response of a system is shown in Fig. 3.4. 
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Figure 3.4: Response of the system in the case of resonance (Ω = ω0) for 
x(0) = 0,  ẋ(0) = 0 

 

3.2 Parametric resonance 

Forced vibration problems do not show parameter variation as a result of 
imposed forcing. Another possibility to excite nondamping vibrations is to 
periodically change some system parameters to which the system is sensitive. 
For certain relationships between the disturbing frequency Ω and the natural 

frequency of a system ω0, the amplitude of these vibrations increases rapidly 

to large values. This phenomenon is called parametric resonance . Phys- 
ical systems exhibiting potential parametric vibrations effects are shown in 
Fig. 3.5. 

Motion of such systems with 1 DOF is generally described by an ordinary 
linear second-order differential equation of the form: 

 

ẍ(t) + ω2(t)x(t) = 0, (3.10) 

where the coefficient ω2(t) of x is not constant: it depends explicitly on time t. 
In the case of periodic changes of the parameter ω, when ω(t + T ) = ω(t), 
the corresponding differential equation (3.10) is called Hill equation, who 
introduced it in 1886 [36]. 

For example, for a simple pendulum, whose support O is vertically excited 
as y(t) = y0 cos(Ωt) (Fig. 3.5, right), its motion is described by 

 
d 

(ml2θ̇(t)) = m(ÿ(t) + g)l sin(θ(t)). 
dt 
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Figure 3.5: Examples of physical systems exhibiting parametrical reso- 
nance [34] 

 
Here, m is the mass of the pendulum, l is the length, g is the gravitational 
acceleration and θ(t) is the angular displacement. 

For small angle approximation, we have 
 

θ¨(t) + 
.g 

−

 y0Ω2 
cos(Ωt) 

l 

Σ

θ(t) = 0. (3.11) 

 
 

The natural frequency of the pendulum is ω0 = g/l. Defining the 
dimensionless time τ = tω0, the equation (3.11) can be written as 

θ̈ (τ ) + (1 − ε cos(γτ ))θ(τ ) = 0 (3.12) 

with the dimensionless parameters ε  =  y0Ω2/g  and  γ  =  Ω/ω0.  Equa- 

tion (3.12) is the special case of Hill equation (3.10) with the cosinusoidal 
time dependency of the parameter. It is called Mathieu equation. A complete 
mathematical analysis of its solution is out of the scope of the present thesis. 
The theory of Mathieu equation has been fully developed and all significant 
properties of its solutions are well known [37, 38]. 

It appears that there are transition values depending on the parame- 
ters ε and γ, which identify the boundaries of parameter values resulting in 



17  

≈ 

 
 
 
 
 

 
 

Figure 3.6: Ince-Strutt diagram of the Mathieu equation (3.12) indicating the 
transition curves, which divide the a-q plane in stable (white) and unstable 
(grey) regions 

 

stable or unstable behaviour. For the unstable case, arbitrarily small de- 
viations of a system produce a large response and the amplitude increases 
progressively in time. The transition curves dividing the plane of parameters 

a = (2ω0/Ω)2 and  q  = 2ε(ω0/Ω)2 in  stable  and  unstable  regions  are  shown 

by the Ince-Strutt diagram in Fig. 3.6. 
It can be seen that there are many intervals of the frequency where the 

parametric resonance takes place. But the most intensive resonance response 
of the system occurs, when the forcing frequency is twice the natural fre- 

quency: Ω 2ω0. This range is called the region of principal parametric 

resonance, and the width of this region is proportional to the parameter ε: 
 

ε Ω ε 
2 − 

2 
< ω < 2 + . (3.13) 

2 
 

The other frequency ranges of the parametric resonance are close to the values 
of the form Ω = 2ω0/n for any natural number n. However, the width of 
these regions gets narrow proportionally to the value εn as n increases. 

In contrast to the resonance in forced vibrations, parametric resonance 
can only occur if at least small vibrations already exist in the system. It may 
cause the instability of the bottom equilibrium position of the pendulum with 
the exponentially increasing amplitude to infinity (Fig. 3.7). 

0 
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Figure 3.7: Response of the system in the case of the parametric resonance 

for x(0) ƒ= 0 
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4 Theoretical analysis of parametric vibra- 

tions of a truncated conical beam 

In this thesis, the following abbreviations are used to indicate different beam 
models: 

• Model 1 — a straight cylindrical beam (SCB), 

• Model 2 — a truncated conical beam (TCB), 

• Model 3 — a circular cylindrical beam (CCB). 

4.1 Formulation of the problem 

A beam is a slender structural element spanning a distance between one or 
more supports and subjected to external loads that cause primarily bending. 
The beam is characterized by its profile (shape of cross-section), length, and 
material properties. Fig. 4.1 shows a simply supported beam of a length L 
with a circular cross-section. The Cartesian coordinate system (0, x, y, z) 
is placed such that the x axis coincides with the underformed straight axis 
of symmetry of the beam. The material properties of the beam are con- 
stant. The radius of the circular cross-section develops linearly along the 
axial direction: r(x) = rb + (rt rb)x/L, where rb and rt are the radii at the 
base and the tip of the beam respectively. The mass of a beam’s element 

is m0(x) = ρπr2(x), where ρ = const is the density and E = const is the 
Young’s modulus. The moment of inertia of the cross-section is defined as 

Iz(x) = πr(x)4/4. 

This geometry corresponds to the Model 2 of a TCB. In the case rb = rt, 

it satisfies the Model 1 of SCB. 

 

 
Figure 4.1: Model of the TCB under an applied periodic force 



2
0 

 

− 

y ∂x 

 
 
 

 

The beam is simple supported at the base x = 0 and at the tip x = L. A 
time-varying periodic force Ḟ (t) =    F0 cos(Ωt)ṅt  is applied perpendicularly 
to the cross-section at the tip of the beam causing it to oscillate at a specific 
frequency.  Here, ṅt  is the normal to the cross-section at x = L. 

 
4.2 Euler-Bernoulli beam theory 

There are distinct relationships between the load on a beam, the resulting 
internal forces, moments and the corresponding deformation. A theory often 
used is the Euler-Bernoulli beam theory. It assumes that the strain tensor is 
a linear function of displacement gradient components, see [39, 40]. Experi- 
ments have shown that strains developed along the depth of a cross-section of 
the beam vary linearly. The strain at the top or bottom of the cross-section 
is maximal and decreases with the depth, becoming zero at a certain distance 
from the surface. The axis, where the stress is zero, is called the neutral axis. 
If the cross-section is symmetric, isotropic and is not curved before a load 
occurs, then the neutral axis is at the geometric centroid. 

The Euler-Bernoulli beam theory takes the bending moment into account 
and neglects the effect of transverse shear deflections and rotary inertia. 
Thus, the major assumptions are: 

• The cross-section rotates around a neutral axis remaining plane. 

The cross-section remains perpendicular to the neutral axis during de- 
formation. 

Consider a differential element of the beam with a length dx isolated by 
two adjoining cross-sections (Fig. 4.2). The forces acting on the element are 

the normal force Ṅ (x, t), the transverse shear force Q̇y (x, t), and the bending 

moment Ṁ 
bz (x, t).   From  the  elementary  theory  of  beam,  the  relationship 

between bending moment and deflection can be expressed as [41] 

∂2v(x, t) 
Mbz(x, t) = EIz(x) ∂x2 

. (4.1) 

The transverse shear force Q̇y (x, t) = Qy(x, t)ėy  is 

Q (x, t) = − 
∂Mbz (x, t) 

. (4.2) 

• 
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∂x2 

∂t2 
+ 

∂x2 

 
 
 
 
 

 
 

Figure 4.2: Free-body diagram of a beam element of infinitesimal length dx 
with external actions upon it 

 
Here,  ėx,  ėy,  ėz  are  Cartesian  basic  vectors,  and  v(x, t)  is  the  transverse 

displacement. 
The equation governing small transverse vibrations of a straight Euler- 

Bernoulli beam in the x-y plane subjected to an external load q(x, t), without 
damping is [39]: 

∂2v(x, t) 
 

 

∂2 
Σ 

 

 

∂2v(x, t) 
Σ

 
 

 

 

 

This is the partial differential equation for the transverse displacement 
v(x, t) of the beam in y direction. The bending moment and shear force in 

the beam can be calculated from (4.1) and (4.2) after the deflection due to 
a given load has been determined. 

 
4.3 Natural frequencies and modes of an Euler-Bernoulli 

beam 

In the absence of the load q(x, t), we have free vibrations of the beam. In 
this case, the equation of motion (4.3) is 

∂2v(x, t) 
 

 

∂2 
Σ 

 

 

∂2v(x, t) 
Σ

 
 

 

 

 

We attempt a solution using decomposition of the displacement of the 
form 

v(x, t) = X(x)T (t). (4.5) 

∂x2 

∂x2 
m0(x) EIz(x) = q(x, t). (4.3) 

m0(x) EIz(x) = 0. (4.4) 
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Then, the partial derivatives are 
 

∂2v(x, t)  ̈
 

 

∂2v(x, t) jj 
 

 

∂t2 
= X(x)T (t), ∂x2 

= X (x)T (t), (4.6) 
 

where the ”.” notation is the derivative with respect to time, and the ” j ” 
notation is the derivative with respect to the x coordinate. 

The equation (4.4) of free vibrations can be written as: 

m0(x)X(x)T̈ (t) + T (t) [EIz(x)X jj(x)]jj = 0, (4.7) 

which, when divided by m0(x)X(x)T (t), becomes 

T ̈(t) 
− 

T (t) 
=

 

[EIz(x)Xjj(x)]jj . (4.8) 
m0(x)X(x) 

 

For equation (4.8) to be valid for all values of x and t, the two expressions 

must therefore be constant, say ω2 = const. Thus, the partial differential 
equation (4.4) splits into two ordinary differential equations: one governing 
the time function T (t) and the other governing the spatial function X(x). 

T̈ (t) + ω2T (t) = 0, (4.9) 

[EIz(x)Xjj(x)]jj −ω2m0(x)X(x) = 0. (4.10) 

Equation (4.9) has the same form as the equation governing free vibration of 
a system with 1 DOF with natural frequency ω (compare with (3.2)). The 
general solution for the time-dependent function can be written as: 

T (t) = D1 sin(ωt) + D2 cos(ωt), (4.11) 

where D1 and D2 are unknown constants. For any given stiffness and mass 

functions, EIz(x) and m0(x), respectively, there is an infinite set of frequen- 
cies ω and associated modes X(x) that satisfy the eigenvalue problem defined 
by equation (4.10) and the corresponding boundary conditions of the beam. 

 
Model 1 — Straight cylindrical beam (SCB) 

For the special case of the SCB (Model 1), when EIz(x) = EIz = const 
and m0(x) = m0 = const, the equation (4.10) can be written as: 

EIzX
jjjj 

(x) − ω2m0X(x) = 0. (4.12) 
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The general solution of the above equation is 

X(x) = C1 sin(βx) + C2 cos(βx) + C3 sinh(βx) + C4 cosh(βx), (4.13) 

where 

β4 = 
ω2m0 

 
 

EIz 
. (4.14) 

This solution contains four unknown constants, C1, C2, C3, and C4. They 
are unique for a given set of boundary condition and the eigenvalue param- 
eter β. 

 
Uniform simply supported beam 

For an uniform simple supported beam (Fig. 4.1), the displacements and 
the bending moments at x = 0 and x = L are zero (see (4.15)): 

 

 

v(0, t) = 0, 
∂2v(0, t) 

∂x2 
= 0, v(L, t) = 0, 

∂2v(L, t) 

∂x2 
= 0. (4.15) 

Then, using the first two boundary conditions, gives C2 = C4 = 0, and 

the general solution reduces to 

X(x)  =  C1 sin(βx) + C3 sinh(βx). (4.16) 

Substituting it to the last two conditions of (4.15), it follows 

C3 sinh(βL) = 0. (4.17) 

The multiplier sinh(βL) cannot be zero. Otherwise, ω would be zero too, 

i.e., a trivial solution implying no vibration at all. So, the coefficient C3 must 
be zero. This leads to the frequency equation: 

C1 sin(βL) = 0. (4.18) 

The equation can be satisfied by selecting C1 = 0, which gives X(x) = 0, 
i.e. a trivial solution. Therefore, sin(βL) = 0, from which 

βL = nπ, n = 1, 2, 3, ... (4.19) 

Equations (4.14) and (4.19) then give the corresponding natural vibration 
frequencies: 

n2π2 
.

EIz 
 0 ωn = L2 m 
, n = 1, 2, 3, ... (4.20) 
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. Σ 

0 

 
 
 

 

The natural vibration mode Xn(x) corresponding to each ωn is obtained 
by substituting equation (4.19) in (4.16) with C3 = 0 as determined earlier: 

 
Xn(x) = C1 sin

.

nπx
Σ

. (4.21) 

 
The value of C1 may be arbitrary. For example, C1 = 1 makes the maximum 
value of Xn(x) equal to unity. The first four natural modes of the SCB are 
shown in Fig. 4.3. 

 

 
Figure 4.3: Four mode shapes of the simply supported SCB (Model 1) 

 

 
Model 2 — Truncated conical beam (TCB) 

To find natural vibration frequency of the TCB, the Rayleigh’s method, 
based on Rayleigh’s quotient, can be applied [42]. 

 

L 

EIz(x) 
 

 

d2v(x) 2 

dx2 
dx 

R(ω0) = ω2 ≈ L 

ρA(x)v2(x)dx 
0 

. (4.22) 

 

The deflection shape of the beam, which satisfies the boundary condi- 
tions (4.15), is 

v(x) ≈ ṽ(x) = x(x3 − 2Lx2 + L3). (4.23) 

0 

∫ 

∫ 
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Substituting the corresponding values, then for the spacial case of the 
TCB, when rt = rb/2, the Rayleigh’s quotient gives the formula for the first 

natural vibration frequency: 

ω   ≈ 3.849 
rb  

.

E
. (4.24) 

 

This formula gives an upper boundary value for the first eigenfrequency. 

 
4.4 Timoshenko beam theory 

The Timoshenko theory takes into account the rotary inertia, shear defor- 
mation and their combined effects [43]. Cross-sections are still assumed to 
remain plane in this development. In contrast to the Euler-Bernoulli beam 
theory, the cross-section is no longer constrained to remain perpendicular to 
the neutral axis (Fig. 4.4). 

 

Figure 4.4: Euler-Bernoulli beam theory and Timoshenko beam theory 

The exact solution of the beam vibration problem requires the deflection 
due to the shear stress to be considered. So, the angle ∂v(x, t)/∂x between 
the beam axis and the x axis is a sum of the angle θ(x, t) due to pure bending 
and the shear angle γ(x, t), i.e.: 

 

∂v(x, t) 
 

 

∂x 

 
= θ(x, t) + γ(x, t). (4.25) 
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y ∂x 

m0 ∂t2 
+ 

∂x θ − ∂x 

ρIz ∂t2 
= 

∂x EIz ∂x θ − ∂x 

EIz ∂x4 
+ ρA ∂t2 

− ρIz 1 + 
kG ∂x2∂t2 

+
 ∂t4 

=
 

 
 
 

 

Another factor that affects the transverse vibration of the beam, is the 
fact that each section of the beam rotates slightly in addition to its lateral 
motion, when the beam deflects. The influence of the beam section rotation 
is taken into account through the rotary inertia of the beam’s element: 

∂2θ(x, t) 
ρIz(x) dx. 

∂t2 

The bending moment Ṁ 
bz (x, t)  =  Mbz(x, t)ėz  and  the  transverse  shear 

force Q̇y (x, t) = Qy(x, t)ėy  are related to θ and v by the expressions: 
 

Mbz(x, t) = EIz(x) 
∂θ(x, t) 

, (4.26) ∂x 

Q  (x, t) = kGA(x)

.

θ(x, t) − 
∂v(x, t) 

Σ

. (4.27) 
 

Here, G is the shear modulus, A is the cross-section area, EIz is the bending 
stiffness, k is Timoshenko shear coefficient depending on the shape of the 
cross-section. It is within the range [0.5, 1]. For the circular cross-section of 
the beam k=0.9 [44] 

By applying d’Alembert’s principle, the system of coupled differential 
equations for transverse vibration of the Timoshenko beam subjected to an 
external load q(x, t) is given by 

∂2v ∂ 
.

 
 

 

. 

∂v 
ΣΣ 

 

∂2θ 
 

 

∂  
. 

∂θ 
Σ

 

. 

∂v 
Σ 

 

where m0(x) is the mass of the beam, v(x, t) is the transverse displacement. 
By solving the first equation (4.28) for ∂θ/∂x and substituting the result 

into the second one, we obtain the equation of motion of an uniform, isotropic 
beam of constant cross-section (m0(x) = ρA = const, EIz = const): 

∂4v 
 

 

∂2v 
 

 

. 

E 
Σ 

∂4v ρ2Iz ∂4v 
 

  
 

 
ρIz ∂2q(x, t) EIz ∂2q(x, t) 

kGA ∂t2 
− 

kGA ∂x2 
+ q(x, t). (4.29) 

kG 

kGA = q(x, t), 

− kGA , (4.28) 
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n 

EIz ∂x4 
+ ρA ∂t2 

− ρIz 1 + 
kG ∂x2∂t2 

+
 ∂t4  

= 0. (4.30) 

L n 

 
 
 

 

4.5 Natural frequencies of Timoshenko beam 

For the case of free vibration q(x, t) = 0, equation (4.29) becomes 

∂4v ∂2v 
. 

E 
Σ 

∂4v ρ2Iz ∂4v 
 

Consider a solution of the form 

v(x, t) = C sin

.

nπ 
x 

Σ 

sin(ωj t), (4.31) 

which satisfies the necessary boundary conditions at x = 0 and x = L, when 

both ends are simply supported.  Here, C is a constant, ωn
j
 

frequency of a Timoshenko beam. 

is the nth natural 

Denoting a natural frequency of the Euler-Bernoulli beam, when both 
the effects of rotary inertia and shear deformation are neglected, by ωn (see 
equation  (4.20)),  and  defining  Ωn  =  ωn

j /ωn,  the  frequency  equation  can  be 
written as: 

.

1 − Ω2 
Σ 

− Ω2 
.nπr Σ2 

.

1 + 
E

 Σ 

+ Ω4 
.nπr Σ4 E = 0, (4.32) 

n n L 

where r2 = Iz/A. 

kG n L kG 

It can be seen that the equation (4.32) is a quadratic equation in Ω2 , and 
for any given n there are two values of Ωn that satisfy this equation. The 
smaller value corresponds to the bending deformation mode, while the larger 
one corresponds to the shear deformation mode [44]. Figure 4.5 shows the 
dependence of the ratio Ωn on nr/L for three values of E/kG. 
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It may be seen that when nr/L 1, equation (4.32) reduces to Ωn ≈ 1, 

i.e.  ωn
j  ≈ ωn. 

 

4.6 Governing equation of the beam and its approxi- 

mation 

Consider small transverse vibrations of the beam about its straight equilib- 
rium configuration in the x-y plane and in the absence of a force of viscous 

damping. That means that the displacement v(x, t) in the y direction and 

its derivative are of the first order of smallest (Fig. 4.6). The inertia forces 
associated with the rotation of the cross-section of the beam with respect to 
its own principal axis and the shear deformation are not taken into account. 
So, the Euler-Bernoulli beam theory is considered. Since the longitudinal 
inertia forces can substantially influence the dynamic stability of the beam 
only in the case, where the frequency of the external force is near the longi- 
tudinal natural frequencies of the beam, we consider that the system is not 
close to the resonance of the longitudinal vibrations [45]. 

 

Figure 4.6: Deflection of the TCB under the periodic force acting on the tip 

The transverse motion of the beam under an applied periodic force Ḟ (t) = 

F0 cos(Ωt)ṅt,  which  is  applied  perpendicularly  to  the  cross-section  at  the 

tip of the beam, is described by the following equation [46]: 
 

L- (v) = 0, (4.33) 

where 

∂2v(x, t) 
 

 

∂2 
Σ 

 

 

∂2v(x, t) 
Σ

 
 

 

 

∂2v(x, t) 
 

 

∂x2 
L- (v) = m0(x) EIz(x) + F0 cos(Ωt) 
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The beam can not experience any displacements and bending moment at 
the base x = 0, and the support conditions at the tip of the beam x = L 
allow small displacements only in the horizontal direction. Since no external 
bending moment is applied at the tip, the bending moment at that location 
is zero. Consequently, we have the following boundary conditions for the 
function v(x, t) itself as well as for the second derivative of it (see (4.1)): 

 
v(0, t) = 0, 

∂2v(0, t) 

∂x2 
= 0, v(L, t) = 0, 

∂2v(L, t) 

∂x2 
= 0. (4.34) 

To solve equation (4.33) Galerkin’s Method is used, that is a method for 

finding the approximate solution of a differential equation [47]. This powerful 
method allows to reduce a partial differential equation to an ordinary one. 
The basic idea of the method of Galerkin is the following. It is required to 
determine  the  solution  of  the  equation  L- (v)  =  0,  which  satisfies  boundary 

conditions (4.34). We shall seek an approximate solution of the equation in 
the form: 

n 
∼v(x, t) = ciϕi(x)f i(t), (4.35) 

i=1 

where ϕi(x), i = 1, ..., n, is a certain system of chosen basis functions satisfy- 
ing the boundary conditions, and ci are undetermined coefficients. Consider 
the functions  ϕi(x) to be linearly independent.  In order that 

∼v(x, t) be the 

solution  of  the  equation  L- (v)  =  0,  it  is  necessary  that  L- (
∼v)  be  identically 

equal to zero. This requirement is equivalent to the condition of the orthog- 

onality of L- (
∼v) to all the functions of the system ϕi(x), i = 1, ..., n.  Stating 

these conditions, the linear system of n equations for the determination of 
the coefficients ci follows 

L n 

L- 
0 i=1 

ciϕi(x)fi(t)

Σ

 

 

ϕi(x)dx = 0, i = 1, ..., n. (4.36) 

Thus,  substituting  ci  in  the  expression  for  
∼v(x, t),  the  required  approxi- 

mate solution can be obtained. Here, a one-term approximation by Galerkin’s 

Method of the equation (4.33) in the form 
∼v(x, t) = sin(πx/L)f (t) is assumed. 

It satisfies the pinned-pinned boundary condition of the beam (4.34). 

Substituting  this  expression  for  
∼v(x, t)  in  equation  (4.33),  we  obtain  an 

ordinary second-order differential equation written in dimensionless form as 

f̈ (τ ) + [1 − ε cos (γτ )] f (τ ) = 0, (4.37) 

∫ 



3
0 

 

. 

0

 

b 

b 

ƒ 

 
 
 

 

where: 
 

ε = 

 
 
2πL2 

 

 
4a ρL4 F0, γ = Ω 

 

 

 
 
 
, τ = t 

. 

a1Er2
 

 
 

, δ = 

 
 
rt , 0 ≤ δ ≤ 1, 

a1Er4
 

1 a 
 

 

a1Er2
 

2 1 2 
 

 

4a0ρL4 rb 

0 = 
6 

(1 + δ + δ ) − 
4π2 

(1 − δ) > 0, (4.38) 

π4 
2
 

a1 = 
10 

(1 + δ + δ + δ3 + δ4) − 
π2 

3
 

2 
(1 − δ)(1 − δ 

3 4 
) + 

4 
(1 − δ) > 0. 

Equation (4.37) with periodic coefficient has the same form as the Math- 
ieu equation (3.12), which describes parametrically excited vibrations. A 
periodic solution of (4.37) correspond to specific values of the dimensionless 
parameters ε and γ. Let us further determine the conditions of the paramet- 
ric resonance, that is, the ranges of the parameters ε and γ, when the beam 
performs oscillations whose amplitude increases progressively . 

 
4.7 The procedure of averaging and the principle range 

of the parametric resonance 

According to [2], for an approximate analysis of a non-linear oscillating pro- 
cess described by (4.37), the method of averaging is used, when the exact 
differential equation of the motion is replaced by its averaged version [48]. 
To use this method, it is first needed to reduce (4.37) to the standard form 
by a change of variables. If we put ε = 0 in (4.37), then it describes a simple 
harmonic vibration with dimensionless natural frequency equal to unity. The 
general solution is f (τ ) = a cos (τ + θ), where constants a and θ, represent 
the amplitude and phase respectively, which are determined from the initial 
conditions. The solution to the perturbed equation (when ε = 0) is sought 
in the same form, but now a and θ are allowed to vary with τ : 

 

f (τ ) = a(τ ) cos (τ + θ(τ )). (4.39) 
 

By following the method [48], an additional condition on the functions a(τ ) 
and θ(τ ) is imposed: 

 

ḟ(τ ) = −a(τ ) sin (τ + θ(τ )). (4.40) 

b 
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∫ 

0 

ξ0(τ ) = 
2π ξ(τ )dψ = ε∆ + 

2 
cos(ξ0(τ )), (4.44) 

 
 
 

 

Then it can be shown that the differential equation (4.37) of second order 
converts to the system of two equations of the first order for a(τ ) and θ(τ ): 

ε 
ȧ(τ ) = − 

2 
a(τ ) sin(2ψ) cos(γτ ), 

θ̇(τ ) = −ε cos2(ψ) cos(γτ ), (4.41) 
 

Where ψ = τ + θ(τ ). 

It is shown that the most intense parametric resonance and, therefore, 
maximal energy transfer to the system occurs, when the value of the fre- 
quency γ is close to the doubled frequency of free vibrations of the beam 
[49]. Consequently, we can set: 

 

γ  = 2 + εO. (4.42) 

The system of (4.41) can be written by introducing a new, slowly varying 

variable ξ(τ ) = γτ − 2ψ as follows: 

ε 
ȧ(τ ) = − 

2 
a(τ ) sin(2ψ) cos(ξ(τ ) + 2ψ), 

ξ̇(τ ) = εO + 2ε cos2(ψ) cos(ξ(τ ) + 2ψ). (4.43) 

Note that these equations are still exact, no averaging has been made as 
yet. Further on,  the assumption for the value  of the parameter ε is used: 
0 < ε 1. 

The method of averaging assumes that if a(τ ) and ξ(τ ) are smooth func- 
tions of the time such that their derivatives are small terms of order ε. Then 
values of these functions can be naturally seen as the superposition of slowly 
varying part and small rapidly oscillating terms. Considering these terms 
cause only small oscillations of a real function about its mean part, they can 
be neglected in zero-order approximation. Thus, the right-hand part of the 
previous system of equations (4.43) can be averaged on the variable ψ over 
one period: 

 1 2π 

ȧ0(τ ) =  
2π 

ε 
ȧ(τ )dψ =  

4 
a0(τ ) sin(ξ0(τ )), 

˙  1  
∫ 2π  

˙ ε 

where a0 = a and ξ0 = ξ are held fixed during the integration. The system 

of differential equations (4.44) is nonlinear. However, it may be simplified to 

0 
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− ∆ 
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4ρ 

 
 
 

 

a linear system with constant coefficients by defining new variables 

η(τ ) = a  (τ ) cos 

.

ξ0(τ ) 
+ 

π 
Σ 

and ζ(τ ) = −a  (τ ) sin 

.

ξ0(τ ) 
+ 

π 
Σ

 

0 
2 4 

0 
2 4 

(4.45) 
Substituting η(τ ) and ζ(τ ) into (4.44) gives: 

ε 
η̇(τ ) = − 

4 
η(τ ) + 

ε∆ 
ζ(τ ) 

2 

ζ̇(τ ) = − 
ε∆

η(τ ) + 
ε

ζ(τ ) (4.46) 
 

The matrix corresponding to the system of constant coefficient linear 
differential equations (4.46) has the following eigenvalues 

2 ε2 
.

1 2

Σ 

 

 

 

 

According to Lyapunov stability theory [50], the solution of (4.46) is aperiodic 
and unstable, if an eigenvalue λ with positive real part exists. Thus, the 
resonance takes place within the interval 

1 
|∆| < 

2 
(4.48) 

around the frequency dimensionless value ω = 2. 

The range of parameters 

ε 
0 < ε      1 and |γ − 2| < 

2 
(4.49) 

is called the region of the principal parametric resonance. The width of this 
region is proportional to the parameter ε [2]. 

 
Model 1 — Straight cylindrical beam (SCB) 

For the SCB (Model 1), when rt = rb, the parameters defined by (4.38) 

are the following: 

1 π4 Ω 4L2F0 
δ = 1, a0 = 

2 
, a1 = 

2 
, τ = tω0, γ = ω , ε = π3Er4 , (4.50) 

π2 
.

Er2
 

 L2 

4 λ . (4.47) 

where ω0 = is the natural vibration frequency of the SCB (see (4.20)). 
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Thus, if ε 1, the region of the principal parametric resonance of the 

SCB is 

.

2 − 
ε 
Σ

ω   < Ω < 
.

2 + 
ε 
Σ

ω  . (4.51) 

Model 2 — Truncated conical beam (TCB) 
For the special case of the TCB (Model 2), when rt = rb/2, the parame- 

ters (4.38) of the beam are 
 

Ω 
δ = 0.5, a0 ≈ 0.285, a1 ≈ 16.761, τ = tω0, γ = ω 

L2F0 
, ε ≈ 0.375 Er4 , 

 
 

where ω ≈ 3.832 
rb  

.

E
 

 
 
(see (4.24)). 

Thus, if ε 1, the region of the principal parametric resonance of the 

TCB is 

.

2 − 
ε 
Σ

ω   < Ω < 
.

2 + 
ε 
Σ

ω  . (4.52) 

0 b 

0 
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− 

− 

− 

− 

L0 = (l0 ) = − sin ϑ30(s)    cos ϑ30(s) 0  , (5.1) 

 
 
 
 

5 Theoretical analysis of parametric vibra- 

tions of curved cylindrical beam 

5.1 Formulation of the problem 

In this chapter, parametric vibrations of a circular cylindrical beam (CCB) 
(Model 3) are analysed theoretically. According to [32], it is considered an 
Euler-Bernoulli beam whose underformed neutral axis is an arc of a circle 

with  the  radius  R0 and  central  angle  π/2 ϕ  (Fig.  5.1).   The  diameter  of 
the beam circular cross-section d is assumed to be constant along the axial 

direction. Herewith, the initial curvature of the beam is κ0 = 1/R0 = const. 
The right-handed Cartesian coordinate system is placed such that the 

origin is in the middle of the base’s cross-section, and the axial line of the 
beam lies in the x-y plane, which is the principal plane of the beam at each 
point. The circular axial line of the beam can be represented parametrically 

as x = R0(1 − cos(s/R0)), y = R0 sin(s/R0)), where s ∈ [0, L] is the natural 

parameter, and L = R0(π/2 − ϕ) is the length of the beam. 
Consider the orthogonal basis vectors ėi0, i = 1, 2, 3 attached to the axial 

line of the beam in the static equilibrium configuration, and the orthogonal 
basis ėi, i = 1, 2, 3 to the moving curvilinear axial line of the beam (Fig. 5.1). 

Cartesian  basis  vectors  ̇ex, ̇ey, ̇ez  are  transformed  to  the  attached  basis 

ėi0, i = 1, 2, 3 by the following matrix: 

 

cos ϑ30(s) sin ϑ30(s) 0  

 

0 0 1 
 

where ϑ30(s) = π/2    s/R0 is the angle between the vectors ė10 and  ėx, taken 

positive. 
The periodic force Ḟ (t) applied directly toward the tip of the beam s = L 

can  be  expressed as  Ḟ (t) =     F0 cos(Ωt)ė1,  where  F0 is  the  constant  ampli- 
tude and Ω is the constant angular frequency. We shall suppose throughout 

that vibrations of the beam caused by the force Ḟ (t) about its natural config- 

uration in the x-y plane are small. That means that the displacement vector 
u̇(s, t) and the angle ϑ3(s, t) between vectors ė1 and ė10 are of the first order 
of smallest(see Fig. 5.1(a)). It will be also assumed that ϕ is a small angle 
in order to show analytical methods in detail for the slightly simpler case. 
Cartesian  basis  vectors  ̇ex, ̇ey, ̇ez  can  be  transformed  to  the  attached  basis 

ij 
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ėi = lij l0 ėk, where L = (lij) = −ϑ3(s, t) 1 0  . (5.2) 

 
 
 
 
 

 
 

Figure 5.1: (a) Deflection of the CCB under the force acting on the tip. 
(b) Free-body diagram of a beam element of infinitesimal length ds with 

internal actions upon it [32] 
 

ėi, i = 1, 2, 3 as follows: 
 
 
 

 

1 ϑ3(s, t) 0  

0 0 1 
 

Here, the summation on repeating indexes j = 1, 2, 3 and k = x, y, z is meant. 
In the attached coordinate system ėi, i = 1, 2, 3, the displacement vector 

u̇ of the beam axis points has two time-dependent components: 
 

u̇ = u1(s, t)ė1 + u2(s, t)ė2. (5.3) 
 

Small deflection theory, together with the assumption of an inextensible 

axial line, shows that the change in curvature ∆κ = κ − κ0 and the local 
transverse displacement u2(s, t) are related through 

 

2 ∂2u2 1 
∆κ = κ0u2 +  ∂s2 

, where κ0 = − R 
. (5.4) 

 

This means that the change in curvature is of first-order smallness. 

jκ 

0 
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κ 

0 

L- (u2) = ρA  ∂t2   
− κ2 ∂s2∂t2 

+ ρIz ∂t2 2 
0 ∂s4 

+ 2 ∂s2 
+ κ0u2 

∂s6 
+ 2 

∂s4 
+ κ0 ∂s2 

+ 
κ2 ∂s2 

N (s, t) 
∂s2 

+ κ0u2 

+ 
κ 

Q(s, t) 
∂s2 

+ κ0u2 

 
 
 

 

5.2 Governing equation of the curved beam and its 

approximation 

According to [32], differential equation that represents the in-plane vibra- 
tional motion of the CCB is derived from consideration of the variation   
of forces and moments across an element of the beam. Consider the free- 
body diagram of an element of the beam shown in (Fig. 5.1(b)), where 

Ṅ   =  N (s, t)ė1  is  the  normal  axial  force,  Q̇ =  Q(s, t)ė2  is  the  transverse 

shear force, and Ṁ = M (s, t)ė3 is the bending moment. 

For the circular beam with constant initial curvature, the in-plane vibra- 
tional motion of the beam can be described with a single partial differential 
equation of sixth order. With regard to the rotary inertia and in the absence 

of the force of viscous damping, the equation of motion in terms of u2(s, t) 

has the following form [46]: 
 

L- (u2) = 0, (5.5) 

where 

∂2u2 ρA  ∂4u2 ∂2 
. 

1 ∂4u2 ∂2u2 2 

Σ

 

. 

1 ∂6u2 

∂4u2 2 ∂2u2 
Σ 

1   ∂2 
. .

∂2u2 2 

ΣΣ

 

 

 1   ∂  
. .

∂2u2 2 

ΣΣ

 

 

Here, ρ is the mass density of the beam material, A = πd2/4 is the cross- 

sectional area, d is the diameter of the beam, Iz = πd4/64 is the moment of 
inertia of the cross-section, and E = const is Young’s modulus. 

The  components  of  the  normal  force  Ṅ 
Q̇  = Q(s, t)ė2 are 

= N (s, t)ė1 and  the  shear  force 

 

N (s, t) = F (t)[(cos(ϕ) sin(κ0s) − (1 + sin(ϕ)) cos(κ0s)] 

Q(s, t) = F (t)[cos(ϕ) cos(κ0s) + (1 + sin(ϕ)) sin(κ0s)]. (5.6) 
 

The  bending  moment  Ṁ =  M (s, t)ė3 at  any  cross-section  of  the  beam  can 
be expressed in terms of displacement component u2(s, t) as 

 
M (s, t) = EIz∆κ = EIz 

.

κ2u2 + ∂2u2 
 

 

∂s2 

 
. (5.7) 

0 

0 

κ 

Σ 

−EIz 2 
0 

0 ∂s 
. 
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0 0 ϕ2 

9π2(80R2 + 9d2)2 

− 

 
 
 

 

At the pinned left end of the beam s = 0 there cannot be any displace- 
ments or bending moment. At the right end of the beam the support al- 
lows small displacement only in the horizontal direction. That means the 
y-coordinate of u̇ is zero.  Using equations (5.2) and (5.3) and retaining lin- 

ear terms, we get u2 = 0 at s = L. Since no external bending moment is 

applied at the right end of the beam, the bending moment at that location 
is zero. Consequently, we have the following boundary conditions for the 

function u2(s, t) itself as well as for the second derivative of it: 
 

u2(0, t) = u2(L, t) = 0 and ∂2u2(s, t) 
 

 

∂2u2(s, t) = 
 

 

 
= 0. (5.8) 

∂s2 
.
(0,t) ∂s2 

.
(L,t) 

 
 

Galerkin’s  Method  of (5.5)  in  the  form  ũ2(s, t)  =  sin(πs/L)f (t),  which 
satisfies the support boundary conditions of the beam (5.8).  Substituting 
this  expression  for  ũ2(s, t)  in  equation  (5.5),  we  obtain  a  second-order  or- 
dinary differential equation for the function f (t). It can be written in the 

dimensionless form as 
 

f̈ (τ ) + (1 − ε cos(γτ ))f (τ ) = 0, (5.9) 

Here, dimensionless variables are introduced as second-order approximation 
with respect to the small angle parameter ϕ: 

 

 
t 

τ = 
tc 

where 

 
, γ = Ωtc, ε = 

 
2 
0 

5π2Ed4 

 
182 

1 ϕ 
45π 

 
1  2036 

2 
− 

225π2 
ϕ2

Σ  

, (5.10) 

 
tc = R0 

. 

ρ  (80R2 + 9d2) 

.

1 − 2(688R2 + 27d2) ϕ 
 

 

6d E 0 3π(80R2 + 9d2) 
128R2(6704R2 + 1107d2) 

Σ

 

 

5.3 The principle range of the parametric resonance 

Equation (5.9) is the second-order linear ordinary differential equation with 
periodic coefficient. So, parametric vibrations of the beam with constant 

Just like in chapter 4.6, it is assumed a one-term approximation by 

0 

0 

. Σ 

+ . (5.11) 

− 
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initial curvature can be described by the same Mathieu equation (see (3.12) 
and (4.37). The parameter ε can be treated as a small parameter: ε 1. 

It is shown theoretically in chapter 4.7 that the principle parametric res- 
onance of the beam (CCB) occurs for infinite number of excitation angular 
frequency values Ω, see (5.10), and the principle range of the parametric 
resonance, as seen in (4.49): 

ε ε 
2 − 

2 
< Ωtc < 2 + 

2 
. (5.12) 
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6 Numerical simulations 

The response of the parametrical excitation in our analysis (Model 1 to 
Model 3), corresponds to the nonlinear behaviour of the displacements. Stud- 
ies of phase difference between input and response are also performed for the 
transient responses for a range of excitation frequencies. This phenomenon is 
described by (4.33, 5.5), depending on the geometrical model to be analysed. 
These models are described by partial differential equations (PDEs). The 
solution of the PDEs with respect to the boundary conditions has to be ob- 
tained using numerical methods. A commonly used numerical approximation 
of structural mechanic problems is the finite element method (FEM). The 
basic functional principle of the FEM is to discretize a large domain with 
small elements, at which a local shape function is used to match the un- 
derlying PDE. The quality of the FEM-approximation works best, if a large 
number of elements is used. For multi-dimentional problems, e.g. the ap- 
proximation of shells or volumes, the geometry of each element should match 
the used shape function. Keeping these fundamentals in mind, the FEM is 
able to handle complicated geometries, different material characteristics and 
a variety of accuracy. 

With the advances in the commercial finite element codes and numerical 
integration methods, it is possible to compute geometrical nonlinearities and 
other nonlinear effects in structural behavior. In this analysis, the transient 
response of our models is simulated for a periodic excitation with initial 
condition and without damping using the capabilities of the FEM software 
ANSYS. 

 
6.1 Remarks on FEM 

According to [51], for most structural dynamic problems of a mechanical 
system, the spatial concretization for the principle of virtual work using the 
finite element method gives the finite element semi-discrete equation of mo- 
tion as follows: 

[M ]{ü(t)} + [C]{u̇(t)} + {F i(t)} = {F a(t)} (6.1) 

where [M ] is the structural mass matrix, [C] is the structural damping ma- 

trix, {ü(t)} is the nodal acceleration vector, {u̇} is the nodal velocity vector, 
{u(t)} is the nodal displacement vector, {Fi(t)} is the internal load vector, 

{Fa(t)} is the applied load vector. 
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The structural dynamics problems concerned with the mechanical behav- 
ior governed by the above differential equation can be classified into two 
classes; that is, linear and nonlinear problems. In linear structural dynamics 
systems, the internal load is linearly proportional to the nodal displacement, 
and the structural stiffness matrix remains constant. Therefore, equation 6.1 
can be rewritten as: 

[M ]{ü(t)} + [C]{u̇(t)} + [K]{u̇(t)} = {F a(t)} (6.2) 

where [K] is the structural stiffness matrix. In nonlinear structural dynam- 

ics problems, the internal load is no longer linearly proportional to the nodal 
displacement, and the structural stiffness matrix is dependent on the current 

displacement ([K{u}]). 

Three methods are available for solving equation 6.2: 

Central difference time integration method: used for explicit transient 
analyses. 

• Newmark time integration method: used for implicit transient analyses. 

Hilber-Hughes-Taylor (HHT) time integration method: used also for 
implicit transient analyses, this method is an extension of the Newmark 
time integration method. 

For a nonlinear system, a linearized form of the time integration methods 
can be obtained by the Newton-Raphson method, see [51]. 
The Models (1 through 3) were made in ANSYS 16.2 and the used module 
was Workbench Mechanical which is used to develop transient analysis, linear 
and nonlinear. 

According to Ansys’s guidelines, there are different types of elements 
available for use in our analysis, we will use elements of type BEAM (one 
dimensional geometries) and SOLID (three dimensional geometries) because 
BEAM elements fit best to the geometry of the problem, but SOLID el- 
ements do not require an a-priori estimation of effects like shearing. The 
obious downside of using solid elements is the large equation system, which 
inevitable results. The characteristic and behaviour of the element will be 
described in the following cited. 

According to [51]: 

• 

• 
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Beam3: The element is based on Euler-Bernoulli beam theory, which 
is considered an uniaxial element with tension, compression, and bending 
capabilities. The element has three DOF at each node: translations in the 
nodal x and y directions and rotation about the nodal z-axis. 

 

 
Figure 6.1: Beam3: 2D-element with 3 DOF at each node [51] 

 
Beam188: The element is based on Timoshenko beam theory which 

includes shear-deformation effects. The element has six DOF at each node, 
these include translations in the x, y, and z directions and rotations about the 
x, y, and z directions. This element is well-suited for linear, large rotation, 

and/or large strain nonlinear applications. 
 
 

 

 
Figure 6.2: Beam188: 3D-element with 6 DOF at each node [51] 

 
SOLID186: Is a higher order 3-D 20-node solid element that exhibits 

quadratic displacement behaviour. The element is defined by 20 nodes hav- 
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ing three degrees of freedom per node: translations in the nodal x, y, and 

z directions. The element supports plasticity, hyperelasticity, creep, stress 
stiffening, large deflection, and large strain capabilities. 

 

 
Figure 6.3: Beam186: 3D-element with 6 DOF at each node [51] 

 
Loads: It is important to note the orientation of loads and its effect 

on the structure in large-deflection analyses. The pressure remains always 
perpendicular to the surface, than the force load and moment load, which 
remains with constant direction. 

 
6.2 Simulation for Model 1 – Straight cylindrical beam 

(SCB) 

6.2.1 Geometry and properties of the model 

An SCB (Model 1) is modeled in ANSYS 16.2 Workbench as a straight line 
body. The geometrical characteristics of the model are the length L and 
the radius rb. The material parameters are the density ρ and the Young’s 
modulus E. The values of the parameters are given in table 1.  As it will  
be shown below, these values are choose in such a way that the first natural 

vibration frequency of the SCB ω0 1 Hz holds for the theoretical model 
introduced in chapter 4. This allows a reasonable adequate time step size in 
the numerical simulation. No damping is considered. 

According to the theoretical model in the chapter 4, the periodic force 
perpendicular to the cross-section at the tip of the beam is applied (Fig. 4.1). 
Since it is not possible to apply a following force to the cross-section of the 
line body, it is necessary to define a solid body — a circular cylinder, which 
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Table 1: Properties of the model 1 of the SCB 
 

MODEL 1 

 Line Body Solid body 

L (mm) 50 1 

rb (mm) 1 1 

ρ (kg/m3) 1000 1e-6 

E (N/m2) 10313 2e+13 

 

is attached to the line body. The parameters of the cylinder are listed in 
table 1. The cylinder can be considered massless, since the mass of it is 
defined to be small (close to zero). Figure 6.4 shows the geometry of the 
model. 

According to [51], a line body with beam elements (beam3, beam44, 
beam188, etc.) has less number of elements than a body meshed with solid 
elements. This is important for computing resources and the duration of 
a simulation. Also, the meshing of the model needs to correspond to the 
nonlinear behaviour and its symmetry. 

In the present numerical simulation for the Model 1, the beam element 
(beam188) is used for the line body, and the solid element (solid186) is used 
for the cylinder (Fig. 6.4, right). The number of elements of the line body is 

 
 

 
Figure 6.4: (a) Geometry of the Model 1; (b) Meshing of the Model 1 with 
beam and solid elements 
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50 and of the solid cylinder is 16. The total number of nodes is 194. 
The transition between elements of the line and solid bodies is defined 

with the bonded type of contact. The multi-point constraint bonded contact 
(MPC) is used to consider the effects of the large-deformation, see Fig. 6.5. 
Both translational and rotational degrees of freedom are accounted for. 

 
 
 
 
 
 
 
 
 

 

Figure 6.5: MPC-based bonded contact between the line and solid bodies 

The corresponding pinned–pinned boundary conditions for the model are 

applied according the theoretical formulation of the problem (see Fig. 4.1 
and (4.34)). The left end point of the line body is pinned. It means that 

there is no displacement in all three directions and the rotation only around 
the z axis is free. The left cross-section of the solid body (cylinder) is pinned 
with free displacement along the x axis and free rotation around the z axis. 

In the model, the damping is not consider. The numerical damping is 
defined manually to be equal zero. 

 
6.2.2 Modal analysis of the natural vibration frequencies 

This chapter contains numerical results of the natural vibration frequencies 
of the SCB for the parameters listed in table 1. The results are compared 
with the values given by the theoretical formula (4.20)for the Euler-Bernoulli 
beam. 

The numerical analysis is done in ANSYS 16.2 Workbench using analysis 
system ”Modal”. The modal analysis determines the vibration character- 
istics (natural frequencies and mode shapes) of a structure or a particular 
component. 
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In order to compare the influences of the different meshing elements on 
the numerical values of the natural frequencies, simulations with the following 
elements are made: beam3, beam188, and solid186. 

Table 2 shows the theoretical and numerical results of the first three trans- 
verse natural frequencies of the SCB for the chosen values of the parameters 
(see table 1). It maybe seen that the numerical results for all used types of 
finite elements are close to the theoretical values. However, the solid model 
has 512 solid elements and 2201 nodes. Line body models with beam3 or 
beam188 have 66 elements and 194 nodes. That is why based on these re- 
sults, the element type beam188 further on will be used in numerical analysis 
of the parametrical resonance. 

The corresponding theoretical mode shapes of transverse vibrations of 
the SCB are evaluated according to (4.21) and presented in Fig. 4.3. The 
mode shapes of the SCB obtained numerically for the beam188 elements in 
ANSYS 16.2 Workbench are shown in Fig. 6.6. 

 
 

Table 2: Comparison of the theoretical and numerical results for the natural 
vibration frequency of the SCB (Model 1) in Hz. 

 
Modal Analysis 

 Theory Numerical calculation with ANSYS 

Euler-Bernoulli Beam3 Beam188 Solid model 

ω1 1.0089 1.0070 1.0068 1.0053 
ω2 4.0355 4.0080 4.0070 4.0016 
ω3 9.0800 8.9526 8.9439 8.9324 

  66 Elements 512 Elements 
  194 Nodes 2201 Nodes 
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Figure 6.6: Mode shapes of transverse vibrations of the SCB 

 
6.2.3 Transient analysis of the parametric excited SCB 

In ANSYS, the analysis system ”Transient structural” is used to determine 
the dynamic response of a structure under the action of any general time- 
dependent loads. It can be used to determine time-varying displacements in 
a structure as it responds to any transient loads. The effects of the inertia 
and damping maybe considered important in this analysis. 

According to the previous section, the line body is meshed by beam ele- 
ments (beam188) to evaluate the transient analysis. The boundary conditions 
are chosen according to the theoretical model in chapter 4.6. The left end 
point of the line body is pinned. It means that there is no displacement in 
all three directions and the rotation only around the z axis is free. The left 
cross-section of the solid body (cylinder) is pinned with free displacement 
along the x axis and free rotation around the z axis, see Fig. 6.7. 
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Figure 6.7: Boundary conditions at the base and at the tip of the model 

 
The time-varying load is defined as a periodic following pressure P (t) = 

−P0 cos(Ωt) normal to the cross-section of the cylindrical solid body. The 
amplitude of the pressure is P0 = 3 Pa. Thus, the periodic following force 

acting on the system is Ḟ (t) = πr2P (t)ṅt, where ̇nt is the normal vector to the 
cross-section. Note that the replacement of the normal force with pressure is 
necessary to define a load in the normal direction to the cross-section of the 
deformable beam. 

As it was shown before, the transient analysis of parametric excited vi- 
brations requires an initial deflection of the system from the equilibrium 
position. That is why, an additional load is needed to establish an initial 

displacement u0 and an initial velocity u̇0 of the system. 
The applying load process in the model is developed in three steps. The 

first dynamic load (the force Ḟ0)  is  applied  linearly  at  the  middle  of  the 
line body in the y direction within a time range [0, 0.25] s and discharged 
linearly within a time range [0.25, 0.5] s. The maximum value of the force 

is F0 = 10−7 N. These are the load steps 1 and 2, during which the initial 
deflection of the beam occurs. These time ranges are chosen according to the 
period of the time-varying pressure load P (t) as 0.25      π/Ω and 0.5      2π/Ω. 

The third main load step is within a time range [0.25, 30] s. The periodic 
excitation load P (t) is applied during load steps 2 and 3. The configuration 

of loads and boundary conditions of the Model 1 at the instant 0.25 s is 
shown in the Fig. 6.8. The sequence of the three load steps of the model is 
presented in the Fig. 6.9. 
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Figure 6.8: Model 1 of the parametrically excited SCB 
 

 

 

Figure 6.9: Three load steps of the Model 1: 1) [0, 0.25] s; 2) [0.25, 0.5] s; 
3) [0.5, 30] s 

 
Each dynamic load is established with a time integration, called time 

step, enough small to capture the response of the system. The time step is 
defined  considering  the  maximal  ideal  time  point  per  cycle  ∆t  =  1/(20ν), 
where the frequency ν = Ω/(2π) is measured in Hz (see Fig. 6.10). 
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Figure 6.10: Settings of the load step 3, during which the parametrical exci- 
tation is applied 

 
Simulation results 

As it is shown theoretically in chapter 4.7, the most response of the system on 
the parametrical excitation occurs close to the doubled first natural frequency 

of the system (see (4.49)). This range is called the region of the principal 

parametric  resonance.   The numerical simulations of the transient  analysis 

are made for the excitation frequencies Ω ≈ 2ω0 in order to find this principal 
range and also for Ω ω0 in order to find the second range of the parametric 

resonance. 
The results of simulations show that the Model 1 of the SCB exhibits 

parametrical resonance vibrations within the following ranges of the excita- 
tion frequency ν = Ω/(2π): 

the principal range of the parametric resonance: 

1.87 ™ ν ™ 2.15 Hz; 

the second range of the parametric resonance:

 (6.3

)                          0.99 ™ 

ν ™ 1.01 Hz. 
According to chapter 4.7, for the chosen values of the simulation param- 

eters the first natural vibration frequency of the SCB is ω0 = 1.0089 Hz and 
the dimensionless parameter ε = 0.2947, see (4.50). As it was shown before, 
the theoretical region of the principal parametric resonance depends on ε 
and ω0 and it is within a range (4.51): 
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1.8691 < ν < 2.1665 Hz. 



51  

0 

× 

× 

 
 
 
 
 

 
a=(2ω / Ω)2 

 
Figure 6.11: Ince-Strutt diagram of the Mathieu equation (4.37) indicat- 
ing the theoretical transition curves, which divide the a-q plane in sta-  
ble (white) and unstable (grey) regions. Cross markers ( ) correspond to the 
values of Ω, for which it is shown numerically that the parametric resonance 

takes place. ω0 = 1.0089 Hz and ε = 0.2947 

 
Figure 6.11 shows the Ince-Strutt diagram of the Mathieu equation (4.37). 

Theoretical transition curves divide the plane of the parameters a = (2ω0/Ω)2 

and q = 2ε(ω0/Ω)2 in stable and unstable regions.  The range close to a ≈ 1, 
i.e. Ω ≈ 2ω0, is the region of the principal parametric resonance. The range 

close to a ≈ 4, i.e. Ω ≈ ω0, is the second range of the parametric reso- 
nance.  For  ω0 =  1.0089 Hz and ε =  0.2947,  the results of the numerical 
simulation (6.3), for which the parametric resonance takes place, are indi- 
cated with cross markers ( ). It maybe seen that theoretical and numerical 
results correspond to each other. 

For example, for the excitation frequency ν = 2.01 Hz, which is within the 
region of the principal parametric resonance (6.3), the transverse displace- 
ment of the cross-section of the SCB at x = L/2 is presented in Fig. 6.12.   
It is obvious that the parametric resonance takes place, and the amplitude 
of the vibrations increases exponentially with time. Moreover, this result 
is compared with the conclusions of the theoretical analysis. The averaged 

amplitude a0(t) of parametric vibrations, calculated according to the analy- 

sis in chapter 4.7, is plotted for the initial amplitude value a0(0) = 0.024 mm. 

principal 
parametric 
resonance 

q = ε a 
2 

second range of 
the parametric 

resonance 

2 
q=

2 
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ω
0/ Ω

) 



52  

 
 
 
 
 
 
 

 
2 

 
 
 

0 
 
 
 

−2 
 
 
 

0 2 4 6 8 10 
Time, s 

 

Figure 6.12: Transverse  displacement  of the cross-section of the SCB at  
x =   L/2 for the excitation frequency  ν  =  2.01 Hz,  ω0 =  1.0089 Hz and   
ε = 0.2947. Solid line – the result of the numerical simulations; dashed line 
– the averaged amplitude a0(t) obtained theoretically for a0(0) = 0.024 mm 

 
Figure 6.13 shows the steady-state response of the system to the excita- 

tion frequency ν = 2.17 Hz, which is outside of the region of the principal 
parametric resonance (6.3), i.e. it corresponds to the region of stability. 
The transverse displacement of the cross-section of the SCB at x = L/2 is 

plotted as a function of time. Furthermore, the averaged amplitude a0(t) 
of parametric vibrations, calculated according to the theoretical analysis in 

chapter 4.7, is plotted for the initial amplitude value a0(0) = 0.0265 mm and 
θ(0) = 1.4573 . It may be see that the amplitude remains small and limited 
with time. The graph resembles the diagram of beat frequency in acoustic. 

Numerical solution 
   Theory: averaged amplitude a0(t) 
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Figure 6.13: Transverse  displacement  of the cross-section of the SCB at  
x =   L/2 for the excitation frequency ν  =  2.17 Hz,  ω0 =  1.0089 Hz and    
ε = 0.2947. Solid line – the result of the numerical simulations; dashed line 

– the averaged amplitude a0(t) obtained theoretically for a0(0) = 0.0265 mm 
and θ(0) = 1.4573 
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Figure 6.14: The second region of the parametric resonance: transverse dis- 
placement of the cross-section of the SCB at x = L/2 for the excitation 

frequency ν = 1.0 Hz, ω0 = 1.0089 Hz and ε = 0.2947 

 
Considering an excitation frequency ν = 1.0 Hz, which is within the 

second region of the parametric resonance (6.3), the transverse displacement 
of the cross-section of the SCB at x = L/2 is presented in Fig. 6.14. It is 

obvious that the parametric resonance takes place, and the amplitude of the 
vibrations also increases exponentially with time. The theoretical analysis 
for the second region is out of the scope of the present thesis. 

As it may be seen qualitatively in Fig.6.12 and 6.14, the response of the 
system on the parametrical excitation is stronger within the range of the 
principal parametrical resonance than within the second range. 

Figure 6.15 shows the steady state response of the system to the fre- 
quency ν = 1.03 Hz, which is outside of the region of the second parametric 
resonance (6.3). It shows the transverse displacement of the cross-section of 
the SCB at x = L/2 depending on the time. 
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Figure 6.15:  Transverse  displacement of the cross-section of the SCB at  
x =   L/2 for the excitation frequency  ν  =  1.03 Hz,  ω0 =  1.0089 Hz and   
ε = 0.2947 
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6.3 Simulation for Model 2 –Truncated conical beam 

(TCB) 

6.3.1 Geometry and properties of the model 

An TCB (Model 2) is modeled in ANSYS 16.2 Workbench as a straight 
solid body. The model has a variable circular cross-section.  The radius  
of the cross-section develops linearly along the axial direction of the TCB 
r(x) = rb +(rt rb)x/L, where rb and rt  are the radii at the base and the tip  
of the beam, respectively (Fig. 4.1). The material parameters, the density ρ 
and the Young’s modulus E, are same as for the SCB (Model 1). The values 
of the parameters are given in table 3. 

In the present numerical simulation for the Model 2, the solid element 
(solid186) is used. The number of elements of the solid body is 504. The 
total number of nodes is 2167 (Fig. 6.16). 

The corresponding pinned-pinned boundary conditions for the model are 
applied similarly as for the Model 1. The left end cross-section of the solid 
body is pinned. It means that there is no displacement in all three directions 
and the rotation only around the z axis is free. The right cross-section is 
pinned with free displacement along the x axis and free rotation around the 
z axis. In the model, the damping is not consider. The numerical damping 
is defined manually to be equal zero. 

 

Table 3: Properties of the Model 2 of the TCB 
 

MODEL 2 

 Solid Body 

L (mm) 50 

rb (mm) 1 

rt (mm) 0.5 

ρ (kg/m3) 1000 

E (N/m2) 10313 
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Figure 6.16: (a) Geometry and meshing of the Model 2; (b) Cross-section of 
the Model 2 

 
6.3.2 Modal analysis of the natural vibration frequencies 

This chapter contains numerical results of the natural vibration frequencies 
of the TCB for the parameters listed in table 3. 

The theoretical value of the first natural vibration frequency of the TCB is 
given by the formula (4.24) based on the Rayleigh’s method. Table 4 shows 
the theoretical and numerical results of the first three transverse natural 
frequencies of the TCB. It maybe seen that the value of the first natural 
frequency obtained numerically is slightly lower than the theoretical value. 
Thus, this corresponds to the fact that the Rayleigh’s quotient gives the 
upper boundary value for the first eigenfrequency. 

The mode shapes of the TCB obtained numerically for the solid168 ele- 
 
 

Table 4: Natural vibration frequencies of the TCB (Model 2) in Hz 
 

Modal Analysis 

 Theory Numerical 

ω1 0.7869 0.7090 

ω2  2.9593 

ω3  6.6026 
  504 Elements 
  2167 Nodes 
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Figure 6.17: Mode shapes of transverse vibrations of the TCB 

ments in ANSYS 16.2 Workbench are shown in Fig. 6.17. 

6.3.3 Transient analysis of the parametric excited TCB 

The response of the TCB on the parametric excitation is simulated in the 
analysis system ”Transient structural”, ANSYS 16.2 Workbench, in the same 
manner as for the SCB in section 6.2.3. The solid body is meshed by solid186 
elements to evaluate the transient analysis. The boundary conditions are 
chosen according to the theoretical model in chapter 4, see Fig. 6.18. 

The time-varying load is defined as a periodic following pressure P (t) = 

−P0 cos(Ωt) normal to the cross-section of the solid body. The amplitude of 
the pressure is P0 = 3 Pa. Thus, the periodic force acting on the system is 

Ḟ (t) = πr2P (t)ṅt,  where ṅt  is the normal vector to the cross-section.  Note 
that the replacement of the normal force with pressure is necessary to ensure 
a load in direction of the normal cross-section of the deformed beam. 

The applying load process in the model is developed in three steps. To 
create an initial displacement and initial velocity of the system, the first 

dynamic load (the force Ḟ0) is applied linearly at the middle of the solid body 
in the y direction within a time range [0, 0.25] s and discharged linearly within 
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Figure 6.18: Boundary conditions–base and tip of the Model 2 

 
a time range [0.25, 0.5] s. The maximum values of the force is F0 = 10−7 N. 
These are the load steps 1 and 2, during which the initial deflection of the 
beam occurs. The third main load step is within a time range [0.25, 30] s. 
The periodic excitation load P (t) is applied during load steps 2 and 3. The 

sequence of the three load steps of the model is similar to the Model 1 and 
presented in the Fig. 6.9. The configuration of loads and boundary conditions 
of the Model 2 in the instant 0.3505 s is shown in the Fig. 6.19. 

In the analysis settings, the minimum time step is defined 1e-3 s, and the 
maximum time step is defined 1e-2 s (Fig. 6.10). 
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Figure 6.19: Model 2 of the parametrically excited TCB 

 
Simulation results 

In this case, the aim of the simulations is to find numerically the region of 
the principal parametric resonance of the TCB. That is why the numerical 
simulations of the transient analysis are made for the excitation frequencies 
close to the doubled first natural vibration frequency of the beam: Ω 2ω0. 

The results of simulations show that the Model 2 of the TCB exhibits 

parametrical resonance vibrations within the following region of the principal 
parametric resonance: 

Simulation: 1.32 ™ ν ™ 1.50 Hz (6.4) 

According to chapter 4.7, for the chosen values of the simulation param- 

eters the first natural vibration frequency of the TCB is ω0 = 0.7869 Hz and 
the dimensionless parameter ε = 0.2124, see (4.52). As it was shown before, 
the theoretical region of the principal parametric resonance depends on ε 
and ω0 and it is within a range (4.52): 

Theory: 1.48 < ν < 1.65 Hz. 
 

Thus, it may be concluded that the accounting of the variable cross- 
section of the beam leads to a slight discrepancy between the theoretical and 
numerical results. 

For example, for the excitation frequency ν = 1.4180 Hz, which is within 
the numerical region of the principal parametric resonance (6.4), the trans- 
verse displacement of the cross-section of the SCB at x = L/2 is presented 
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in Fig. 6.20. It is obvious that the parametric resonance takes place, and 
the amplitude of the vibrations increases exponentially with time. Moreover, 

the averaged amplitude a0(t) of parametric vibrations, calculated according 
to the theoretical analysis in chapter 4.7, is plotted for the initial amplitude 
value a0(0) = 0.18 mm. Note that the theoretical averaged amplitude a0(t) 
of the TCB differs in time from the amplitude of the numerical result, since 
the nonlinear behaviour of the system due to the large deflections occurs. 
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Figure 6.20: Transverse displacement  of the cross-section of the SCB at  
x =   L/2 for the excitation frequency ν  =  1.48 Hz,  ω0 =  0.7869 Hz and    
ε = 0.2124. Solid line – the result of the numerical simulations; dashed line 

– the averaged amplitude a0(t) obtained theoretically for a0(0) = 0.18 mm 

 
Figure 6.21 shows the steady state response of the system to the frequency 

ν = 1.30 Hz, which is outside the numerical region of the principal parametric 
resonance of the TCB (6.4). It shows the transverse displacement of the cross- 

section of the TCB at x  =  L/2.  Moreover,  the averaged amplitude a0(t)  
of parametric vibrations, calculated according to the theoretical analysis in 
chapter 4.7, is plotted for the excitation frequency ν = 1.461 Hz, the initial 

amplitude value a0(0) = 0.078 mm and θ(0) = 1.7453. 

Numerical solution 
   Theory: averaged amplitude a0(t) 
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Figure 6.21:  Transverse  displacement of the cross-section of the TCB at  
x =   L/2 for the excitation frequency ν  =  1.30 Hz,  ω0 =  0.7869 Hz and    
ε = 0.2124. Solid line – the result of the numerical simulations; dashed 

line – the averaged amplitude a0(t) obtained theoretically for ν = 1.461 Hz, 

a0(0) = 0.078 mm and θ(0) = 1.7453 

Numerical solution 
   Theory: averaged amplitude a0(t) 
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6.4 Simulation for Model 3 – Circular cylindrical beam 

(CCB) 

6.4.1 Geometry and properties of the model 

An CCB (Model 3) is modeled in ANSYS 16.2 Workbench as a circular 
cylindrical line element. The model has the constant circular cross-section 

with a radius rb, the length L and the constant curvature radius R0. The 
material parameters, the density ρ and the Young’s modulus E, are same as 
for Models 1 and 2. The values of the parameters are given in table 5. 

According to the theoretical model in the chapter 5, the periodic force 
perpendicular to the cross-section at the tip of the beam is applied (Fig. 5.1). 
Since it is not possible to apply a following force to the cross-section of the 
line body, it is necessary to define a solid body — a circular cylinder, which 
is attached to the line body. The parameters of the cylinder are listed in 
table 5. The cylinder can be considered massless, since the mass of it is 
defined to be small (close to zero). Figure 6.22 shows the geometry of the 
model. 

 
Table 5: Properties of the model 3 of the CCB 

 
MODEL 3 

 Line Body Solid body 

L (mm) 51.323 1 

rb (mm) 1 1 

ρ (kg/m3) 1000 1e-6 

E (N/m2) 10313 2e+13 

R0 (mm) 65  

 
In the present numerical simulation for the Model 3, the beam element 

(beam188) is used for the line body, and the solid element (solid186) is used 
for the cylinder (Fig. 6.22, right). The number of elements of the line body 
is 52 and of the solid cylinder is 16. The total number of nodes is 198. 

The transition between elements of the line and solid bodies is defined 
with the bonded type of contact MPC, similar to the Model 1 see Fig. 6.5. 

The corresponding pinned–pinned boundary conditions for the model are 
applied as following. The left end point of the line body is pinned. It means 
that there is no displacement in all three directions and the rotation only 
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Figure 6.22: (a) Geometry of the Model 3; (b) Meshing of the Model 3 with 
beam and solid elements 

 
around the z axis is free. The left cross-section of the solid body (cylinder) is 
pinned with free displacement along the x axis and free rotation around the 

z axis. In the model, the damping is not consider. The numerical damping 
is defined manually to be equal zero. 

 
6.4.2 Modal analysis of the natural vibration frequencies 

This chapter contains numerical results of the natural vibration frequencies 
of the CCB for the parameters listed in table 5. 

The numerical results of the first three transverse natural frequencies of 
the CCB are given in the table 6. The mode shapes of the CCB obtained 
numerically for the beam188 elements in ANSYS 16.2 Workbench are shown 
in Fig. 6.23. 

 

Table 6: Numerical natural vibration frequencies of the CCB in Hz 
 

Modal Analysis 

 Numerical results 

ω1 0.9302 

ω2 3.6778 

ω3 8.4661 
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Figure 6.23: Mode shapes of transverse vibrations of the CCB 

 
6.4.3 Transient analysis of the parametric excited CCB 

The response of the CCB on the parametric excitation is simulated in the 
analysis system ”Transient structural”, ANSYS 16.2 Workbench, in the same 
manner as for the Models 1 in section 6.2.3. The system is meshed by 
beam188 and solid186 elements to evaluate the transient analysis. The 
boundary conditions is shown in Fig. 6.24. 

The time-varying load is defined as a periodic following pressure P (t) = 

−P0 cos(Ωt) normal to the cross-section of the solid body. The amplitude of 
the pressure is P0 = 3 Pa. Thus, the periodic force acting on the system is 

Ḟ (t) = πr2P (t)ṅt,  where ṅt  is the normal vector to the cross-section.  Note 
that the replacement of the normal force with pressure is necessary to ensure 
a load in direction of the normal cross-section of the deformed beam. 

The applying load process in the model is developed in three steps. To 
create an initial displacement and initial velocity of the system, the first 

dynamic load (the force Ḟ0) is applied linearly at the middle of the line body 
in the y direction within a time range [0, 0.25] s and discharged linearly within 

a time range [0.25, 0.5] s. The maximum values of the force is F0 = 10−7 N. 
These are the load steps 1 and 2, during which the initial deflection of the 
beam occurs. The third main load step is within a time range [0.25, 30] s. 
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Figure 6.24: Boundary conditions at the base and at the tip of the model 

 
The periodic excitation load P (t) is applied during load steps 2 and 3. The 

sequence of the three load steps of the model is similar to the Model 1 and 
presented in the Fig. 6.9. The configuration of loads and boundary conditions 
of the Model 3 in the instant 0.25 s is shown in the Fig. 6.25. 

In the analysis settings, the minimum time step is defined 1e-3 s, and the 
maximum time step is defined 1e-2 s (Fig. 6.10). 

 

 

Figure 6.25: Model 3 of the parametrically excited CCB 



67  

≈ 

≈ 

 
 
 

 

Simulation results 

The aim of the simulations is to find numerically the region of the principal 
parametric resonance of the CCB. That is why the numerical simulations of 
the transient analysis are made for the excitation frequencies close to the 

doubled first natural vibration frequency of the beam: Ω 2ω0. 
Figure 6.26 shows the response of the parametrical excitation frequency 

ν = 1.86 Hz, which is near the range Ω 2ω0. Antisymmetric vibrations are 

obtained. It may be seen that the amplitude of the vibrations increases with 
the time until certain steady state value (approximately 1.7 mm), and then 
it is stabilized. 

Figures 6.27 and 6.28 show the transverse displacement of the cross- 
section of the CCB at  x =  L/2 for two  frequency values  ν  = 1.96 Hz and   
ν = 1.74 Hz, respectively. It may be seen that in these cases the response of 
the system is more complex. Within the time range [0, 30] s antisymmetric 
vibrations are observed. 
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Figure 6.26: Transverse displacement of the cross-section of the CCB at 
x = L/2 for the excitation frequency ν = 1.86 Hz and ω0 = 0.9302 Hz 

Excitation frequency 1.86 
Hz 

Numerical 
solution 

D
is

pl
ac

em
en

t, 
m

m
 



6
8 

 

 
 
 
 
 

1.5 
 

1 
 

0.5 
 

0 
 

−0.5 
 

−1 
 

−1.5 
0 3 6 9 12 15 18 21 24 27 30 

Time, s 
 

Figure 6.27: Transverse displacement of the cross-section of the CCB at 
x = L/2 for the excitation frequency ν = 1.96 Hz and ω0 = 0.9302 Hz 
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Figure 6.28: Transverse displacement of the cross-section of the CCB at 
x = L/2 for the excitation frequency ν = 1.74 Hz and ω0 = 0.9302 Hz 
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7 Conclusions and outlook 

In nature, vibrissae are tactile hairs of mammals used as sensor elements for 
the exploring the surrounding area. These hairs, also known as whiskers, can 
be found in different locations on an animals body. Mystacial vibrissae are 
distributed over a whiskerpad on a muzzle and well organized in rows and 
columns. Carpal vibrissae are located on the downside aspect of the forelimbs 
of mammals. The vibrissal hair has a conical shape and grows from a special 
heavily innervated hair follicle incorporating a capsule of blood, called follicle- 
sinus complex. As the hair itself has no receptors along its length, the vibrissa 
may be considered as a system for transmitting forces and torques that arise 
from the contact between the hair and an object to sensory receptors inside 
the follicle. 

In the present thesis, the vibrational motion of vibrissae during natu- 
ral exploratory behaviour is analysed from the mechanical point of view. 
The phenomenon of the parametric resonance of the vibrissa is investigated 
theoretically and numerically. In the first part of this thesis, the following 
mechanical models of an elastic beam under an parametric excitation are 
studied theoretically based on findings in the literature: 

1. An elastic beam with the straight neutral axis and circular cross-section 
(chapter 4): 

Model 1: straight cylindrical beam (SCB) with the constant ra- 
dius of the cross-section; 

Model 2: truncated conical beam (TCB) with the linearly de- 
creasing radius of the cross-section; 

2. A curved elastic beam with the circular natural configuration and cir- 
cular cross-section (chapter 5): 

Model 3: circular cylindrical beam (CCB) with the constant 
radius of the cross-section. 

Within these theoretical models, a periodic following force is applied per- 
pendicular to the cross-section of the beam at the tip. The force corresponds 
to frictional interactions between the tip of the beam/vibrissa and a complex 
roughness profile of an investigated object. 

• 

• 

• 
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Based on this simplified formulation of the problem, small transverse 
oscillations of the beam are analysed using the Euler-Bernoulli beam the- 
ory. The approximation of the equation of motion of the beam is obtained 
by means of asymptotic methods of mechanics: Galerkin’s method and the 
method of averaging. 

In the second part of the thesis (chapter 6), the numerical analysis of the 
problems is performed based on the finite element method using ANSYS 16.2 
software. For each model, the dynamical mechanical response of the system 
on the parametric excitation is simulated for different frequency values. The 
numerical simulations of the natural vibration frequencies are made. 

It is shown theoretically and numerically that at specific ranges of the 
excitation frequency the phenomenon of the parametric resonance of the 
beam takes place. That means that the amplitude of vibrations of the beam 
increases exponentially with time, when it is stimulated within one of the 
frequency ranges of the parametric resonance. These ranges depend on the 
geometrical and material parameters of the beam model, as well as the am- 
plitude of the periodic excitation. The most response of the system on the 
parametrical excitation occurs close to the doubled first natural frequency of 
the system. 

For the Model 1 (SCB), two ranges of the parametric resonance are ob- 
tained numerically: the region of the principal parametric resonance close 
to the doubled first natural frequency of the system and the second range, 
which is around the value of the first natural frequency. It is shown that the 
theoretical and numerical results correspond well to each other. Moreover, it 
is demonstrated that the response of the system on the parametrical excita- 
tion is qualitatively stronger within the range of the principal parametrical 
resonance than within the second range. 

For the special case of the Model 2 (TCB), when the radius at the tip is 
two times smaller that the radius at the base, the difference between the the- 
oretical and numerical values of the first vibration frequency is observed. It 
corresponds to the fact that the Rayleighs method gives the upper boundary 
for the theoretical value. Hence, there is a slight discrepancy in the ranges of 
the principal parametric resonance obtained theoretically and numerically. It 
is associated with the accounting of the variable radius of the cross-section. 

For the Model 3 (CCB), the numerical results show that the response 
of the system on the parametric excitation with the frequency close to the 
doubled first natural vibration frequency is more complex. It may be seen 
that the amplitude of the vibrations increases with the time until certain 
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steady state value, and then it is stabilized. 
Thus, it is shown theoretically and numerically that from the mechani- 

cal point of view the phenomenon of parametric resonance of the vibrissa is 
possible. It can lead to the fact that arbitrarily small deviations of a system 
would produce a large response, and the amplitude of vibrations would in- 
crease progressively (exponentially) in time. The phenomenon of parametric 

resonance may be used to distinguish and amplify specific periodic compo- 
nents of a complex roughness profile during vibrissal texture discrimination. 

In future work, the present beam models of the vibrissa may be improved 
by considering simultaneously both the variable radius of the cross-section 
and variable natural configuration (intrinsic curvature) of the beam. Numer- 
ical simulations should be also performed using realistic values of the vibrissa 
parameters reported in the literature. 
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Appendix A: Report ”Transient Analysis” for 

the Model 1 (ANSYS 16.2 Workbench) 
 
 

 

Project 
 

First Saved Monday, November 16, 2015 
Last Saved Monday, December 07, 2015 

Product Version 16.2 Release 
Save Project Before Solution No 

Save Project After Solution No 
 

1 
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Contents 

• Units 
 

• Model (B4) 

O Geometry 
■ Parts 

O Coordinate Systems 
O Connections 

■ Contacts 
■ Bonded - Line Body To Solid 

O Mesh 
■ Mesh Controls 

O Named Selections 
O Transient (B5) 

■ Initial Conditions 
 

■ Modal (None) 
■ Analysis Settings 
■ Loads 
■ Solution (B6) 

■ Solution Information 
■ Results 

 

• Material Data 

O Material_Beam 
O Material_Null 

 
Report Not Finalized 

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. View first state problem. To 
finalize this report, edit objects as needed and solve the analyses. 

 
Units 

TABLE 1 

Unit System Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius 
Angle Degrees 

Rotational Velocity rad/s 
Temperature Celsius 

 

Model (B4) 

Geometry 
 

TABLE 2 

Model (B4) > Geometry 

Object Name Geometry 
State Fully Defined 

Definition 

Source D:\Benutzerdaten\StudentCesar\ANSYS_Model1_CSB\Principle_Range\Model1_CSB_Freq2.01\Model1_CSB_files\dp0 
\Geom\DM\Geom.agdb 

Type DesignModeler 
Length Unit Meters 

Element Control Program Controlled 
Display Style Body Color 

Bounding Box 

Length X 51, mm 
Length Y 2, mm 
Length Z 2, mm 

Properties 

Volume 160,21 mm³ 
Mass 1,5707e-004 kg 

Scale Factor Value 1, 
Statistics 

Bodies 2 
Active Bodies 2 

Nodes 194 
Elements 66 

Mesh Metric Element Quality 
Min 0,839097059212787 
Max 0,839111304391343 

Average 0,839104181802065 
Standard Deviation 7,35614855417366E-06 

Basic Geometry Options 
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Parameters Yes 
Parameter Key DS 

Attributes No 
Named Selections No 
Material Properties No 

Advanced Geometry Options 

Use Associativity Yes 
Coordinate Systems No 
Reader Mode Saves 

Updated File No 

Use Instances Yes 
Smart CAD Update No 
Compare Parts On 

Update No 

Attach File Via Temp File Yes 
Temporary Directory C:\Users\StudentCesar\AppData\Roaming\Ansys\v150 

Analysis Type 3-D 
Decompose Disjoint 

Geometry Yes 

Enclosure and Symmetry 
Processing Yes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Coordinate Systems 

TABLE 3 

Model (B4) > Geometry > Parts 

Object Name Line Body Solid 
State Meshed 

Graphics Properties 

Visible Yes 
Transparency 1 

Definition 

Suppressed No 
Coordinate System Default Coordinate System 

Reference Temperature By Environment 
Offset Mode Refresh on Update  

Offset Type Centroid  

Model Type Beam  

Stiffness Behavior  Flexible 
Material 

Assignment Material_Beam Material_Null 
Nonlinear Effects Yes 

Thermal Strain Effects Yes 
Bounding Box 

Length X 50, mm 1, mm 
Length Y 0, mm 2, mm 
Length Z 0, mm 2, mm 

Properties 

Volume 157,07 mm³ 3,1416 mm³ 
Mass 1,5707e-004 kg 3,1416e-015 kg 

Length 50, mm  

Cross Section Circular1  

Cross Section Area 3,1414 mm²  

Cross Section IYY 0,78529 mm²·mm²  

Cross Section IZZ 0,78529 mm²·mm²  

Centroid X  50,5 mm 
Centroid Y  -2,9613e-016 mm 
Centroid Z  2,6769e-016 mm 

Moment of Inertia Ip1  1,5549e-015 kg·mm² 
Moment of Inertia Ip2  1,0379e-015 kg·mm² 
Moment of Inertia Ip3  1,0379e-015 kg·mm² 

Statistics 

Nodes 101 93 
Elements 50 16 

Mesh Metric Element Quality 
Min 0 0,839097059212787 
Max 0 0,839111304391343 

Average 0 0,839104181802065 
Standard Deviation 0 7,35614855417366E-06 

 
TABLE 4 

Model (B4) > Coordinate Systems > Coordinate System 

Object Name Global Coordinate System 
State Fully Defined 

Definition 

Type Cartesian 
Coordinate System ID 0, 

Origin 
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Origin X 0, mm 
Origin Y 0, mm 
Origin Z 0, mm 
Directional Vectors 

X Axis Data [ 1, 0, 0, ] 
Y Axis Data [ 0, 1, 0, ] 
Z Axis Data [ 0, 0, 1, ] 

 

Connections 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Mesh 

 
TABLE 5 

Model (B4) > Connections 

Object Name Connections 
State Fully Defined 

Auto Detection 

Generate Automatic Connection On Refresh Yes 
Transparency 

Enabled Yes 
 

TABLE 6 

Model (B4) > Connections > Contacts 

Object Name Contacts 
State Fully Defined 
Definition 

Connection Type Contact 
Scope 

Scoping Method Geometry Selection 
Geometry All Bodies 

Auto Detection 

Tolerance Type Slider 
Tolerance Slider 0, 
Tolerance Value 0,1277 mm 

Use Range No 
Face/Face No 
Face/Edge No 
Edge/Edge No 

Priority Include All 
Group By Bodies 

Search Across Bodies 
Statistics 

Connections 1 
Active Connections 1 

 
TABLE 7 

Model (B4) > Connections > Contacts > Contact Regions 

Object Name Bonded - Line Body To Solid 
State Fully Defined 

Scope 

Scoping Method Geometry Selection 
Contact 1 Vertex 

Target 1 Face 
Contact Bodies Line Body 

Target Bodies Solid 
Definition 

Type Bonded 
Scope Mode Manual 

Behavior Program Controlled 
Trim Contact Program Controlled 
Suppressed No 

Advanced 

Formulation MPC 
Constraint Type Target Normal, Couple U to ROT 

Pinball Region Radius 
Pinball Radius 0,25 mm 

Geometric Modification 

Target Geometry Correction None 

 
TABLE 8 

Model (B4) > Mesh 

Object Name Mesh 
State Solved 

Display 

Display Style Body Color 
Defaults 

Physics Preference Mechanical 
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Relevance 0 
Sizing 

Use Advanced Size Function Off 
Relevance Center Coarse 

Element Size Default 
Initial Size Seed Active Assembly 

Smoothing Medium 
Transition Fast 

Span Angle Center Coarse 
Minimum Edge Length 6,28320 mm 

Inflation 

Use Automatic Inflation None 
Inflation Option Smooth Transition 
Transition Ratio 0,272 

Maximum Layers 5 
Growth Rate 1,2 

Inflation Algorithm Pre 
View Advanced Options No 
Patch Conforming Options 

Triangle Surface Mesher Program Controlled 
Patch Independent Options 

Topology Checking Yes 
Advanced 

Number of CPUs for Parallel Part Meshing Program Controlled 
Shape Checking Standard Mechanical 

Element Midside Nodes Program Controlled 
Straight Sided Elements No 

Number of Retries Default (4) 
Extra Retries For Assembly Yes 

Rigid Body Behavior Dimensionally Reduced 
Mesh Morphing Disabled 
Defeaturing 

Pinch Tolerance Please Define 
Generate Pinch on Refresh No 

Automatic Mesh Based Defeaturing On 
Defeaturing Tolerance Default 

Statistics 

Nodes 194 
Elements 66 

Mesh Metric Element Quality 
Min 0,8391 
Max 0,83911 

Average 0,8391 
Standard Deviation 7,3561e-006 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Named Selections 

TABLE 9 

Model (B4) > Mesh > Mesh Controls 

Object Name Edge Sizing Body Sizing Sweep Method 
State Fully Defined 

Scope 

Scoping Method Geometry Selection 
Geometry 1 Edge 1 Body 

Definition 

Suppressed No 
Type Element Size Number of Divisions 

Element Size 1, mm 0,8 mm  

Behavior Soft  

Bias Type No Bias  

Method  Sweep 
Element Midside Nodes  Use Global Setting 

Src/Trg Selection  Manual Source and Target 
Source  1 Face 
Target  1 Face 

Free Face Mesh Type  All Tri 
Sweep Num Divs  Default 
Sweep Bias Type  No Bias 

Element Option  Solid 

 
TABLE 10 

Model (B4) > Named Selections > Named Selections 

Object Name Selection 
State Fully Defined 

Scope 

Scoping Method Worksheet 
Geometry 1 Node 
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Definition 

Send to Solver Yes 
Visible Yes 

Program Controlled Inflation Exclude 
Statistics 

Type Manual 
Total Selection 1 Node 

Suppressed 0 
Used by Mesh Worksheet No 

Tolerance 

Tolerance Type Program Controlled 
Zero Tolerance 1,e-008 

Relative Tolerance 1,e-003 
 

Transient (B5) 
 

TABLE 11 
Model (B4) > Analysis 

Object Name Transient (B5) 
State Not Solved 

Definition 

Physics Type Structural 
Analysis Type Transient 
Solver Target Mechanical APDL 

Options 

Environment Temperature 22, °C 
Generate Input Only No 

 
TABLE 12 

Model (B4) > Transient (B5) > Initial Conditions 

Object Name Initial Conditions 
State Fully Defined 

 
TABLE 13 

Model (B4) > Transient (B5) > Initial Conditions > Initial Condition 

Object Name Modal (None) 
State Fully Defined 

Definition 

Pre-Stress Environment None 
 

TABLE 14 

Model (B4) > Transient (B5) > Analysis Settings 

Object Name Analysis Settings 
State Fully Defined 

Restart Analysis 

Restart Type Program Controlled 
Load Step 3 

Substep 5393 
Time 11,494 s 

Step Controls 

Number Of Steps 3, 
Current Step Number 3, 

Step End Time 30, s 
Auto Time Stepping On 

Define By Time 
Carry Over Time Step Off 

Initial Time Step 1,e-002 s 
Minimum Time Step 1,e-003 s 
Maximum Time Step 1,e-002 s 

Time Integration On 
Solver Controls 

Solver Type Direct 
Weak Springs Program Controlled 

Large Deflection On 
Restart Controls 

Generate Restart Points Program Controlled 
Retain Files After Full 

Solve No 

Nonlinear Controls 

Newton-Raphson Option Program Controlled 
Force Convergence Program Controlled 

Moment Convergence Program Controlled 
Displacement 
Convergence Program Controlled 

Rotation Convergence Program Controlled 
Line Search Program Controlled 
Stabilization Off 
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Output Controls 

Stress Yes 
Strain Yes 

Nodal Forces No 
Contact Miscellaneous No 
General Miscellaneous No 

Store Results At All Time Points 
Damping Controls 

Stiffness Coefficient 
Define By Direct Input 

Stiffness Coefficient 0, 
Mass Coefficient 0, 

Numerical Damping Manual 
Numerical Damping 

Value 0 

Analysis Data Management 

Solver Files Directory D:\Benutzerdaten\StudentCesar\ANSYS_Model1_CSB\Principle_Range\Model1_CSB_Freq2.01\Model1_CSB_files\dp0 
\SYS-9\MECH\ 

Future Analysis None 
Scratch Solver Files 

Directory 
 

Save MAPDL db No 
Delete Unneeded Files Yes 

Nonlinear Solution Yes 
Solver Units Active System 

Solver Unit System nmm 
 

TABLE 15 

Model (B4) > Transient (B5) > Analysis Settings 

Step-Specific "Step Controls" 

Step Step End Time Carry Over Time Step 
1 0,25 s  

2 0,5 s Off 
3 30, s Off 

 
TABLE 16 

Model (B4) > Transient (B5) > Analysis Settings 

Step-Specific "Nonlinear Controls" 

Step Force Convergence --Value --Tolerance --Minimum Reference 
1 On Calculated by solver 0,5% 2,415e-012 N 
2 

Program Controlled    
3 

 
TABLE 17 

Model (B4) > Transient (B5) > Loads 

Object Name festlager loslager Force Pressure 
State Fully Defined 

Scope 

Scoping Method Geometry Selection 
Geometry 1 Vertex 1 Face 1 Edge 1 Face 

Coordinate System Global Coordinate System  

X Coordinate 0, mm 50, mm  

Y Coordinate 0, mm  

Z Coordinate 0, mm  

Location Defined  

Definition 

Type Remote Displacement Force Pressure 
X Component 0, mm (step applied) Free Tabular Data  

Y Component 0, mm (step applied) Tabular Data  

Z Component 0, mm (step applied) Tabular Data  

Rotation X 0, ° (step applied)  

Rotation Y 0, ° (step applied)  

Rotation Z Free  

Suppressed No 
Rotation X  0, ° (step applied)  

Rotation Y  0, ° (step applied)  

Rotation Z  Free  

Behavior  Deformable  

Define By  Components Normal To 
Coordinate System  Global Coordinate System  

Magnitude  = -0,000003*cos(12,6493*time) 
Advanced 

Pinball Region All  

Function 

Unit System  Metric (mm, kg, N, s, mV, mA) Radians rad/s Celsius 
Angular Measure  Radians 

Graph Controls 

Number Of Segments  600, 
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FIGURE 1 

Model (B4) > Transient (B5) > festlager 

 
 

FIGURE 2 

Model (B4) > Transient (B5) > loslager 

 
 

FIGURE 3 

Model (B4) > Transient (B5) > Force 
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TABLE 18 

Model (B4) > Transient (B5) > Force 

Steps Time [s] X [N] Y [N] Z [N] 

1 
0,  

0, 

0,  

0, 
0,25 1,e-007 

2 0,5 
0, 3 30, 

 
FIGURE 4 

Model (B4) > Transient (B5) > Pressure 

 
 

TABLE 19 
Model (B4) > Transient (B5) > Command Snippet 

Object Name Commands (APDL) 
State Fully Defined 

File 

File Name D:\Benutzerdaten\StudentCesar\ANSYS_Model1_CSB\Principle_Range\Model1_CSB_Freq2.01\nerr.txt 
File Status All data current 

Definition 

Suppressed No 
Step Selection Mode All 

Target Mechanical APDL 
Input Arguments 

ARG1  

ARG2  

ARG3  

ARG4  

ARG5  

ARG6  

ARG7  

ARG8  

ARG9  

 
Model (B4) > Transient (B5) > Commands (APDL) 

 
Solution (B6) 

 
TABLE 20 

Model (B4) > Transient (B5) > Solution 

Object Name Solution (B6) 
State Solve Failed 

Adaptive Mesh Refinement 

Max Refinement Loops 1, 
Refinement Depth 2, 

Information 

Status Solve Required, Restart Available 
Post Processing 

! Commands inserted into this file will be executed just prior to the ANSYS SOLVE command. 

! These commands may supersede command settings set by Workbench. 

 
! Active UNIT system in Workbench when this object was created: Metric (mm, kg, N, s, mV, mA) 

! NOTE: Any data that requires units (such as mass) is assumed to be in the consistent solver unit system. 

! See Solving Units in the help system for more information. 

 
/NERR,,1e6, 
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TABLE 21 

Model (B4) > Transient (B5) > Solution (B6) > Solution Information 

Object Name Solution Information 
State Solve Failed 

Solution Information 

Solution Output Solver Output 
Newton-Raphson Residuals 0 

Update Interval 2,5 s 
Display Points All 

FE Connection Visibility 

Activate Visibility Yes 
Display All FE Connectors 

Draw Connections Attached To All Nodes 
Line Color Connection Type 

Visible on Results No 
Line Thickness Single 

Display Type Lines 

 
TABLE 22 

Model (B4) > Transient (B5) > Solution (B6) > Results 

Object Name Y Axis - Directional Deformation - Selection 
- End Time 

Y Axis - Directional Deformation - 
End Time 

X Axis - Directional Deformation - Selection 
- End Time 

State Solve Failed 
Scope 

Scoping Method Named Selection Geometry Selection Named Selection 
Named Selection Selection  Selection 

Geometry  All Bodies  

Definition 

Type Directional Deformation 
Orientation Y Axis X Axis 

By Time 
Display Time 30, s Last 

Coordinate System Global Coordinate System 
Calculate Time 

History Yes 

Identifier  

Suppressed No 
Results 

Minimum 3,14 mm -7,5123e-002 mm -2,7803e-002 mm 
Maximum 3,14 mm 1,1192 mm -2,7803e-002 mm 

Minimum Occurs 
On 

 Solid  

Maximum Occurs 
On 

 Line Body  

Minimum Value Over Time 

Minimum -2,5115 mm -0,25559 mm 
Maximum 3,1545 mm -1,5321e-007 mm 1,5386e-002 mm 

Maximum Value Over Time 

Minimum -2,5115 mm 6,7529e-007 mm -0,25559 mm 
Maximum 3,1545 mm 1,5386e-002 mm 

Information 

Time 11,302 s 30, s 
Load Step 3 

Substep 5228 999999 
Iteration Number 51023 53522 

 
FIGURE 5 

Model (B4) > Transient (B5) > Solution (B6) > Y Axis - Directional Deformation - Selection - End Time 

Calculate Beam Section Results No 
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TABLE 23 

Model (B4) > Transient (B5) > Solution (B6) > Y Axis - Directional Deformation - Selection - End Time 

Time [s] Minimum [mm] Maximum [mm] 
1,e-002 6,3553e-007 6,3553e-007 
2,e-002 3,7996e-006 3,7996e-006 
3,e-002 1,2008e-005 1,2008e-005 
4,e-002 2,7955e-005 2,7955e-005 
5,e-002 5,4999e-005 5,4999e-005 
6,e-002 9,7326e-005 9,7326e-005 
7,e-002 1,5917e-004 1,5917e-004 
8,e-002 2,4411e-004 2,4411e-004 
9,e-002 3,5527e-004 3,5527e-004 
1,e-001 4,9561e-004 4,9561e-004 

0,11 6,6754e-004 6,6754e-004 
0,12 8,7294e-004 8,7294e-004 
0,13 1,1131e-003 1,1131e-003 
0,14 1,3892e-003 1,3892e-003 
0,15 1,7031e-003 1,7031e-003 
0,16 2,057e-003 2,057e-003 
0,17 2,4535e-003 2,4535e-003 
0,18 2,8948e-003 2,8948e-003 
0,19 3,383e-003 3,383e-003 
0,2 3,9203e-003 3,9203e-003 

0,21 4,5084e-003 4,5084e-003 
0,22 5,1479e-003 5,1479e-003 
0,23 5,8386e-003 5,8386e-003 
0,24 6,5798e-003 6,5798e-003 
0,25 7,371e-003 7,371e-003 
0,26 8,2114e-003 8,2114e-003 

0,26641 8,7754e-003 8,7754e-003 
0,27283 9,359e-003 9,359e-003 
0,28244 1,0273e-002 1,0273e-002 
0,29206 1,1234e-002 1,1234e-002 
0,29806 1,1856e-002 1,1856e-002 
0,30406 1,2492e-002 1,2492e-002 
0,31307 1,3463e-002 1,3463e-002 
0,32307 1,4548e-002 1,4548e-002 
0,33248 1,5566e-002 1,5566e-002 
0,34188 1,6578e-002 1,6578e-002 
0,35129 1,7586e-002 1,7586e-002 
0,36129 1,8654e-002 1,8654e-002 
0,37129 1,9703e-002 1,9703e-002 
0,38129 2,0711e-002 2,0711e-002 
0,39129 2,1657e-002 2,1657e-002 
0,40129 2,2532e-002 2,2532e-002 
0,41128 2,3335e-002 2,3335e-002 
0,42128 2,4076e-002 2,4076e-002 
0,43057 2,4711e-002 2,4711e-002 
0,43987 2,5274e-002 2,5274e-002 
0,44987 2,5772e-002 2,5772e-002 
0,45987 2,6139e-002 2,6139e-002 
0,4662 2,6295e-002 2,6295e-002 

0,47253 2,639e-002 2,639e-002 
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 -5,811e-002 -5,811e-002 
11,467 -5,6026e-002 -5,6026e-002 
11,468 -5,402e-002 -5,402e-002 
11,469 -5,2084e-002 -5,2084e-002 
11,47 -5,0223e-002 -5,0223e-002 

11,471 -4,8446e-002 -4,8446e-002 
11,472 -4,6751e-002 -4,6751e-002 
11,473 -4,5184e-002 -4,5184e-002 
11,474 -4,3774e-002 -4,3774e-002 
11,475 -4,2521e-002 -4,2521e-002 
11,476 -4,1454e-002 -4,1454e-002 
11,477 -4,0551e-002 -4,0551e-002 
11,478 -3,9736e-002 -3,9736e-002 
11,479 -3,8951e-002 -3,8951e-002 
11,48 -3,8159e-002 -3,8159e-002 

11,481 -3,7347e-002 -3,7347e-002 
11,482 -3,6533e-002 -3,6533e-002 
11,483 -3,5726e-002 -3,5726e-002 
11,484 -3,4928e-002 -3,4928e-002 
11,485 -3,4162e-002 -3,4162e-002 
11,486 -3,3441e-002 -3,3441e-002 
11,487 -3,2745e-002 -3,2745e-002 
11,488 -3,2059e-002 -3,2059e-002 
11,489 -3,1381e-002 -3,1381e-002 
11,49 -3,0728e-002 -3,0728e-002 

11,491 -3,0126e-002 -3,0126e-002 
11,492 -2,955e-002 -2,955e-002 
11,493 -2,8959e-002 -2,8959e-002 
11,494 -2,8366e-002 -2,8366e-002 

30, -2,7803e-002 -2,7803e-002 
 

Material Data 

Material_Beam 

 
 
 
 
 
 
 

Material_Null 

 
TABLE 26 

Material_Beam > Constants 

  
 

TABLE 27 

Material_Beam > Isotropic Elasticity 

Temperature C Young's Modulus MPa Poisson's Ratio Bulk Modulus MPa Shear Modulus MPa 
 1,0313e-002 0, 3,4377e-003 5,1565e-003 

 
TABLE 28 

Material_Null > Constants 

 
TABLE 29 

Material_Null > Isotropic Elasticity 

Temperature C Young's Modulus MPa Poisson's Ratio Bulk Modulus MPa Shear Modulus MPa 
 2,e+007 0, 6,6667e+006 1,e+007 

 

1,e-006 kg mm^-3 Density 

Density 1,e-015 kg mm^-3 


