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vin Ascencio, Jairo Rojas, Álvaro Chupillon, Sandro Hernández, Félix Dı́az,
Javier Silva, Jordy Santiago, Omar Suarez, Sebastián Sánchez, Julio Balbin
y a todos mis amigos, compañeros y profesores.
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Matter effects in neutrino visible decay at
future long-baseline experiments

Anthony Mard Calatayud Cadenillas
Código: 20163750

Resumen

Reevaluamos el decaimiento visible de neutrinos en presencia de materia.
Estudiamos estos efectos en dos futuros experimentos de long-baseline donde
los efectos de materia son relevantes: DUNE (1300 km) y un hipotético haz
dirigido hacia ANDES (7650 km). Encontramos que los efectos de mate-
ria del componente visible del decaimiento de nuetrinos son insignificantes
en DUNE, siendo mucho más relevante en ANDES. Realizamos una simu-
lación detallada de DUNE, considerando los canales νµ disappearance y νe
appearance, para ambos modos FHC y RHC. La sensitividad de la constante
de decaimiento α3 puede ser tan baja como 2 × 10−6 eV2 a 90% C.L., de-
pendiendo de la masa de los nuetrinos y el tipo de acoplamiento. También
mostramos el impacto del decaimiento de neutrinos en la determinación de
θ23 y δCP , y encontrar que el mejor valor de ajuste de θ23 puede moverse
desde un valore real en un octante inferior hacia un octante superior.

Abstrac

Neutrino visible decay in the presence of matter is re-evaluated. We study
these effects in two future long-baseline experiments where matter effects are
relevant: DUNE (1300 km) and a hypothetical beam aimed towards ANDES
(7650 km). We find that matter effects are negligible for the visible compo-
nent of neutrino decay at DUNE, being much more relevant at ANDES. We
perform a detailed simulation of DUNE, considering νµ disappearance and
νe appearance channels, for both FHC and RHC modes. The sensitivity to
the decay constant α3 can be as low as 2× 10−6 eV2 at 90% C.L., depending
on the neutrino masses and type of coupling. We also show the impact of
neutrino decay in the determination of θ23 and δCP , and find that the best-
fit value of θ23 can move from a true value at the lower octant towards the
higher octant.
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Abstract

Neutrino visible decay in the presence of matter is re-evaluated. We study these effects in two future
long-baseline experiments where matter effects are relevant: DUNE (1300 km) and a hypothetical
beam aimed towards ANDES (7650 km). We find that matter effects are negligible for the visible
component of neutrino decay at DUNE, being much more relevant at ANDES. We perform a detailed
simulation of DUNE, considering νµ disappearance and νe appearance channels, for both FHC and
RHC modes. The sensitivity to the decay constant α3 can be as low as 2 × 10−6 eV2 at 90% C.L.,
depending on the neutrino masses and type of coupling. We also show the impact of neutrino decay
in the determination of θ23 and δCP, and find that the best-fit value of θ23 can move from a true value
at the lower octant towards the higher octant.

1 Introduction

The neutrino oscillation phenomenon is the only firm evidence of physics beyond the Standard Model. It
is then of interest to study at depth if neutrino oscillations could give further information regarding a more
complete description of Nature. In this case, one would hope that measurements in neutrino experiments
would eventually deviate from the expectations of the standard neutrino oscillation paradigm. Such kind
of deviations have been extensively studied in the literature, notable examples being decoherence [1–13]
and non-standard interactions [14–21].

Light neutrino decay constitutes a third way of producing changes in neutrino oscillation experiments.
In particular, models where the neutrino decay is due to its coupling to a massless scalar, called a Majoron,
have been analyzed in detail by many authors [11,22–49]. In these kind of models, neutrinos and Majorons
can have two types of couplings, scalar (gs) or pseudoscalar (gp):

Lint =
(gs)ij

2
ν̄iνjJ + i

(gp)ij
2

ν̄iγ5νjJ . (1)

The decay widths generated by such couplings are well known and can be found, for instance, in [28,46].
Relevant constraints to these couplings can be found in the literature [50–55].

In general, most works consider that the light neutrinos can decay into an unobservable product.
However, the possibility of observing the decay into active products has also been studied in the past [28],
and has recently been reconsidered in the context of current long-baseline experiments [46]. This was
followed by an analysis in the framework of future facilities [47], which included matter effects. The
question of how to properly include matter effects within the oscillation with decay scenario was also
addressed in [56], where they considered the decay of a heavier sterile neutrino.
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In this paper we take a different approach in the inclusion of matter effects, following closely the
prescription outlined in [28]. The role of matter in the visible component of the decay process is analyzed
by comparing two different baselines (corresponding to DUNE [57] and ANDES [58]), which correspond
to different matter densities. In addition, we make a systematic study of the sensitivity to the decay
parameters at the DUNE experiment, including all oscillation channels and the two modes of operation
(FHC and RHC).

This paper goes as follows. On Section 2, we develop the theoretical framework to be used for
describing neutrino decay in matter. On Section 3, we assess the impact of matter effects in neutrino
decay within the aforementioned baselines. Finally, on Section 4 we discuss the details of our DUNE
simulation and statistical analysis and evaluate the sensitivity of this experiment to the decay constant
α3. On that Section we also study the impact of neutrino decay on oscillation fits.

2 Neutrino flux including matter effects and decay

The main idea behind our procedure relies on carefully identifying the basis where each process takes
place. As is common, one defines the interaction (or flavour) basis as the one where the charged lepton
mass matrix is diagonal, which is also the basis where neutrino interaction states (νe, νµ, ντ ) are produced.
However, on this basis the neutrino mass matrix is not diagonal, meaning that the interaction states are
a superposition of mass eigenstates. This mass matrix is diagonalized by the PMNS matrix (U0)αi, where
α = e, µ, τ , and i = 1, 2, 3, which connects both states. We refer to the basis where the neutrino mass
matrix is diagonal as the mass basis, and it is in this basis where the decay widths Γi of each neutrino
are defined.

As is well known, when neutrinos travel through matter, the effective Hamiltonian H is not diagonal,
neither in the interaction nor mass bases. For our case, in terms of αi = E Γi, we have on the interaction
basis:

H =
1

2E
U0




m2
1

m2
2 − i α2

m3
3 − i α3


U †0 +



√

2GFNe

0
0


 , (2)

where E is the neutrino energy, GF is Fermi’s constant, and Ne is the electron density in matter. We
have assumed normal ordering with the lightest neutrino being stable.

This structure motivates the introduction of a new basis [59,60], which we refer to as the matter basis,
where the effective Hamiltonian is diagonal. Given the presence of the decay widths, H is diagonalized
by non-unitary ŨαI matrices (I = 1̃, 2̃, 3̃):

Ũ−1H Ũ = Hdiag , (3)

where Hdiag has complex eigenvalues:

m̃2
I − i α̃I = 2E (Hdiag)II (4)

It is important to take into account that, in this new basis, all eigenstates can have a non-zero decay
width. For instance, if we start with only α3 different from zero, we can obtain non-vanishing α̃1, α̃2 and
α̃3.

Let us now understand how the combination of matter effects and decay affect a neutrino flux. We

denote the flux arriving at the detector in absence of flavour transitions by dΦ
(r)
α /dEα, where α refers to

the flavour, r = (+, −) is the helicity, and Eα is the energy, which are determined when the neutrino is
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produced. In the presence of oscillations and decay, the neutrino flux of flavour β, helicity s and energy
Eβ, can be calculated with:

dΦ
(s)
β

dEβ
=

∫
Pdec

(
ν(r)
α → ν

(s)
β

) dΦ
(r)
α

dEα
dEα (5)

The transition function Pdec(ν
(r)
α → ν

(s)
β ) is [34, 46]:

Pdec

(
ν(r)
α → ν

(s)
β

)
=

∣∣∣∣∣
3∑

I=1

(
Ũ (r)

)−1

Iα
exp

[
−im̃

2
IL

2Eα

]
exp

[
− α̃IL

2Eα

]
Ũ

(s)
βI

∣∣∣∣∣

2

δrs δ(Eα − Eβ)

+Pvis(Eα, Eβ) (6)

The first term gives the invisible decay contribution (ID), which also takes into account neutrino oscilla-
tions. Notice that the mixing depends on the helicity: Ũ (−) = Ũ and Ũ (+) = Ũ∗.

The second term corresponds to visible decay (VD), which includes additions to the flux from the
decay products. One important thing is that the second term does not have a δ(Eα − Eβ) function, so
the state after the decay can have a different energy compared to the one before the decay. As the effective
Hamiltonian depends on the energy, this means that the eigenvalues and mixing (Eqs. (3) and (4)) before
the decay shall be different to those after the decay. Thus, we denote the matter basis before the decay
with a tilde, and the matter basis after the decay with a hat (for example, m̃ vs m̂).

We refer to the addition of ID and VD contributions as full decay (FD). In contrast, the results
without neutrino decay are referred to as standard oscillations (SO).

The matrices Ũ and Û relate the interaction eigenstates α, β with the matter eigenstates I, J , which
is important to connect the neutrino production and detection with its propagation. In the same way, to
connect the neutrino propagation with its decay, we need the matrices C̃ and Ĉ, that relate the matter
eigenstates I, J with the mass eigenstates i, j. We define them in the following way:

C̃
(r)
Ij =

∑

ρ=e,µ,τ

Ũ
(r)
ρI (U0)

(r)∗
ρj Ĉ

(s)
Ij =

∑

ρ=e,µ,τ

Û
(s)
ρI (U0)

(s)∗
ρj (7)

With this notation, assuming that the neutrino decays only once in its path, we can use the methods
described in [28] to write:

Pvis(Eα, Eβ) =

∫
d`

∣∣∣∣∣∣

3̃∑

I=1̃

(
Ũ (r)

)−1

Iα
exp

[
−im̃

2
I `

2Eα

]
exp

[
− α̃I `

2Eα

] 3∑

i=2

i−1∑

j=1

C̃
(r)
Ii

√
d

dEβ
Γνri→νsj (Eα)

×
3̂∑

J=1̂

(
Ĉ(s)

)−1

jJ
exp

[
−im̂

2
J(L− `)
2Eβ

]
exp

[
− α̂J(L− `)

2Eβ

]
Û

(s)
βJ

∣∣∣∣∣∣

2

(8)

The above equation can be understood as follows: first, the source generates a neutrino interaction
eigenstate, described by the index α. The propagation occurs on the basis where H(Eα) is diagonal,
so we need to use Ũ−1 to rotate into the matter eigenstates, with index I. These states propagate a
distance `, and then decay. The decay, however, is defined on the mass basis in vacuum, so we switch to

this basis (index i) using C̃. After the decay, one has a mass eigenstate ν
(s)
j that must be propagated a

distance (L− `). Nevertheless, this state is again not an eigenstate of H(Eβ), meaning we need to change

basis again. For this, we use Ĉ−1 to rotate into matter eigenstates (index J). These states propagate the
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distance (L− `), and then interact with the detector. One obtains the final flavour β by switching back
to the interaction basis using Û .

Assuming constant Ne, one can evaluate Eq. (8) using [28]. We obtain:

Pvis(Eα, Eβ) = 2
3̃∑

I=1̃

3̂∑

J=1̂

3̃∑

M=1̃

3̂∑

N=1̂

(
Ũ (r)

)−1

Iα

(
Ũ (r)

)−1∗

Mα
Û

(s)
βJ Û

(s)∗
βN

×Eβ
[(Eβ/Eα)α̃<IM> − α̂<JN>]− i

[
(Eβ/Eα)∆m̃2

IM −∆m̂2
JN

]

[(Eβ/Eα)α̃<IM> − α̂<JN>]2 +
[
(Eβ/Eα)∆m̃2

IM −∆m̂2
JN

]2

×
{

exp

[
−i∆m̂

2
JNL

2Eβ

]
exp

[
− α̂<JN>L

2Eβ

]
− exp

[
−i∆m̃

2
IML

2Eα

]
exp

[
− α̃<IM>L

2Eα

]}

×
3∑

i=2

i−1∑

j=1

3∑

m=2

m−1∑

n=1

C̃
(r)
Ii C̃

(r)∗
Mm

(
Ĉ(s)

)−1

jJ

(
Ĉ(s)

)−1∗

nN

√
d

dEβ
Γνri→νsj (Eα)

d

dEβ
Γνrm→νsn(Eα)

(9)

where we have generically denoted α<IJ> = αI + αJ . The calculation of dΓ(νrini → νsfin J)/dEβ on the
mass basis has been done before [46].

In this work, we shall again consider only one decay channel (νr3 → νs1J) and only one non-vanishing
coupling. In this limit, we find our final expression:

Pvis(Eα, Eβ) = 2

3∑

I=1

3∑

J=1

3∑

M=1

3∑

N=1

(
Ũ (r)

)−1

Iα

(
Ũ (r)

)−1∗

Mα
Û

(s)
βJ Û

(s)∗
βN

× [(Eβ/Eα)α̃<IM> − α̂<JN>]− i
[
(Eβ/Eα)∆m̃2

IM −∆m̂2
JN

]

[(Eβ/Eα)α̃<IM> − α̂<JN>]2 +
[
(Eβ/Eα)∆m̃2

IM −∆m̂2
JN

]2

×
{

exp

[
−i∆m̂

2
JNL

2Eβ

]
exp

[
− α̂<JN>L

2Eβ

]
− exp

[
−i∆m̃

2
IML

2Eα

]
exp

[
− α̃<IM>L

2Eα

]}

×C̃(r)
I3 C̃

(r)∗
M3

(
Ĉ(s)

)−1

1J

(
Ĉ(s)

)−1∗

1N

(
(Eβ/Eα)α3

Eα

)(
1− m2

3

E2
α

)−1/2
x2

31

(x2
31 − 1)

F rsg (Eα, Eβ)

×ΘH(Eα − Eβ) ΘH(x2
31Eβ − Eα) (10)

where g = {gs, gp} indicates the non-vanishing coupling, xif = mi/mf > 1, ΘH(x) is the Heaviside
function, and:

F±±gs (Eα, Eβ) =
1

EαEβ

(Eα + xifEβ)2

(xif + 1)2
F±∓gs (Eα, Eβ) =

(Eα − Eβ)

EαEβ

(x2
ifEβ − Eα)

(xif + 1)2
(11a)

F±±gp (Eα, Eβ) =
1

EαEβ

(Eα − xifEβ)2

(xif − 1)2
F±∓gp (Eα, Eβ) =

(Eα − Eβ)

EαEβ

(x2
ifEβ − Eα)

(xif − 1)2
(11b)

The reader should be aware that in the next-to-last line of Eq. (10), we have the plain α3 on the mass
basis in vacuum. This represents the neutrino-Majoron couplings.

We point out that in [46] it was shown that the scalar and pseudoscalar couplings give undistinguish-
able effects when the ν1 mass, mlightest, is vanishing. In contrast, when mlightest = 0.07 eV, its largest
value allowed by cosmology [61], the choice of coupling leads to a different phenomenology. From now
on, we shall write x31 →∞ when mlightest is vanishing, and x31 → 1 when mlightest = 0.07 eV.
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An interesting feature of Eq. (10) is that one could have oscillations not only before, but also after the
decay, even in the case of only one decay channel. However, we have checked that, for current neutrino
beam energies, this would occur for values of Ne ten times larger than those found on Earth. Thus, we
do not pursue this effect any further.

3 Impact on (Φ× σ) at DUNE and ANDES

As a first approach in our analysis, we characterize the spectrum of the flux, weighted by its corresponding
cross-section. We use:

(Φ× σ)β ≡
∑

s

σs,CC
β (Eβ)

dΦ
(s)
β

dEβ
, (12)

where dΦ
(s)
β /dEβ was defined in Eq. (5) and σs,CC

β is the charged-current cross-section for a neutrino
with helicity s and flavour β. This has been evaluated according to the signal channels in the AEDL
rules presented in Section 4 (Table 1), implying that this parameter encodes both contributions from
helicity-conserving and helicity-changing VD.

We are interested in experiments where matter effects can be relevant in neutrino decay. We shall
consider DUNE [57], and a future hypothetical experiment based on the Agua Negra Deep Experiment
Site (ANDES) underground laboratory [58].

DUNE is one of the most promising experiments in neutrino physics, and is foreseen to begin operation
within the next ten years. It comprises a 1300 km baseline, starting at the Long-Baseline Neutrino Facility
(LBNF) at Fermilab, and extending to Sanford Underground Research Facility (SURF). This corresponds
to an average matter density of ρDUNE = 2.96 g/cm3. The beam will be generated using a 1.07 MW
primary proton beam from the Main Injector, and is expected to be detected using a massive liquid
argon time-projection chamber (LArTPC) detector, located deep underground at SURF. Among other
goals, the DUNE experiment aims to measure the CP violating phase δCP, determine the neutrino mass
ordering, resolve the octant for the atmospheric mixing angle, search for proton decay and detect and
measure the νe flux from a core-collapse supernova within our galaxy [57].

The neutrino flux at the Far Detector used in our simulation was provided by the DUNE collabora-
tion [62], in both neutrino mode (Forward Horn Current - FHC) and antineutrino mode (Reverse Horn
Current - RHC). We assume 1.47×1021 protons-on-target (POT) per year [57,62,63], for 3.5 years on each
mode. The 40 kt Far Detector will consist of four LArTPC modules [64], which provide a fine-grained
image of neutrino scattering events. The latter information shall be relevant in our full simulation, to be
presented on Section 4.

On the other hand, ANDES is a proposed underground laboratory in the Southern Hemisphere. It
would be built in the deepest part (∼1750 m) of the Agua Negra tunnel, linking Argentina and Chile
below the Andes mountain range [58, 65]. Its construction, together with the tunnel, is planned to
happen around 2018-2026. The topics of the ANDES scientific program include neutrinos, dark matter,
geophysics, biology, among others [66].

With the aim of evaluating Eq. (12) in the context of ANDES, we assume a hypothetical neutrino
beam starting at Fermilab. The corresponding neutrino flux is identical to the one we use for DUNE,
but properly scaled to match the distance from source to detector. The ANDES baseline would be of
order 7650 km [67], which corresponds1 to an average matter density ρANDES = 4.7 g/cm3. Thus, we can
expect matter effects in neutrino decay to be much more important than in DUNE.

1This value was calculated using the model of the density profile of the Earth [68], the distance between Fermilab and
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Figure 1: (Φ×σ) at the DUNE baseline, for νµ disappearance (top) and νe appearance (bottom) channels.
The left (right) column shows results considering the FHC (RHC) flux. The black and red curves
corresponds to ID and VD, respectively. Solid lines consider matter effects, while dashed lines show an
equivalent scenario in vacuum.

We fix the neutrino mass differences and mixing parameters at their best-fit values [69]: s2
12 = 0.306,

s2
23 = 0.441, s2

13 = 0.02166, ∆m2
21 = 7.5× 10−5 eV2 and ∆m2

31 = 2.524× 10−3 eV2, for normal ordering.
We also set δCP = −π/2 and α3 = 4 × 10−5 eV2, the latter corresponding roughly to a 10% of 〈Eα〉/L
for DUNE. For VD, we set x31 →∞, such that the type of coupling becomes irrelevant. For definiteness,
from now on we choose only a non-vanishing scalar (gs)31 coupling.

In Figure 1 we show the expected (Φ × σ) for νµ disappearance and νe appearance at DUNE. We
separate the ID and VD components of the flux, in order to properly understand the difference between
each contribution. For comparison, we show equivalent curves for the case where no matter effects are
present. It is important to note that, even though not shown, for the value of α3 we are using we have
confirmed that the ID curves are almost identical to those obtained with the SO hypothesis.

For νµ disappearance (top row), we find that matter effects are almost inexistent for neither ID nor
VD components. The ID contribution dominates both the FHC and RHC modes. Moreover, for FHC we
have VD between one and two orders of magnitude lower than ID, while for RHC the difference between
contributions is somewhat smaller. We can understand why this ID-VD difference in RHC is smaller
than the one for FHC in terms of the helicity-changing decay channel. For FHC, the latter decay channel
implies that part of the ν(−) flux becomes ν(+). In contrast, on RHC we have a fraction of ν(+) turning
into ν(−). Since the ν(−) have a larger cross-section than the ν(+), the relative ID-VD difference in (Φ×σ)
becomes smaller for RHC. This observation is consistent with our results in [46] for T2K, and shall also

ANDES, and the radius of the Earth.

6



1 2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

100

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

100

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

Figure 2: (Φ× σ) at ANDES, for νµ disappearance (top) and νe appearance (bottom) channels. The left
(right) column shows results considering the FHC (RHC) flux. Curves as in Figure 1.

be relevant in the νe appearance channel.
This result is strictly valid in the x31 →∞ limit. For larger masses (x31 → 1), the behaviour depends

on the coupling. For a scalar coupling, the helicity-flipping decay channel is suppressed, while for a
pseudoscalar coupling it is slightly enhanced. This shall have a direct impact on the VD spectrum.

Regardless of these points, the fact remains that ID dominates the flux. Therefore, since for this
value of α3 the ID component coincides with SO, we expect that νµ disappearance shall not be strongly
modified by neutrino decay. Then this channel will constrain ∆m2

32 and sin2 2θ23 reliably, independently
of the presence of decay.

For νe appearance, the low value of α3 again implies that the ID spectrum shall be very similar to
the one of SO. However, we find that the VD contribution at low energy can dominate the flux, being
up to one order of magnitude larger than ID for the RHC flux. Consequently, we can expect a better
constraint on α3 by using νe appearance instead of νµ disappearance data, which is again consistent with
the results in [46]. We find that the VD contribution for νe appearance is slightly smaller for FHC than
for RHC. As in νµ disappearance, this can be understood in terms of helicity-flipping decay channels,
and the different cross-sections.

Another important feature is that matter effects are only relevant for the ID contribution to νe
appearance. Given the similarity between ID and SO, these correspond to the typical matter effects for
the SO scenario. Thus, a useful result is that, to a very good approximation, one can ignore matter
effects in VD completely at this baseline.

In Figure 2, we show both channels for the ANDES baseline. Here, since the baseline is much larger
than in DUNE, matter effects are much more relevant. This time, we use α3 = 8×10−6 eV2, which again

7



1 2 3 4 5 6
10−2

10−1

100

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6

10−2

10−1

100

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6

10−3

10−2

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

1 2 3 4 5 6

10−3

10−2

Eν (GeV)

Φ
×
σ

(1
0−

2
4

G
eV

−
1
)

Figure 3: The VD contribution to (Φ × σ), for νe appearance, at DUNE (top) and ANDES (bottom).
The left (right) column shows results considering the FHC (RHC) flux. Solid (dashed) lines include (do
not include) matter effects. We show results for x31 → 1 with scalar and pseudoscalar couplings in red
and blue, respectively. The green curve considers x31 → ∞, where the two types of coupling give the
same effects.

corresponds roughly to 10% of 〈E〉/L for ANDES.
A first observation is that, qualitatively, the patterns we observed at DUNE are repeated in ANDES.

Nevertheless, quantitatively, matter effects make a difference. It is remarkable that even for ID in νµ
disappearance the discrepancy between vacuum and matter effects is noticeable.

The most striking consequence of the inclusion of matter effects is the suppression of the ID contri-
bution to νe appearance at low energy, leaving a dominant VD component, with respect to the vacuum
case. We want to emphasize that even though both DUNE and ANDES feature a large VD contribution
in νe appearance, the reason for this in each case is different. In addition, VD decay is affected in more
strongly than in DUNE, at most being reduced by ∼ 14%.

In this channel, the opposite effect happens at larger energy. In vacuum, the difference between ID
and VD is smaller than the one in matter. This is due to an enhancement of the ID component in front
of matter effects.

For larger neutrino masses (x31 → 1), the size and shape of the VD contribution to (Φ × σ) varies
with the type of coupling, as shown in Figure 3. For all plots we have the same qualitative behaviour.
For FHC, the curve with x31 → 1 and scalar coupling is always above the other curves. In contrast, for
RHC, it is the curve with x31 → 1 and pseudoscalar coupling the largest one, with the exception of very
small energy, where the curve with x31 → ∞ can have higher values. This can be explained in terms of
helicity-changing decays, as was discussed earlier.
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An important difference between the x31 → 1 and x31 → ∞ scenarios is that the spectrum of the
latter favours lower energies. This makes this situation more susceptible to the low energy thresholds of
an experiment.

4 Sensitivity and Parameter Fits at DUNE

The impact of neutrino decay to the sensitivity to α3 and to parameter fits, at DUNE, has been studied
earlier in [47, 48]. Nevertheless, there is still room for further development in these analyses. To begin
with, the analysis in [48] only considered ID, so our results with FD are complementary. With respect
to [47], which also takes FD into account, we also include the νµ disappearance channel into our analysis,
and display the sensitivity as a function of oscillation parameters. In addition, our approach strictly
follows the procedure outlined in [28], while the formulae used in [47] seem to use additional assumptions
which we do not have (in particular, the arguments used to build Eqs. (9) and (13) of that work).

4.1 Event Generation

In order to calculate the number of events within an energy bin, we follow the same procedure as in [46].
The number of events of flavour β in the energy bin i, with helicity s and going through interaction
int = {CC, NC}, is obtained from:

N
(s),int
i,β =

∫
dEβK

int
i (Eβ)σs,int

β (Eβ)
dΦ

(s)
β

dEβ
, (13)

where σs,int
β (Eβ) is the cross section for process int, and:

K int
i (Eβ) =

∫ Ei,max

Ei,min

dEbin ε
int
β (Ebin)Rint(Ebin − Eβ) . (14)

The detector efficiency εint
β (Ebin) and resolution function Rint(Ebin − Eβ) are taken from the DUNE

Collaboration public files [62]. Both Eq. (13) and (14) are used to calculate signal and background
events, with εint

β (Ebin) and Rint(Ebin − Eβ) properly adjusted, according to the information in [62].
For ID, this calculation is carried out within GLoBES [70,71]. However, as the neutrino decay effective

Hamiltonian is not Hermitian, we could not use the built-in diagonalization algorithms. Thus, for this
case, we modified the source probability library, importing our own probability matrix into GLoBES.

In the case of VD, we generated the fluxes in Eq. (5) externally, and used these in Eq. (13), in
GLoBES, to calculate the event rates. Finally, we modified the channels of each GLoBES rule, such that

helicity change was taken into account. For example, given the channel ν
(−)
α → ν

(−)
β , we add ν

(−)
α → ν

(+)
β .

The full set of rules for each channel, for signal and background, including both ID and VD, is shown in
Table 1. The Table separates contributions to signal and background based on the final state. However,
they are added in the χ2 analyses presented below. Notice that for ID, we include the contributions

coming from both of the original ν
(−)
µ and ν

(+)
µ components of the flux, for both νµ disappearance and

νe appearance channels. This is also done for VD in the νe appearance channel. However, we find it

suffices to include only the FHC ν
(−)
µ (RHC ν

(+)
µ ) components in VD for νµ disappearance, with the other

component being negligible.
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νe appearance, FHC Flux ν̄e appearance, RHC Flux

Signal
CC: (νµ → νe)ID + (νµ → νe)V D (νµ → νe)ID + (ν̄µ → νe)V D

+(ν̄µ → νe)V D +(νµ → νe)V D
CC: (ν̄µ → ν̄e)ID + (νµ → ν̄e)V D (ν̄µ → ν̄e)ID + (ν̄µ → ν̄e)V D

+(ν̄µ → ν̄e)V D +(νµ → ν̄e)V D

Background

CC: (νe → νe)ID (νe → νe)ID
CC: (ν̄e → ν̄e)ID (ν̄e → ν̄e)ID
CC: (νµ → νµ)ID + (νµ → νµ)V D (νµ → νµ)ID + (ν̄µ → νµ)V D
CC: (ν̄µ → ν̄µ)ID + (νµ → ν̄µ)V D (ν̄µ → ν̄µ)ID + (ν̄µ → ν̄µ)V D
CC: (νµ → ντ )ID + (νµ → ντ )V D (νµ → ντ )ID + (ν̄µ → ντ )V D
CC: (ν̄µ → ν̄τ )ID + (νµ → ν̄τ )V D (ν̄µ → ν̄τ )ID + (ν̄µ → ν̄τ )V D
NC: (νµ → να)ID + (νµ → να)V D (νµ → να)ID + (ν̄µ → να)V D
NC: (ν̄µ → ν̄α)ID + (νµ → ν̄α)V D (ν̄µ → ν̄α)ID + (ν̄µ → ν̄α)V D

νµ disappearance, FHC Flux ν̄µ disappearance, RHC Flux

Signal
CC: (νµ → νµ)ID + (νµ → νµ)V D (νµ → νµ)ID + (ν̄µ → νµ)V D
CC: (ν̄µ → ν̄µ)ID + (νµ → ν̄µ)V D (ν̄µ → ν̄µ)ID + (ν̄µ → ν̄µ)V D

Background

CC: (νµ → ντ )ID + (νµ → ντ )V D (νµ → ντ )ID + (ν̄µ → ντ )V D
CC: (ν̄µ → ν̄τ )ID + (νµ → ν̄τ )V D (ν̄µ → ν̄τ )ID + (ν̄µ → ν̄τ )V D
NC: (νµ → να)ID + (νµ → να)V D (νµ → να)ID + (ν̄µ → να)V D
NC: (ν̄µ → ν̄α)ID + (νµ → ν̄α)V D (ν̄µ → ν̄α)ID + (ν̄µ → ν̄α)V D

Table 1: AEDL rules for ν
(−)
e , ν

(+)
e appearance, and ν

(−)
µ , ν

(+)
µ disappearance. We denote να = ν

(−)
α and

ν̄α = ν
(+)
α .

4.2 Analysis and Results

We begin by studying the DUNE sensitivity to α3 in the FD scenario. As θ13 is fixed by reactor νe
disappearance measurements [72], which are not strongly affected by FD [46], we focus on the effect
of varying θ23 and δCP. As in the previous Section, we present results for x31 → ∞, fixing the other
oscillation parameters at their best fit values. Data from both νµ disappearance and νe appearance are
taken into account.

To compute χ2, we calculate the number of events Ni for each combination of θ23, δCP and α3, for
the energy bin i. Ni is calculated using Eq. (13), adding over helicities and interactions, for signal and
backgrounds. This is compared to the events generated by a fixed set of parameters, refered to as true
values. We define χ2 using:

χ2(θ23, δCP, α3, θ
true
23 , δtrue

CP , αtrue
3 ) =

bins∑

i

(
Ni (θ23, δCP, α3)−Ni

(
θtrue

23 , δtrue
CP , αtrue

3

))2

Ni

(
θtrue

23 , δtrue
CP , αtrue

3

) (15)

To analyze the sensitivity to α3, we set θ23 = θtrue
23 and δCP = δtrue

CP . The sensitivity to α3 as a function
of θtrue

23 is obtained by marginalizing over δtrue
CP , and setting αtrue

3 = 0 eV2, that is:

χ2(θtrue
23 , δtrue

CP , α3, θ
true
23 , δtrue

CP , 0)
∣∣
min δtrueCP

(16)

Similarly, the sensitivity to α3 as a function of δtrue
CP is obtained with:

χ2(θtrue
23 , δtrue

CP , α3, θ
true
23 , δtrue

CP , 0)
∣∣
min θtrue23

(17)

10



3σ FHC ⊕ RHC

5σ FHC ⊕ RHC

5σ FHC

3σ FHC

5σ RHC

3σ RHC

38 40 42 44 46 48 50 52

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ23
true[°]

α
3
[1

0
-

5
eV

2
]

(νμ→νe) + (νμ→νμ)

38 40 42 44 46 48 50 52

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ23
true[°]

α
3
[1

0
-

5
eV

2
]

νμ→νe only

Figure 4: Sensitivity to α3 as a function of θtrue
23 . Left: the sensitivity when combining νµ disappearance

and νe appearance, after both FHC and RHC runs. The curves show the sensitivity after marginalizing
over δtrue

CP , with the shaded area below giving the sensitivity for fixed values of the phase. Right: sensitivity
curves for only FHC or RHC runs, including only the νe appearance channel.

In Figure 4, we show the sensitivity to α3, for different values of a given θtrue
23 . On the left panel, we

use the full potential of DUNE by combining both νµ disappearance and νe appearance, for both FHC
and RHC modes. The sensitivity improves for larger values of sin2 θtrue

23 , since the VD contribution is
proportional to this parameter. This means that for a fixed χ2, a larger θtrue

23 requires a smaller α3. We
find that DUNE is sensitive at 3σ (5σ) to values of α3 around (4−7)×10−6 eV2 ((0.7−1.1)×10−5 eV2).
Moreover, the shaded areas below the curves indicate the sensitivity for fixed values of the phase, that is,
without marginalizing. We consider the full range of δtrue

CP , and see that the uncertainty in this parameter
has little impact on the sensitivity to α3.

The right panel of Figure 4 shows the sensitivity using only the νe appearance channel, after marginal-
izing, for different modes. An analogous plot for the νµ disappearance channel would have a much worse
sensitivity to α3, which follows from our arguments in Section 3. As expected from our earlier discussion,
both FHC and RHC curves have the same downward slope.

The 3σ (5σ) sensitivity for FHC is around (1.0− 1.6)× 10−5 eV2 ((1.6− 2.7)× 10−5 eV2). For RHC
instead, the sensitivity is around (5−9)×10−6 eV2 ((0.8−1.4)×10−5 eV2). Thus, we see that sensitivity
is determined principally by the RHC mode. This is easy to understand using the study of (Φ × σ) in
Section 3: the RHC flux is dominated by ν(+), which have a smaller cross-section than ν(−), such that
the helicity-changing decays in VD have a greater impact.

The sensitivity to α3 as a function of δtrue
CP is shown in Figure 5. On the left panel, we have the same

curves and shaded areas as in Figure 4, but this time marginalizing over θtrue
23 . We find the curves to be

almost flat, suggesting that the value of δtrue
CP is not important for the determination of α3.

Nevertheless, the right panel of Figure 5 shows a very different picture. Here, we find that the
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Figure 5: As in Figure 4, but as a function of δtrue
CP .

sensitivity has a very strong dependence on δtrue
CP , particularly on the FHC mode. This, of course, is

due to the influence of δtrue
CP on the total number of events. For example, for the FHC mode, a positive

δtrue
CP would reduce the events coming from ID, which has a stronger dependence on δtrue

CP than VD. As
a consequence of this reduction, a relatively small α3 is sufficient to generate a VD contribution that
can be comparable to the ID component. This makes this point more sensitive to low values of α3. In
contrast, a negative δtrue

CP implies a larger number of events expected from ID, such that a larger α3 is
required to reach the same level of sensitivity compared to positive δtrue

CP . Thus, the ratio between the ID
and VD components has a relevant impact on the sensitivity.

The difference between the largest and smallest values of α3 in a sensitivity curve is most pronounced
in the 5σ case of FHC, where the ID contribution clearly dominates (see Figure 1), and is modulated by
the value of δtrue

CP . For the 3σ case the behaviour is the same, but the difference in α3 is diminished, due
to the lesser number of ID events.

Due to CP conjugation, the situation for the RHC flux is opposite: scenarios with positive δtrue
CP are

less sensitive to α3, in comparison to those with negative values. Here, the difference between the largest
and smallest α3 is very small, that is, it has a milder dependence on δtrue

CP , as the overall number of events
is also small and the VD contribution is usually comparable to the ID one. When combining both FHC
and RHC, we find that the latter has a stronger pull on the sensitivity. In addition, the curve averages
out, leaving an almost flat result.

In Figure 6 we show the sensitivity to α3 for both x31 → 1 and x31 → ∞ scenarios. As we have
emphasized earlier, only in the former case it is necessary to distinguish between scalar and pseudoscalar
couplings. In the Figure, the pseudoscalar coupling has a much better sensitivity, reaching values of
α3 = 3.8 × 10−6 eV2 (6.4 × 10−6 eV2) at 3σ (5σ), compared to the scalar coupling, which reaches
α3 = 5.2 × 10−6 eV2 (8.8 × 10−6 eV2). This is due to the increased helicity-changing transitions that
are typical of this coupling, increasing tensions with RHC expectations. In fact, for the pseudoscalar
coupling, we find that the RHC-only curve clearly dominates the overall sensitivity. In contrast, the scalar
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Figure 6: Sensitivity to α3 in DUNE, combining νµ disappearance and νe appearance, after both FHC and
RHC runs. We marginalize over δtrue

CP and θtrue
23 . The horizontal lines indicate the 3σ and 5σ confidence

levels.

coupling has less helicity-changing transitions, so the sensitivity does not improve as much. Nevertheless,
the x31 → 1 scenario with scalar coupling has a better sensitivity than the x31 →∞ case, which reaches
α3 = 6.1 × 10−6 eV2 (1.0 × 10−5 eV2). The reason for this is that, as we can see in Figure 3, the VD
peak of the x31 →∞ scenario appears at very low values of energy, which are cut off by the experimental
thresholds included in our simulation.

These numbers can be compared to other results in the literature, at 90% C.L. For instance, for FD
at T2K and MINOS [46], the best limit is of α3 < 5.6×10−5 eV2. The authors of [48] work in the context
of ID at DUNE, and obtain a sensitivity around 1.5 × 10−5 eV2. In contrast, the authors of [47] take
FD, and their best sensitivity is as low as 3.4 × 10−6 eV2. At this confidence level, our best sensitivity
is of 2.0 × 10−6 eV2, which is comparable to the limit obtained with atmospheric neutrinos with ID, of
α3 < 2.2× 10−6 eV2 [35].

For the final part of our analysis, we compare the impact of the SO, ID and FD scenarios in the deter-
mination of θ23 and δCP. For each scenario we generate a specific number of events by fixing oscillation
and decay parameters in combinations of true values: θtrue

23 = {42.8◦, 47.2◦}, δtrue
CP = {90◦, −90◦}. For

the ID and FD scenarios, we set αtrue
3 = 4× 10−5 eV2, as was done on Section 3. When performing the

fit, we assume SO as a theoretical hypothesis, that is, we evaluate:

χ2(θ23, δCP, 0, θtrue
23 , δtrue

CP , αtrue
3 ) (18)

where, of course, αtrue
3 = 0 eV2 in the SO scenario. We include both νµ disappearance and νe appearance,

with both FHC and RHC runs.
Results are shown in Figure 7. We find small differences between SO and ID, which is due to α3 not

being large enough to have any effect. The reason for including these curves is mainly for comparison
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Figure 7: Allowed regions, taking SO as a theoretical hypothesis, assuming that the measured signal was
generated by SO (gray region), ID (blue curve) or FD (red curve). We include νµ disappearance and νe
appearance channels. The left (right) column takes θtrue

23 = 42.8◦ (47.2◦), while the upper (lower) row
has δtrue

CP = 90◦ (−90◦). We take αtrue
3 = 4 × 10−5 eV2. Dashed and solid lines (dark and light regions)

correspond to 3σ and 5σ confidence levels, respectively, with the dots indicating the best-fit points.
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with FD, which is the main focus of this work. If we had used a larger α3, we would have found a stronger
impact on the determination of θ23, as was reported in detail in [48].

On the other hand, the FD scenario is much more susceptible to values of α3 of this order of magnitude.
This is consistent with Figure 1, that is, that the additional VD component can dominate the flux at low
energy, which in turn is the main reason for the increased sensitivity shown in Figure 6.

The regions can be understood by comparing the impact of FD on νµ disappearance and νe appearance.
First, since we know from Section 3 that νµ disappearance is not strongly affected by FD, we find the
same kind of constraints on the minimum and maximum possible values of θ23, including the octant
degeneracy [73–75].

The important modification on the fit happen because of the νe appearance channel. As reported in
Section 3, the inclusion of VD leads to an increase in events in both FHC and RHC modes within our
simulated data sample. This fact is the reason why the SO fit in general prefers larger values of θ23, since
the leading term in the νµ → νe oscillation probability is proportional to sin2 θ23. In fact, true points
generated with FD in the lower octant of θ23 can have an SO solution on the higher octant. For true
points generated in the higher octant, the νµ disappearance constraint does not allow θ23 to increase.

Our true points were generated for values of δtrue
CP where the CP asymmetry is maximal. However, in

the fit the SO regions tend to prefer values of δCP closer to ±π, such that the asymmetry is diminished.

5 Conclusions

Starting from the treatment given in [28], we have formulated a description for matter effects in visible
neutrino decay. In order to understand these effects, we have implemented a (Φ × σ) study in two
scenarios. On the first one, we use the flux and baseline for DUNE, while on the second one we use
the same flux, but consider the corresponding baseline for ANDES. For DUNE, we find that only the
ID component of νe appearance can be affected by matter, the effect for all other components, such
as VD at νe appearance, can be completely ignored. In contrast, for ANDES, not only do we have an
enhanced effect on the ID component due to matter, but also find that the VD component receives a
relevant modification. This is especially important for νe appearance, but the effects can also be seen on
νµ disappearance.

Another important part of this work was devoted to the calculation of the sensitivity of DUNE to α3.
To this end, we performed as very detailed simulation of DUNE, described in Section 4, using the publicly
available files of the Collaboration [62]. On that section, we showed the dependence of the sensitivity on
θ23 and δCP, using both νµ disappearance and νe appearance channels, and both FHC and RHC modes.
Our final sensitivity to α3 depended on the lightest neutrino mass (encoded on the value of x31) and on
the type of coupling between the neutrino and the Majoron (scalar or pseudoscalar). For the x31 → 1
scenario, we found the sensitivity of DUNE to be:

α
(s)
3 < 2.8× 10−6 eV2 , α

(p)
3 < 2.0× 10−6 eV2 (19)

while for x31 →∞:
α

(s, p)
3 < 3.2× 10−6 eV2 (20)

We note that these values of sensitivity are the best ones obtained so far for long-baseline experiments,
and are comparable to the current limits set by atmospheric neutrinos using ID [35].

Finally, in order to understand the impact of a non-zero α3 on the determination of oscillation
parameters, we performed a fit on θ23 and δCP assuming SO, with data generated for the FD scenario.
We found that the allowed regions would shift towards larger values of θ23, and towards CP-conserving
values of δCP.
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Introducción

Evidencia más allá del Modelo Estándar:

Decaimiento de Neutrinos
(invisible y visible)

Oscilación Estándar de Neutrinos
(en vacío y materia)

Experimentos de long base-line:

(Hipotético)



  

Flujo de neutrinos incluyendo efectos de materia y decaimiento

Tres tipos de bases:

- Interacción (o sabor,                     )

- Masa (en el vacío,               )

- Materia (donde el Hamiltoniano efectivo es diagonal,                )

Matriz PMNS

Hamiltoniano:

Parámetro de 
decaimiento

Decay width

Diagonalizamos H:

Donde          combina la base de 
interacción y de materia.



  

Flujo de neutrinos incluyendo efectos de materia y decaimiento

Autovalores del Hamiltoniano:

Si               

Flujo en el detector cercano: Helicidad:

Flujo en el detector lejano:

¡La helicidad puede cambiar!



  

Flujo de neutrinos incluyendo efectos de materia y decaimiento

La función de transición (probabilidad) es:

Probabilidad Invisible Decay (ID)

Probabilidad Visible Decay (VD)

Conservación 
de Helicidad

Conservación 
de Energía

Como el Hamiltoniano depende de la energía, los autovalores y parámetros de mezcla 
son diferentes antes y después del decaimiento. Denotaremos la base de materia antes y 
después del decaimiento, con       y       respectivamente.



  

Flujo de neutrinos incluyendo efectos de materia y decaimiento

Proceso de propagación y decaimiento:

La producción y detección del decaimiento se da en la base de masa, entonces 
definimos las matrices:

Sólo consideramos:

,

,

DECAY
materia materia



  

Flujo de neutrinos incluyendo efectos de materia y decaimiento
Probabilidad Visible Decay:

DECAY
materia materia



  

Impacto sobre                en DUNE y ANDES

Usamos flujo 
por sección de 
choque:

Baseline:                        1300 km
Densidad de la tierra:    2.96 g/cm3

Potencia:                        1.07 MW  (Main Injector)
Far Detector: liquid argon time-projection chamber (LarTPC), 40kt
POT:                                1.47 x 1021 protons-on-target por año
Modos:                           Forward Horn Current - FHC
                                        Reverse Horn Current - RHC
Tiempo:                          3.5 años en cada modo (total 7 años)



  

Impacto sobre                en DUNE y ANDES

Usamos flujo 
por sección de 
choque:

Baseline:                        7650 km
Densidad de la tierra:    4.7 g/cm3

Potencia:                        
Far Detector:                        ---
POT:                                     
Modos:                               
Tiempo:                               

DUNE

DUNE

DUNE
DUNE



  

Impacto sobre                en DUNE y ANDES

Fit de 3-neutrinos basado 
en datos disponibles en 
Noviembre del 2016

 JHEP 01 (2017) 087 [arXiv:1611.01514]

Parámetro Valor

33.56

41.6

8.46

-90

7.50

2.524

Definimos:

Entonces, 

- Si                         :

- Si                     :
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app

app

A
N

D
E

S
D

U
N

E

Visible Decay
FHC RHC

Materia
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Sensitividad y Ajuste de Parámetros en DUNE

Generación de Eventos

Número de eventos de sabor     en el bin de energía   , con helicidad    mediante la 
interacción                                , obtenemos

donde                     es la sección de choque para el proceso       , y

Eficiencia del detector:

Función de Resolución:



  

Tabla 1: Reglas del AEDL para      appearance.

Sensitividad y Ajuste de Parámetros en DUNE

Generación de Eventos



  

Tabla 2: Reglas del AEDL para      appearance.

Sensitividad y Ajuste de Parámetros en DUNE

Generación de Eventos



  

Sensitividad y Ajuste de Parámetros en DUNE

Generación de Eventos

Definimos:

Sensibilidad de     , hacemos                    ,                      y                        .

Marginalización:

y
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Sensitividad y Ajuste de Parámetros en DUNE
Generación de Eventos

3    :

5    :

PSEUDOESCALAR



  

Sensitividad y Ajuste de Parámetros en DUNE
Generación de Eventos

  FD

  IV

 SO

 SO
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Generación de Eventos



  

Conclusiones
➢ El estudio de             muestra que:

➢ La sensitividad de DUNE a      , usando         
depende de                 y el tipo de acoplamiento:

➢ En el fit de       y       , asumiendo SO, con data generada para FD, se encuentra 
que las regiones permitidas cambiarán hacia valores más grandes de       , y hacia 
valores de conservación-CP de        .

Invisible DecayDUNE

ANDES

Invisible Decay
Visible Decay



  

¡Muchas Gracias!


