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Abstract

The aim of this Master’s Thesis was to develop a naturally controllable BCI that can predict

motion trajectories from the imagination of motor execution. The approach to reach this aim

was to find a correlation between movement and brain data, which can subsequently be used

for the prediction of movement trajectories only by brain signals. To find this correlation, an

experiment was carried out, in which a participant had to do triggered movements with its right

arm to four different targets. During the execution of the movements, the kinematic and EEG

data of the participant were recorded. After a preprocessing stage, the velocity of the kinematic

data in x and y directions, and the band power of the EEG data in different frequency ranges

were calculated and used as features for the calculation of the correlation by a multiple linear

regression. When applying the resulting regression parameter to predict trajectories from EEG

signals, the best accuracies were shown in the mu and low beta frequency range, as expected.

However, the accuracies were not as high as necessary for control of an application.

Abstracto

El objetivo de esta Tesis de Maestŕıa fue desarrollar un interfaz cerebro computador controlable

naturalmente que pueda predecir trayectorias de movimiento imaginadas. El enfoque para al-

canzar este objetivo fue encontrar una correlación entre el movimiento y los datos cerebrales

que puedan ser utilizados posteriormente para la predicción de las trayectorias de movimiento

sólo por medio de señales cerebrales. Para encontrar esta correlación, se realizó un experimento,

en cual un participante tuvo que realizar movimientos desencadenados con su brazo derecho a

cuatro puntos diferentes. Durante el examen de los movimientos, se registraron los datos cin-

emáticos y de EEG del participante. Después de una etapa de pre-procesamiento, se calcularon

las velocidades en las direcciones x y y, de los datos cinemáticos, y la potencia de la banda, de

los datos EEG en diferentes rangos de frecuencia, y se utilizaron como caracteŕısticas para el

cálculo de la correlación mediante con una regresión lineal múltiple. Al aplicar el parámetro

de regresión resultante para predecir trayectorias a partir de señales de EEG, las mejores pre-

cisiones estuvieron en el rango de frecuencia mu e inferior en beta, como se esperaba. Sin

embargo, los resultados no fueron suficientemente precisos como para usarlas para el control de

una aplicación.
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1 Introduction

For many years the interaction between human and computer took place nearly exclusively with a

keyboard and a mouse. However, the possibilities for an interaction have expanded considerably

in recent years [1]. Today, it is also very common to control a computer in non-haptic ways

by touching a screen or using voices to command operations. Nowadays, a further possibility

to control a computer is by a Brain Computer Interface (BCI), also known as Brain Machine

Interface (BMI).

BCIs are systems that allow humans to interact with their environment by using control signals

generated from brain activity without the intervention of peripheral nerves and muscles [2].

Originally, BCI systems were designed to provide a communication ability to people with severe

motor impairments, such as Amyotrophic Lateral Sclerosis (ALS), paralysis by spinal cord injury

(SCI) or strokes. With the aid of BCIs, not only external computers, but also speech synthesizer,

assistive appliances, and neural prostheses can be controlled. Due to their enormous diversity

of possible applications, BCIs are becoming also increasingly popular in the rehabilitation and

entertainment industry.

BCIs are artificial intelligence based systems that can recognize particular sets of patterns in

brain signals and convert these patterns into control signals. The functional principle of BCIs are

the following steps: Signal Acquisition, Signal Preprocessing, Feature Extraction, Classification

of the extracted features and creation of a Control Interface [3]. The necessary patterns in the

brain can be generated by external stimuli but also by self-regulation of brain rhythms, like the

imagination of a motor execution (Motor Imagery). In the case of Motor Imagery (MI), people

can train to imply a change of the amplitudes especially in the mu and beta rhythms in the

sensorimotor areas of the brain [4]. Features of these so called Sensorimotor rhythms (SMR) can

be extracted and the feature vectors can be classified by comparing them with a reference [2].

The resulting classes can be used as control commands which enable the control of BCI devices

and applications.

Common SMR-based BCIs often require an artificial association between the MI and the move-

ment functionality since the scientists are forced to use the best classifiable MIs and not the to

the movement most similar MIs [5]. Often used MIs are imagined repeated movements of the

hands, feet and tongue [6]. For this reason the users have to learn new mental strategies to

control devices like neuroprostheses or robot arms, what requires an extended training period

1



1 Introduction

of weeks or months [5]. Furthermore, although there are some SMR BCIs, which use a classifi-

cation into multiple classes, the most successful paradigms are based in only two mental states

[6]. This means that common SMR-based BCIs need to deal with a very limited number of

control signals. Another disadvantage is that these kind of BCIs are suitable for the decoding

of a particular number of end target positions; however, decoding of trajectories is not possible

with this technique.

For some years, there is a new approach for MI-based BCIs, which enable, in contrast to common

Multi-Class (MC) SMR BCIs, the reconstruction of imagined movement trajectories, including

the velocity vectors during an executed or an imagined movement. This technique does not use a

classification, but a regression. The principle is that there is usually a correlation between brain

and kinematic data calculated by a regression. The regression parameter can subsequently be

used for the prediction of trajectories only from brain data. This technique can be utilized for

the decoding of single limbs but also for complex movements like the movements of the fingers.

Besides the advantage of the prediction of motion trajectories another advantage seems to be,

that the time of training could probably be reduced significantly [7]. However, this technique

has a significant disadvantage; today the accuracy of the predicted trajectories are not as high

enough as necessary for applications, which require a very accurate control. For this reason,

probably, no practical applications are known that use this technique.

Nowadays, the technique of Motion Trajectory Prediction is not feasible for the control of a neu-

roprostheses, wheel chairs or rehabilitation applications because the risk of hurting themselves

or another person, as well as the risk of destroying material values seems to be high as a result of

the low prediction accuracies. The technique today also seems not to be feasible for the control

of a mouse cursor because reaching an object seems to be faster with the common technique of

MC SMR BCIs.

The main objective of this Master’s Thesis is to develop a BCI system that can predict motion

trajectories in a natural way, as described before. A secondary goal is to show if the system could

be used for a two-dimensional application on a PC, in which the users cannot hurt themselves

or destroy material values because of the low system accuracy.

In chapter 2, there is an overview given about the state of the art for BCIs in general and for

BCIs that can predict motion trajectories in particular. In chapter 3, in the methodology part,

there is a very detailed explanation about how a BCI system that can predict trajectories was

developed. In chapter 4, the results and problems of the developed system are discussed. Finally,

in chapter 5 the thesis ends with a summary of the thesis and future prospects.
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2.1 Functionality of a standard BCI

To control an application via a BCI, the users need to create specific patterns in their brain

signals (see section 2.2); to create these pattern, the users often have to learn first. The acqui-

sition of the brain signals can be done in an invasive or non-invasive way (see subsection 2.3.1).

Since the signal strength of the raw signals is weak, especially when the acquisition was done

in a non-invasive way, the signals must be preprocessed to get it in an adequate quality for the

further processing (see subsection 2.4.1). After the preprocessing part, features of the signals

need to be extracted (see subsection 2.4.2). Depending on the resulting feature vectors, the

signals can be translated to control commands with modern machine learning methods (see ).

The control commands are provided via an application interface. Typically, the applications

provide an optical, acoustic or mechanical feedback, which supports the users by controlling the

application and making the BCIs a closed loop system.

Figure 2.1: Functionality of a standard BCI. The head on the lower left symbolizes a BCI
user, who creates brain signals. The brain signals are recorded and digitized by
a signal acquisition system. Subsequently, the digitized signals are preprocessed,
then features from the signals are extracted and finally translated into device con-
trol signals. Via an application interface these control signals are provided to an
application. Typically, the application provides feedback to the user and makes
the system a closed loop system.
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2.2 Brain Signals

2.2.1 Brain Waves

The brain generates an amount of neural activity. These signals can be divided into two

classes [8]:

• spikes, which reflect the action potentials of individual neurons and

• field potentials, which result of combined synaptic, neuronal, and axonal activity of neuron

groups.

While the spikes can only be acquired by implanted microelectrodes, the field potentials can

also be measured in a non-invasive way.

Each type of field potential (brain wave) control a variety of states of consciousness ranging from

sleep to active thinking [9].

Delta Waves The frequency of delta waves ranges from approx. 0.5 to 3.5 Hz [10]. Delta waves

are the slowest waves but tend to the highest amplitudes. These signals are normally seen in

adults in slow wave sleep as well as in babies.

Theta Waves The frequency of theta waves ranges from approx. 3.5 to 7.5 Hz [10]. Theta

is associated with inefficiency and daydreams. The deepest waves of Theta mark the boundary

between waking and sleeping.

Alpha (Mu) Waves The frequency of alpha waves ranges from approx. 7.5 to 12 Hz [10].

The signal is seen in the posterior regions of the head on both sides. However, the amplitude is

higher on the dominant side. It is appearing by closing the eyes and by relaxation. Furthermore,

several studies have found a rise in alpha power after smoking marijuana. The frequency of the

mu rhythms is similar to the frequency of the alpha rhythms but the mu wave is found over the

motor cortex while the alpha waves occur over the resting visual cortex [11].

Beta Waves The frequency of beta waves ranges from approx. 12 Hz to 30 Hz [10]. It is

usually seen on both sides in a symmetrical distribution and it is most evident frontally. The

beta waves can be seen in active processing like thinking, concentration or cognition.

Gamma Waves The frequency of gamma waves ranges of approx. 30 Hz and up [10]. It reflects

higher mental activity, including perception, problem solving, and consciousness. While all brain

waves work simultaneously, one brainwave can be more predominant and active than the others.

The dominant brainwave will determine your current state of mind [9].
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Figure 2.2: Ilustration of Brain Waves (adapted from [9]). The image shows typical
shapes of delta, theta, alpha (mu), beta and gamma waves in a time window
of 1.0 s

2.2.2 Control Signal Types

Many specific characteristics in the brain waves are related to cognitive tasks. The physiological

phenomena of some brain signals have been decoded in such a way that it enables the BCI

systems to interpret the users intentions. These signals are suitable as possible control signals

in BCIs.

The control signals that are used in BCIs can be divided in two groups: exogenous and en-

dogenous signals [2]. While exogenous control signals use the neuronal activity produced by an

external stimulus in the brain, endogenous control signals are based on self-regulation of brain

rhythms and potentials without an external stimulus. The resulting advantage of a BCI system,

which uses endogenous control signals, is that the users can operate at free will, while a BCI

system, which uses exogenous control signals constrain the users to the presented choices. How-

ever, the users of endogenous BCI systems need to train with neurofeedback to learn to generate

specific brain patterns.
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Exogenous Control Signals

Exogenous BCIs use the paradigms of Visual Evoked Potentials (VEPs) [2]. VEPs are modu-

lations of brain activity that occur in the visual cortex after receiving a visual stimulus. Since

the amplitude of VEPs increase enormously at certain times after the stimulation the detec-

tion of these modulations is relatively easy. Typical modulations used for the control of a BCI

application are steady-state Visual Evoked Potentials (SSVEPs) and P300 Evoked Potentials.

Steady-State Visual Evoked Potentials (SSVEPs) occur as reaction to longer stimuli with

higher frequencies than 6 Hz [2]. Typical SSVEP BCI applications display flashing stimuli, like

numbers or letters on a screen and induce so SSVEPs with the same frequency as the stimuli in

the users visual cortex has, while the user stares at one of the symbols. By the analysis of the

induced SSVEPs can be deduced which figure the user had stared at. Following, an advantage

of the use of this type of control signal for a BCI is that there is just a little training required.

P300 Evoked Potentials are positive peaks due to infrequent visual but also to auditory or

somatosensory stimuli [2]. The responses of P300 are elicited about 300 ms after attending to

a stimulus. A typical application of a BCI based on visual P300 evoked potentials is a P300

speller. In the P300 spellers a matrix of letters, numbers or other symbols is contained on a

screen. Columns and rows of this matrix are flashed in random order. To select a symbol on the

screen the user need gaze at the desired symbol. When the desired symbol flashes a P300 evoked

potential is elicited. After a few induced P300 evoked potentials the software can calculate what

symbol the user wants to elect.

Endogenous Control Signals

Endogenous Signals used as control signals for BCIs are Slow Cortical Potentials and Sensori-

motor Rhythms [10].

Slow Cortical Potentials (SCPs) are slow voltage shifts caused by shifts in the depolarization

levels of certain dendrites [2]. Negative SCPs indicate an increased neuronal activity, whereas

positive SCPs indicates a decreased activity in individual cells. The shifts of these brain signals

last from one to several seconds while the signals are below 1 Hz. An advantage of the use

of SCPs for a BCI is that these signals can be self-regulated by healthy users as well as by

paralyzed patients after a training. A disadvantage is that the success of the self-regulation is

very strongly dependent on psychological and physical factors like sleep or mood. Furthermore,

the rates of information provided by SCPs are relatively low. A possible application using SCP

shifts is, e.g., moving a cursor to select presented targets on screen.
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Sensorimotor Rhythms (SMR) comprise the oscillating mu and central beta rhythms over the

central and parietal cortex [12]. The task-related modulation in SMR is usually manifested as

[13]:

• an increase of the power in the specific frequency bands because of a synchronization of

the neurons (event-related synchronization) and

• a decrease of the power in the specific frequency bands because of a desynchronization of

the neurons (event-related desynchronization).

The event-related synchronization (ERS) as well as the event-related desynchronization (ERD)

can be generated by sensory stimulation, motor behaviour and MI. Hence, the execution of

a movement is not required to modulate the amplitudes [2]. However, the users must learn

modulating the amplitudes by MI first.

Figure 2.3: Band power time courses for two different frequency bands at a finger
movement (adapted from [4]). The figure shows band power time courses
computed for frequency ranges of 10-12 Hz (mu) and 14-18 Hz (low beta) from
EEG trials recorded from electrode position C3 during right index finger lifting.
As you can see the mu band ERD starts about 2.5 s before movement on-set
(vertical line), reaches the maximal ERD at the movement-onset, and recovers its
original level within a few seconds. In contrast, the beta rhythm shows a short ERD
during the initiation of movement, followed by ERS that reaches the maximum after
movement execution. This ERS occurs while the mu rhythm is still attenuated.
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2.3 Neuro Imaging

2.3.1 Overview of the Imaging Procedures

Two different types of brain activity may be monitored: the electrophysiological activity and

the hemodynamic response [2].

Electrophysiological activity is generated by electro-chemical transmitters exchanging informa-

tion between the neurons [2]. The neurons generate ionic currents which are passed as action

potentials over the nerve cells. This electrophysiological activity can be measured directly, e.g.

with the following methods:

• Electroencephalography (EEG),

• Electrocorticography (ECoG)

• Magnetoencephalography (MEG)

• Intracortical Neuron Recording (INR)

The hemodynamic response is an effect, in which the ratio of oxyhemoglobin to deoxyhemoglobin

changes locally due to increased metabolism turnover with increased neuronal activity [2]. Since

the hemodynamic response is in contrast to the electrophysiological activity not directly related

to neuronal activity, the measuring methods are referred as indirect. The hemodynamic changes

can be measured e.g. by the following methods:

• functional Magnetic Resonance Imaging (fMRI)

• Near Infrared Spectroscopy (NIRS)

In principle, electrophysiological procedures have a very good time resolution but a poor spatial

resolution, whereas hemodynamic methods have a very good spatial resolution but a poor time

resolution [14].

Table 2.1 compares the procedures with each other. Risk = ” - ” means that this is an invasive

procedure, for which an operation is necessary, which is associated with risks.

Procedure Principle Risk Portability Temp. res. Spat. res.

EEG
electrophysiological
(direct)

+ + ∼ 0.05 s ∼ 10 mm
ECoG - + ∼ 0.003 s ∼ 1 mm
MEG + - ∼ 0.05 s ∼ 5 mm
INR - + ∼ 0.003 s < 0.5 mm

fMRI hemodynamic
(indirect)

+ - ∼ 1 s ∼ 1 mm
NIRS + + ∼ 1 s ∼ 5 mm

Table 2.1: Comparison of procedures for the brain data acquisition (adapt. from [2])
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The optimal imaging procedure for a BCI has a high portability and is not associated with any

risk. Hence, EEG and NIRS are especially suitable for BCIs. Because of the low costs, relatively

simple use and excelent time resolution, nowadays mainly EEG is used for the data acquisition

of BCIs [15].

Since EEG is by far the most widely used neuroimaging modality for BCIs [2] and it is also used

in this work, only this technique is described in more detail below.

2.3.2 Electroencephalography

Electroencephalography is the oldest of the neurophysiological investigations and enables the

recording of brain activity as the potential difference over time between two electrodes [16]. In

principle, the following two types of derivations are distinguished:

• The bipolar derivation, in which a measurement of potential differences is done between

two adjacent voltage-active electrodes.

• The reference derivation, in which either a derivation of the potential differences between an

active and a common reference electrode, which is attached to the patient or a technically

manufactured reference, is done.

Usually, in the case of reference derivations, an ear electrode, which, however, may have a residual

electrical activity, is selected [16]. The minimum configuration for the EEG measurement consists

of an active, a reference and a ground electrode. Multi-channel configurations may include up

to 256 active electrodes [17]. Since the voltage differences increase with the size of the distances

between the electrodes, the distance between the individual active electrodes should be the

same for better comparison [16]. To ensure the same distance, an internationally standardized

procedure for the placement of EEG electrodes was introduced, the 10-20 system. In the 10-20

system, the skull is measured from the Nasion to the Inion along the cranium. The value of this

route is assumed to be 100 %. Hence you divide the distance by going 10 % from the Nasion in

the direction of the Inion, then follow four other steps of 20 % each and at the end again a step

of 10 %. The same is done on the line between the two points located in front of the ears. A

third line is obtained by measuring the circumference of the head and dividing half the distance

in both directions according to the 10 and 20 % increments. Finally, the electrodes are placed

on all the resulting points.
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Figure 2.4: Placement of EEG electrodes according to the 10-20 system [2]. In this
figure you can see the reference points (Nasion and Inion) of the 10-20 system. Be-
tween these points the distances are divided in 10 and 20% steps and the electrodes
are placed on the resulting points.

The electrode positions are named according to the corresponding brain regions [16]:

• F - frontal • C - central • T - temporal • P - parietal • O - occipital

• The electrodes in the region of the right half of the head are named with even-numbers

and the electrodes on the left half are named with odd-numbers.

Besides of the electrodes, the EEG recording system consists of amplifiers, A/D converters, and

a recording device [17].

2.3.3 Problems and artifacts in the data acquisition

EEG is prone to several technical and biological disorders [18]. The most frequent technical

interruption is caused by the power supply because the differential voltage of the electromagnetic

fields superimposes the bio signals directly at the amplifier input. Even battery powered portable

meters are affected by these interferences. Also, more and more high-frequency fields, especially

from WLAN, Bluetooth, etc., interfere. The disturbances can be periodic or transient.

Further technical artifacts are [17]:

• impedance fluctuation

• low battery

• cable movements
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• broken wire contacts

• too much electrode paste or dried pieces

While periodic disturbances can generally be reduced relatively easily, this is only hardly possible

with transient disturbances, due to their unpredictable occurrence and their non-reproducible

course [18]. Biological disorders are generally more difficult to reduce because the biological

signal spectrum is approximately the same for all bio signals, the bio signals are not linearly

coupled to each other and the bio signals are not deterministic and reproducible. Another

biological problem is that the EEG electrodes are far from the individual neurons. Since there

are around 86 billion neurons in the brain [19] whose signals are superimposed, the received

EEG data contain a lot of noise. Also, the skull bone acts as a kind of low-pass filter [18].

Biological artifacts include e.g. [17]:

• Movement artifacts

• Electrooculography (EOG) artifacts: eye movements and eye blinking

• Electromyography (EMG) artifacts: muscular activity

• Electrocardiography (ECG) artifacts: heart activity

• Sweating artifacts

2.4 Signal Processing

2.4.1 Signal Preprocessing

The aim of the data acquisition is to avoid all sources of interference during the measurement.

However, as the previous subsection has shown, it is practically impossible to prevent the bulk

of biological artifacts. To be able to provide the signals in sufficient quality for the feature

extraction and further processing step, a signal preprocessing is necessary.

Bandpass and band-stop filtering

To remove all the signals out of the spectrum of bio signals the signals are usually filtered by a

bandpass from 0.1 to 100 Hz. In addition, a band-stop, also known as notch filter at around 50

or 60 Hz (depends on the utility frequency of the country) is used to remove the artifact caused

by the power supply. However, a bandpass filter can also be used for limiting the frequency

range to get the signals of specific frequency bands, like the mu or beta band.
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Since common BCIs demand a real-time processing the bandpass and band-stop filters must have

an infinite impulse response (IIR), which don’t require a high computational effort. Chebyshev

and Cauer (Elliptical) filters have a much higher slope in the transition area than Butterworth

filters at the same filter order but due to their ripples in the pass- and stop-band, these filters

distort the EEG signals [20] and are therefore not suitable for the use in BCIs.

Usually used filters for BCIs are Butterworth filters with an order between 4 and 8.
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Figure 2.5: IIR Filters. Both pictures compare different types of IIR low-pass filters with a
cutoff frequencies of 100 Hz, each. In the left picture are a Butterworth, Chebyshev
Type 1 and 2 and an Eliptic filter, all with a filter order of 5, compared. It can
be seen that the slope between the pass and stop band for the both Chebyshev as
well as for the Elliptic filter is much higher, however, also the the ripples, which
distort the signals can be seen. In the right picture are Butterworth filters with
different filter orders compared to each other. As higher the filter order as higher
the slope between the pass- and stop-band.

Re-referencing

EEG channels are referenced to a reference electrode, e.g. at the ear (see subsection 2.3.2). The

use of a re-referencing method such as Common Average Reference (CAR), Laplacian or bipolar

methods acts as spatial high-pass filter and enhance the focal activity from the local sources (e.g.

the mu and beta rhythms) and reduce the widely distributed activity, including that resulting

from distant sources (e.g. EMG, eye movements and blinks, visual alpha rhythm) [21].

A CAR is obtained to the mean values of all electrodes, a small Laplacian reference to the mean

values of its four nearest, a large Laplacian reference to the mean values of its four next-nearest

neighboring electrodes and a bipolar reference to the mean values of the electrodes in anterior

and posterior direction [22]. For all the re-referencing methods, the references are subtracted

for all time points from all electrodes.
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2.4.2 Feature Extraction

BCIs have to extract features from brain signals, which are similar to certain classes (see sub-

section 2.4.3). The features are measured or derived from the characteristics of the signals

containing the information which are needed to differ their different types. There is a great

variety of features which have been used in the literature such as [10]:

• Amplitude values of EEG signals,

• Band Power (BP) values of EEG signals,

• Power Spectral Density (PSD) values of EEG signals,

• Auto Regressive (AR) and Adaptive Auto Regressive (AAR) parameters,

• Time-frequency features and

• inverse model-based features

To extract the features, often ”Dimensionality Reduction Methods” or ”Time/Frequency and

Space Methods” are necessary.

Dimensionality Reduction Methods The dimension of the feature space that contains from

raw EEG signals extracted features is often very large and not all the information provided

by the measured channels is generally relevant [10]. If there are too many irrelevant and/or

redundant features, learning methods tend to over-fit. Moreover, high dimensionality increases

the time and space requirements for processing the data. A common way to resolve this problem

is dimensionality reduction. Techniques to reduce the Dimension and to remove irrelevant and

redundant information are the Principal Component Analysis (PCA) and the ICA, which is

a generalization of the PCA. The use of both methods can lead to higher accuracies in the

classification.

Time/Frequency and Space Methods The EEG Signals have information in the Time/Frequency

as well as in the Space. Matched Filtering (MF), Wavelet Transformations (WT) and Common

Spatial Pattern (CSP) are common methods to extract features in these dimensions [2].

2.4.3 Translation Algorithm

To control a BCI application the system needs to interpret the user’s intentions and translate

this to control signals. To enable the interpretation of the user’s intention, BCIs normally clas-

sify the pattern according to its extracted features into two or more classes. The Classifiers can

be linear, nonlinear or generative models and be assigned as follows [2]:
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• Linear classifiers: Linear Discriminant Analysis (LDA), Support Vector Machines

(SVMs)

• Nonlinear classifiers: SVMs, k-Nearest Neighbors (k-NNs), Artificial Neural Networks

(ANNs)

• Generative models: Bayesian Statistical Classifiers

Figure 2.6: Classification. The figure shows examples for a linear (left) and a nonlinear
(right) classification of feature vectors into two classes. The green and the blue
dots represent the extracted feature vectors of a two-dimensional feature space.

To improve the performance of the Classifiers, which means a reduction of the number of false

detections, a signal post-processing can be done [21].

2.4.4 Disadvantages of conventional Motor Imaginary-based BCIs

Conventional MI-based BCIs, also known as SMR BCIs, typically enable the control of different

devices by classifying the feature vectors created by imagined motor execution. However, since

classification performance is crucial, the scientists are forced to use the best classifiable MIs

and not the MIs the movement is most similar to [5]. For this reason SMR BCIs often require

an artificial association between the MI and the movement functionality. Often used MIs are

the movement of the right arm, left arm, feet and tongue [6]. Hence, the users have to learn

new mental strategies to control devices like neuroprostheses or robot arms by conventional

SMR BCIs, what often require an extended training period of weeks or months. Furthermore,

although there are some SMR BCIs which use a MC classification in a multi-dimensional feature

space, the most successful paradigms are based on only two mental states. This means that these

kinds of BCIs need to deal with a very limited number of control signals. Another disadvantage

of (MC) SMR BCIs is that these BCIs are suitable for the decoding of a certain number of end

target positions, however decoding of a trajectory is not possible with this technique [12].
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2.5 Motion Trajectory Prediction by a Brain Computer Interface

2.5.1 Differences to conventional Motor Imagery-based BCIs

There is a relatively new approach to develop MI-based BCIs, which enable in contrast to (MC)

SMR BCIs the reconstruction of imagined movement trajectories, including the velocity vectors.

Korik et al. [23] called this technique Motion Trajectory Prediction (MTP).

In contrast to conventional SMR BCIs for MTP BCIs no classification is used, but a regression.

The principle is that there is usually a correlation between brain and kinematic data calculated,

which can subsequently be utilized for the reconstruction of trajectories only from brain data.

For the prediction of motion trajectories it is not essential to find a direct correlation between

brain and kinematic data, e.g. Choi [24] showed that it is also possible to predict EMG data

from brain data, which can be used to deduce the position of the limbs at specific time points

and hence the trajectories itself.

Commonly, investigated MTP BCIs involve decoding of a single upper limb movement in 3D

space like done by Korik et al. [12], Choi [24], Bradberry et al. [25] or Antelis et al. [26].

However, MTP BCIs have also been investigated for complex movements like finger movement

[27] or walking [28].

2.5.2 Experiments

The literature shows some different experiments to compute the correlation between brain and

kinematic data. In the most experiments the participants had to move their dominant right arm

to touch some target points [25] or [26], some points on a screen [24], some subjects in the space

[12] or the subjects had to connect some points with a pen on a screen [29]. For all experiments,

it is important that during the execution of the movements eye movements, as well as blinking

are reduced as much as possible.
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Figure 2.7: Basic experiments for the development of a MTP BCI (left [25], right
[26]). Both pictures show targets, which have to be touched by the participants.
The right picture shows also the kinematic and EEG data recording systems.

2.5.3 Specific Data Acquisition

Compared to EEG, ECoG (or implanted micro) electrodes have a higher spatial resolution,

greater sensitivity for activity at higher frequencies and a higher signal-to-noise ratio (SNR)

[30]. However, some studies show that EEG systems are also suitable for the use in MTP BCIs.

Very often electro-caps with 64 sensors are used, e.g. in [24], [27], [25] or [29]. Additionally to

the EEG electrodes often EOG electrodes are used. The EOG electrodes enable later an easier

elimination of artifacts resulting by eye movements.

The Kinematic Data can be recorded by a 3D position measurement systems like MacReflex

[24], Kinect [7], [12] or a data glove like the CyberGlove [27]. 2D positions can e.g. be measured

on a digitizing tablet [29].

2.5.4 Specific Signal Processing

The Signal processing for the prediction of trajectories differs partially from the signal processing

of conventional SMR-based BCIs.

Specific EEG data Preprocessing

The basics of the preprocessing (bandpass/band-stop filtering and signal re-referencing) for the

prediction of trajectories are the same like for conventional SMR BCIs. However, since a part

of the processing can be done offline there is a greater choice of filters to improve the quality of

the signals.
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Independent Component Analysis (ICA) The ICA algorithm calculates the Independent Com-

ponents (ICs) from highly statistically correlated EEG signals without regard to the physical

location or configuration of the source generators [31]. After the ICA, ICs like EOG or EMG

can be removed and thus the quality of the signals be improved.

Baseline Correction If a time-series of EEG BP values (BTS) are used as features for the

calculation of the correlation, it seems recommendable to do a baseline correction, which is

performed by subtracting the average value of the EEG data, which were measured in a particular

time window, from each data point The baselines of the re-referenced EEG signals X(n)reft can

be corrected for all time points t and all channels n according the following equation, in which

M is the number of all measured time points:

X(n)BC
t = X(n)reft − 1

M

M∑
l=1

X(n)refl (2.1)

Threshold filtering Threshold filters can be used to remove brain data intervals with high noise

from further analysis to improve the SNR.

Splitting in different Frequency Spectra For the preparation of the feature extraction the

EEG signals are separated in non-overlapping frequency bands. Bandpass filters are usually

used to do this.

Downsampling At the end of the EEG data preprocessing the signal need to be downsampled in

all frequency bands to the usually lower kinematic data sampling rate. However, it is important

to remember the Nyquist–Shannon sampling theorem, which says that frequencies above half

the sampling rate (frequency) cannot be reconstructed [32].

Kinematic data preprocessing

The preprocessing of the kinematic data is less extensive than the preprocessing of the EEG

data. To reduce random noise it is recommendable to use a Moving Average (MA) filter.

A MA filter operates by averaging a number of points from the input signal to produce each

point in the output signal [33]. This can be written according the following equation, in which

M is the span of the filter:

x[i]MA =
1

M

M−1
2∑

j=−M−1
2

x[i+ j] (2.2)
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Feature Extraction

Usually MTP BCIs employ a time series of bandpass-filtered EEG potentials for reconstructing

the trajectory of a 3D limb movement. Interestingly for this model the best results are reported

in the low frequency (< 4Hz) time-domain, e.g. in [7], [25] or [34]. For a long time it was

assumed that the traditional mu and beta bands used in SMR-based BCIs are rather associated

with general movement activity but contain only little information about movement trajectories.

However, Korik et al. proved in [35] that the mu and beta bands provide good information about

the trajectories, when using instead of a time-series of EEG potentials a time-series of power

spectral values as features. With the replacement of the standard model by this feature Korik et

al. could even increase the accuracy of MTP BCIs. Because of the results of Korik et al. and the

insight, that these results are consistent with the extensive literature on traditional SMR-based

MC BCI studies, which report the best accuracy of limb movement classification using power

values of mu and beta frequency bands in the following is only the BTS model described.

The BP is calculated separately for the different separated frequency spectra and channels of

the EEG according to the following equation:

Bfn[t] =

∑M
m=1 |S(m)fn[t]|

M
(2.3)

In this equation represents Bfn[t] the calculated BP value from EEG channel n and bandpass

filter f . t means the time window, M the number of samples in this time window and S(m) is

the m’th bandpass-filtered sample within the time window. The time windows are overlapping

and shifted for a specific range to match the kinematic sample rate.

After the calculation of the BP values, the values were standardized. The standardized difference

results as the quotient of the BP values with the standard deviation of the BP values:

Sfn[t] =
Bfn[t]

σBfn

(2.4)

The most common used kinematic feature is the velocity, which can be calculated from the

measured points, according to the following equation, in which vi[t] is the velocity in i direction

at the time point t:

vi[t] =
xi[t]− xi[t− 1]

∆t
(2.5)
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2.5.5 Development of a Trajectory Decoder

Prediction of Trajectories

The prediction of the motion trajectories takes place in two steps:

• first, finding a correlation between the kinematic and brain data and

• second, reconstructing the trajectory by using the found correlation

To enable a prediction of trajectories, the data set need to be separated in a training set, which

is used to find the correlation between the brain and the kinematic data, and in a test set,

which is used to apply the results from correlation to predict the trajectories. Often the data

are separated by a k-fold Cross-Validation (CV). In this method, the data set is divided into

k subsets, which can be redistributed in randomized subintervals [36]. Each time, one of the k

subsets is used as the test set and the other k-1 subsets form together a training set. After every

calculation, another subset is defined as test set. At the end, the average error across all k trials

is computed. The advantage of this method is, that the variance of the estimated results from

new predictions decreases. The higher the number of folds, the lower the variance, however with

a larger number of folds increase the computational effort.

For the prediction of the trajectories mostly the model presented by Bradberry et al. in [25]

is used. In this model a linear relationship between the three orthogonal velocities and the

standardized and differenced voltages is calculated for all sensors in all frequency spectra sepa-

rately by using a multiple linear regression (mLR). In the BTS model of Korik et al. [12], the

standardized temporal difference from bandpass-filtered EEG potentials was replaced with the

standardized BP values, according to the following equation:

vi[t] = aif +

N∑
n=1

L∑
k=0

bifnkSfn[t− k] + ε[t] (2.6)

In this equation the in Equation 2.4 calculated standardized differences of the BP Sfn[t] with the

timelags k (temporal difference between kinematic and brain data) are the independent input

variables and the velocity components vi[t] for the three spatial dimensions i are the dependent

output variables. aif and bifnk are regression parameters that learn the relationship between

the input and the output in the training sets, while ε[t] is the residual error.

Practically does this mean that firstly in the training sets with the included features ”standard-

ized velocity” and ”standardized BP” the regression parameters aif and bifnk are calculated and

then, with these parameters in the test sets the dependent velocities can be predicted from the

independent BP components.
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Figure 2.8: Two steps of the trajectory prediction. The figure shows the two steps
to predict a trajectory from EEG data. First, in the training stage regression
parameters are calculated, then in the test set, the trajectories can be reconstructed
using the calculated regression parameters. For a better understanding the example
is shown for a single linear regression where a one-dimensional regression line in a
two-dimensional feature space is calculated. In a multiple linear regression, a n-1
-dimensional surface is calculated in a n-dimensional feature space.

Optimization of the Trajectory Decoder

An optimization of the settings can enhance the results a lot. In this postprocessing the optimal

timelag distance and number of timelags (embedded dimensions) should be find out and used

for the prediction [12]. In general, a high amount of EEG channels is important to get as much

information as possible about the relation between the brain and the kinematic data. However,

it is shown that the model tends to overfit if there are to many channels used [25], so it is also

recommendable to find an optimal EEG channel montage.

To find the optimal settings it is necessary to know about the decodable quality of the trajec-

tories. To assess this quality the Pearson’s Correlation Coefficient (CC) r can be used. The

Pearson’s CC r can be calculated between the known measured signal and the predicted de-

coder’s output according the following equation [28]:

r(x, x̂) =
cov(x, x̂)

σxσx̂
(2.7)

In this equation x are the actual measured values, x̂ are the predicted values, and σx as well as

σx̂ are the standard deviations of x and x̂, respectively.
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2.5.6 Expectable accuracies

The accuracies (CC between the predicted and real trajectories) are difficult to compare because

of the different movements that were predicted and the different features that were used. E.g.:

• Bradberry et al. [25] reached a mean accuracy of 0.19 in x, 0.38 in y and 0.32 in z direction

by reconstructing hand movement from a time-series of EEG potentials.

• Paek et al. [27] reached a median accuracy of 0.36 for the reconstruction of finger move-

ments from a time-series of EEG power values.

• Ofner et al. achieved in [7] mean values for 3D hand movement in x direction of 0.70,

in y direction of 0.77 and in z direction of 0.62 and in [5] an average value of 0.64 of

imagined movements in horizontal or vertical direction, the values were all calculated from

a time-series of EEG potentials.

• Korik et al. [12] achieved a median accuracy of around 0.2 from a time-series of EEG

potentials and around 0.45 from a time-series of EEG power values

The results by using of other calculation methods like the reconstruction from EMG signals or

other non-invasive neuro imaging methods like MEG seem to be a little bit better:

• Choi [24] achieved an accuracy of around 0.8 for reconstructed joint angles from EMG

signals.

• Yeom et al. [37] reported an overall accuracy of higher then 0.7 for the reconstruction of

hand coordinates from MEG and

The following figure shows how the results of a prediction could be represented, when calculating

the trajectory from the predicted velocities.

Figure 2.9: Predicted trajectories from ECoG data (adapted from [38]). The pictures
show the comparison between actual and predicted trajectories for the three joints
”shoulder”, ”elbow” and ”wrist”. In the left picture the trajectories are shown in a
3D space and in the picture at the bottom right the trajectories in a x-z plane.

21



2 State of the art

2.5.7 Applications and future prospects

A long time the researchers focused mainly on the enhancement of conventional BCIs using

classification. One reason for this lack of attention could be that the researchers were a long

time satisfied with the results they got from the conventional technique. Another reason could

be that for a long time it was thought that the most practical system for data acquisition -

the EEG - does not provide sufficient SNR, bandwidth, and information content to decode

kinematics [25]. For these reasons, applications that use from MI predicted trajectories are not

known yet. However, some studies (see above) have shown that the concept is working and that

it is possible to predict trajectories even by EEG signals.

For the future, a non-invasive position decoding system could be the basis to control e.g. a

neuroprostheses in a natural manner, because with this technique the users don’t need to learn

new mental strategies to control the devices. Scientists like Ofner et al. [7] expect that the

learning period should be substantially reduced.
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3.1 Introduction Methodology

In the Methodology chapter, an experiment similar to those already described in subsection 2.5.2,

is carried out in order to find a correlation between movement and EEG data, which can sub-

sequently be used for the prediction of motion trajectories. To make these results later useful

for a PC application, the movements are performed within a field that is smaller than a 21” PC

screen. In the experiment, vertical and horizontal movements are carried out since the prediction

of alternative trajectories, is assumed to be calculated from the superposition of a vertical and a

horizontal motion. To make the experiment more realistic with respect to the development of an

application for drawing shapes, the participants take a pencil into their hands while executing

the movements. When executing such drawing movements in the vertical plane the movements

are almost exclusively from the shoulder joint while the elbow and the wrist are stiff, it is as-

sumed that the correlation between EEG and kinematic data is higher when only a single joint

is moved, hence it is expected that the accuracies of the predicted trajectory are also higher.

3.2 Description of the experiment

The goal of the experiment is to get a correlation between the kinematic and the brain data. To

get this correlation, as it was explained in the chapter ”State of the art”, the participants must

do real movements while the kinematic and brain data are recorded.

In this experiment, the participants are sitting comfortable on a chair in front of a plate with

targets. The participants are holding a pen in their right hand and do self-initiated movements

from a center point to a target and back to the center point with slightly angled right arm.

The left arm lies banded in a relaxed position on the left thigh. The plate is located in around

1.50 m distance to a kinematic data acquisition system. For the recording of the EEG data,

the participants have a cap with EEG electrodes on their heads. To reduce the artifacts the

participants are instructed to stare at the center point of the target plate and to avoid any other

movements than the instructed ones.
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Figure 3.1: Principal structure of the experimental setup. The experimental setup con-
sists of a plate with targets, to which the user have to do self-initiated movements,
a kinematic data recording system in a distance of around 1.50 m, and a participant
with an EEG cap on his/her head.

The target points, as well as the center point are placed on an acrylic glass plate. Two targets

are placed on the right and left side of the center point in a horizontal distance of 10 cm to the

center point each. The other two targets are placed above and below of the center point in a

vertical distance of 10 cm each.

Figure 3.2: Plate with targets. On a plate of acrylic glass are 4 target points (blue squares)
and 1 center point (orange cross) placed. The target points are located at a hori-
zontal or vertical distance of 10 cm to the center point.
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3.3 Participants of the experiment

In this experiment participated, voluntarily a right-handed male with an age of 25 years. The

participant had no medical history that might interfere with the task. The study was approved

by the Comité de Ética de la Investigación of the Pontificia Universidad Católica del Perú (see

subsection A.5.4). The participant gave a written informed consent prior to participation (see

subsection A.5.3).

3.4 Experimental Task

To synchronize the movements, the participant had to do center-to-target and target-to-center

movements, each in 0.5 s. Between the movements the participant had 0.5 s to rest. The center-

to-target movements were indicated by a 6 kHz tone, the target-to-center movements by a 4 kHz

tone. The tones came from the loudspeaker of the computer. In the resting phases there were

no tones played by the computer.

Figure 3.3: Movement Cycle. The figure shows the time course of a Movement Cycle. The
participants have 0.5 s to move the hand from the center position to a target
position, 0.5 s to rest, 0.5 s to go back to the center position and finally 0.5 s to
rest again.

A Movement Block (MB) consists of 12 Movement Cycles and last 24.0 s hence. During this

time the participant was not allowed to blink, to move his eyes or to make any other limb

movements.
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Figure 3.4: Movement Block. A MB consists of 12 Movement Cycles (C), which last 2.0 s
each. Hence, the resulting time of a MB is 24.0 s.

The experimental session consists of 8 MBs. Before every MB there were a 8 s lasting initial-

ization phase, which were indicated by a 5 s durable initialization sound. In this phase the

participant had to make two waves with both arms over his head. Immediately afterwards

the participant had to take the target position, relax and wait for the start of the experiment.

The waving over the head was necessary because otherwise the used kinematic tracking system

wouldn’t have recognized the skeletal points. Before the initialization phases, there were breaks

of 20 seconds. In the first 17 s of these phases a relaxing melody was played. The participant

should use the break to relax his eyes. After the MBs, there were phases in which the metadata

of the Kinect had to be saved. The total time of the experimental task had a duration of 8 min.

The reason why these numbers of MBs and Movement Cycles per block were chosen is explained

in section A.3.1.

Figure 3.5: Time course of the experiment. The experiment consists of 8 MBs (MBX),
which last 24 s each. Before every MB there are a 8 s durable Initialization Phases
(IN) and before that, 20 s lasting Relaxing Phases (RP). After the MBs are 8 s last-
ing phases to save the metadata (SM) from the Kinect. Hence, the total duration
of the experiment is 8 min.
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3.5 Data Acquisition

3.5.1 EEG Data Acquisition

The EEG data were recorded with the g.Nautilus Research Headset from g.tec [39]. The system

consists of 32 active dry electrodes with 8 pin gold-alloys (g.SAHARA), which are prefixed

mounted on an elastic cap (g.GAMMAcap) and positioned according to the 10-20 method.

32 of 32 electrode locations shown

Channel locations

FP1 FP2

AF3 AF4

F7 
F3 Fz F4 

F8 

FC5 FC1 FC2 FC6

T7 C3 Cz C4 T8 

CP5 CP1 CP2 CP6

P7 
P3 Pz P4 

P8 

PO7
PO3 PO4

PO8

Oz 

Figure 3.6: Used EEG System [39]. The figure shows on the left the g.Nautilus Research
Headset with the g.GAMMAcap and g.SAHARA electrodes and on the right the
available electrodes for the used 32 channel version.

The EEG data were recorded with 32 active dry electrodes with an impedance higher than 100

MΩ, an input sensitivity of 562.5 mV, a sampling rate of 250 Hz and (according to [40]) a 24

Bit resolution, which leads to an oversampling of 4096, yielding a high SNR. The reference and

the ground electrode were positioned behind the participants ears. The signals were low-pass

filtered with the amplifier at a frequency of 10.23 kHz [40]. No other filter were used. The

digitized data were sent via a wireless data link to a Base Station that was connected to the PC

[40].

Before the use of the EEG system, the participant was asked to remove his electronic devices

from his pockets and to touch a metal grounded object to protect from electrostatic discharge

(ESD).
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3.5.2 Kinematic Data Acquisition

For the acquisition of the kinematic data the Kinect R© for Windows R© v2 system was used. This

system consists of the Kinect for Xbox One sensor and the Kinect Adapter for Windows [41].

The Kinect for Xbox One sensor includes a [42]:

• Depth sensor, which has a resolution of 512 x 424 pixels, an image frequency of 30 frames

per second (fps) and works in a distance from 0.5 to 4.5 m.

• Color camera, which has a full HD resolution of 1920 x 1080 pixels, and an image frequency

of 30 fps (in low light 15 fps).

Figure 3.7: Kinect for Windows v2 (adapted from [43]). The Kinect System has, among
other components, a color camera and a depth sensor, which works with three
infrared light emitters. The orientation of the measured coordinates is according
to the coordinate system on the right.

With the depth sensor it is possible to track 25 skeletal points with a high stability and anatom-

ically correctness of up to 6 people [42]. The trackable skeletal points are [44]:

• spine base • left shoulder • left thumb • right hand tip • left foot

• spine mid • left elbow • right shoulder • right thumb • right hip

• spine shoulder • left wrist • right elbow • left hip • right knee

• neck • left hand • right wrist • left knee • right ankle

• head • left hand tip • right hand • left ankle • right foot

According to the results of the preliminary tests (see subsection A.3.2), the best kinematic results

for the experiment have been achieved when tracking the right hand skeletal point.

3.6 Implementation of the experiment

The available EEG system from g.tec (see section 3.5) is designed to be controlled by Matlab R©

and Simulink R©. Since the Kinect system can also be controlled relatively easy with the Matlab
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Image Acquisition Toolbox
TM

, it seems optimal to implement the entire data acquisition as well

as the playing of the necessary sounds and tones for the synchronization of the movements in

the Matlab environment.

Since both data recording systems are very computationally intensive (see section A.3.1), the

EEG and the Kinect data acquisition were done on two different computers.

For the experiment two computers were used; each with an i7 processor up to 3 GHz and 8

GB random access memory (RAM). The EEG data acquisition via Simulink was done on one

computer; and the Kinematic data acquisition, as well as the play of the tones and sounds for

the movement synchronization using the Kinect v2 system via Matlab were done on the other

computer. To enable a later synchronization of the data, the clocks from both computers were

before the start of the data acquisition synchronized with the time server of the ”Physikalisch-

Technische Bundesanstalt” in Braunschweig (Germany), which uses an atomic clock [45].

The Simulink model, shown in Figure 3.8 was created for the EEG data acquisition. The

model uses the g.Nautilus Highspeed block, that provides a graphical interface to the g.Nautilus

hardware, which can be used to specify the amplifier properties and to acquire the data [46].

The ”unbuffer” and ”Data Type conversion block” is necessary to write the data provided from

the ”g.Nautilus” in a Matlab variable. The lower part of the model was created to save a time

stamp since the g.Nautilus block does not provide the absolute time. At the simulation time

point 0.004 s (1/250 Hz), a ”step” block creates a step, which is detected and converted to ”1”

from the ”detect change” block. From this value, a constant value of 0.5 is subtracted, thus a

value of +0.5 reaches a triggered subsystem at the time point 0.004 s. At the time point 0.000 s,

there is no step detected, which means that a value of -0.5 reaches the triggered subsystem.

Because of the change from -0.5 at time point 0.000 s to +0.5 at time point 0.004 s, the ”trigger”

in the subsystem effects that at the time point 0.004 s the absolute time is queried from the

system and then written into a Matlab array.

Unbuffer

EEG_data_raw.mat

To File

g.Nautilus

double

Data Type Conversion

U ~= U/z

Detect

Change

-0.5 Constant

Add

H M
 S

Subsystem

Step

EEG_Timestamp.mat

To File1

EEG Data

Figure 3.8: Simulink model for the EEG data acquisition. The upper part of the model
provides the acquisition of the data and the transfer into a Matlab array; the lower
part is to take a time stamp at the beginning of the acquisition and to copy this
time stamp into another Matlab array.
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From the 32 acquired EEG channels all up to the two most frontal electrodes FP1 and FP2

were used. These two electrode channels were excluded since the signals are resulting from their

location particularly vulnerable to EOG artifacts [26].

Since the processing can be done offline and hence practically no limits exist for the selection of

the frequency filters, there was no need for using the implemented 8th-order Butterworth digital

filters of the g.Nautilus EEG [46] while recording the EEG data.

The script to acquire the Kinect data and to play the sounds for the movement synchronization

was written according to the following flow chart.

Figure 3.9: Programming scheme for the experiment.

The experimental setup was constructed according to the preliminary test results (see sec-

tion A.3.3).

The target plate was clean, it was not in a parallel position to any active screens, it was located

in a right angle compared to the windows and shielded from punctual light. The participant sat

close with his back to a bright wall and he was not allowed to wear loose clothes. The plate was

subsequently horizontal, parallel to the Kinect, shifted till there was no more reflection of the

infrared light from the Kinect depth sensor (see Figure A6).

The distance between the Kinect and the target plate were estimated. The horizontal level of

the Kinect and the plate has been adjusted by a Carpenter’s level. Finally, the plate was fixed

with vises on the table to reduce vibrations if the plate is inadvertently touched during the

experiment.

Figure 3.10 shows the theoretical structure of the experimental setup and Figure 3.11 shows its

implementation.
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Figure 3.10: Theoretical structure of the experimental setup The figure shows that the
Kinect should be placed in a distance of around 1.5 m and parallel shifted to
the target plate. Furthermore the participant (blue person) should be close to a
bright wall and the computer screens should not be directed toward the target
plate as this can produce reflections or distract the participant.

Figure 3.11: Implemenation of the experimental setup. The two pictures were taken
during preliminary tests for the experiment.
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3.7 Signal Processing of the experiment

3.7.1 Overview of the Signal Processing

The Signal Processing of the experimental data was done according to Figure 3.12. The steps

are explained in detail in the following.

Figure 3.12: Signal Processing scheme for the experiment. The scheme shows all the
steps in order from the Experimental Task to reach an optimized Trajectory
Decoder. The steps in the blue boxes are the Signal Processing steps, which
are explained in this section, the gray boxes above were already explained in
section 3.5 and the gray box below will be specified in section 3.8.
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3.7.2 Kinematic Data Preprocessing

Extraction of the kinematic data of all Movement Blocks

The first step of the kinematic data preprocessing was to extract the kinematic data for all

MBs. To enable this, the start times, written immediately before the first beep of every MB

(see Figure 3.9) were used.

Calibration of the kinematic data

A calibration for the kinematic data is not necessary, however it makes the visual inspection of

the data easier. To calibrate the system, the mean values of the last 15 measurement points of

the initialization phases were calculated for each data block (initialization phase + movement

block) and after that these values were subtracted from all measured values of the data blocks.
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Figure 3.13: Calibration of the kinematic data. The figure shows the measured points of
the first MB in an x-y plane before and after the calibration.
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Figure 3.14: Calibrated kinematic data. The figure shows the kinematic data of the first
MB after the calibration in time-courses and in an x-y plane.
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Moving Average filtering of the kinematic data

The kinematic data in Figure 3.14 don’t look noisy, however, to prove if the Kinect’s data really

don’t include kinematic noise, the data were transformed into the frequency domain and their

plots were examined.
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Figure 3.15: Fourier-Transformation of the kinematic data. The plots show the FFT
of the data from the first MB. There were no movement data with a frequency
higher than 2 Hz detected, what means that the recorded data of this MB do not
have any higher-frequency kinematic noise.

As you can see in Figure 3.15, in this MB, there was no signal higher than 2 Hz recorded, what

proves a good quality of the recording. However, when examining a plot of the trajectory in the

x-y plane in detail, you can see that the signal makes small peaks, which presumably lead to a

poor correlation between kinematic and EEG data.
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Figure 3.16: Original trajectory of a Movement Cycle. The figure shows the original
trajectory of the first Movement Cycle of the first MB.

A way to smooth these peaks is by filtering the signal with a MA filter. A MA filter calculates

the mean value of a value with its preceding and following values. To find out which span

(number of preceding values + number of following values + 1) for the MA filter is best suited
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for the actual problem, the trajectory to the first target point and back to the center point was

plotted in the x-y plane and overlaid by MA smoothed versions of this trajectory.
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Figure 3.17: Comparison of Moving Average smoothed movement trajectories. In
the figure the original trajectory for a Movement Cycle is compared with the
results of by Moving Average filters of different spans smoothed trajectories .

The by a MA filter with a span of 5 smoothed trajectory seems to be optimal, because it is

smoother than the trajectory filtered by a MA with a span of 3 and it is similarly smooth as the

trajectory filtered by a MA filter with a span of 7 but closer to the original trajectory. In order

to be able to recognize the result in a better way, in the following figure there is only the by a

MA filter with a span of 5, smoothed trajectory plotted.
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Figure 3.18: Final Moving Average smoothed movement trajectory. The figure shows
the final movement trajectory, which was filtered with a MA filter of a span of 5.

3.7.3 Kinematic Data Feature Extraction

As kinematic feature for the calculation of the correlation between the kinematic and EEG

data the velocity of the movements is used. The velocity was calculated outgoing from the
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preprocessed kinematic data according to Equation 2.5.

When looking at the plots of the time-courses of the velocity components, the signal looks

noisy.
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Figure 3.19: Time-course of the velocity data. The time course of the velocity data shows
a little noise, e.g. in the red marked area.

For this reason, the data of the velocity components were smoothed again with a MA filter of a

span of 5.
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Figure 3.20: Time-course of the smoothed velocity data. Smoothing of the velocity data
has reduced the noise as seen in Figure 3.19.

This second kinematic filtering does not seem to be imperative, however when reconstructing

the trajectory of the data and comparing it with the trajectory after the first filtering in an x-y

plane it does not seem to bring any disadvantages.

36



3 Methodology

-1 0 1 2 3 4 5 6 7 8
x (cm)→

-1.0

-0.8

-0.6

-0.4

-0.2

0

y 
(c

m
)→

Figure 3.21: Comparison of the trajectories of a Movement Cycle. The trajectory
in blue is the trajectory of Figure 3.18 and the trajectory in red are the recon-
structed velocity components after the second MA smoothing. The red trajectory
is smoother but still very close to the original trajectory.

3.7.4 EEG data Preprocessing

Frequency interval limitation

As the first step of the EEG data preprocessing, the frequencies below 0.5 Hz and the frequencies

above 40 Hz were eliminated. Since the processing can be done offline practically no limits exist

for the selection of the frequency filters. Due to their higher slope between the pass and stop

band, it was assumed that FIR filters are more suitable for the offline processing. However, after

using an FIR filter, it turned out that these filters could not filter frequencies below 1 Hz.
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Figure 3.22: Comparison of an FIR bandpass and a Butterworth bandpass filter.
The figure shows that the FIR filter cannot filter out frequencies below 1 Hz.

When applying IIR and FIR bandpass filters, with cutoff frequencies at 0.5 and 40 Hz (which

are often used in the processing of EEG data) and comparing the results, it becomes clear that

the FIR bandpass filter with a lower cutoff frequency at 0.5 is absolutely useless since by far the
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largest part of noise of EEG signals is close to 0 Hz, like the Fast Fourier Fransformation (FFT)

shows. Hence it is necessary to have almost a IIR high-pass component.
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Figure 3.23: Results when filtering the EEG raw data with a FIR bandpass and a
Butterworth bandpass. The figure proves that FIR filter, which cannot filter
out frequencies below 1 Hz are not suitable for the filtering of EEG data.

Since the Butterworth bandpass has a weak slope between the pass-band and the second stop-

band, it seems to be optimal to use a combination of a Butterworth high-pass with a cut-off

frequency of 0.5 Hz and a FIR low-pass with a cut-off frequency of 40 Hz instead of a Butterworth

bandpass.
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Figure 3.24: Comparison of a bandpass filter with a high- and low-pass filter in
series. With a Butterworth high-pass and a FIR low-pass better filter properties
as with a Butterworth bandpass can be reached.
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3 Methodology

A problem of FIR filters seems to be that these filters produce a high time delay because of

its high number of filter coefficients, which would aggravate the calculation of the corelation

between the EEG signals and the kinematic data. However, FIR filters have usually a linear

phase [47], which leads to an overall frequencies constant group delay, which can be compensated

easily.
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Figure 3.25: Properties of a FIR filter with 1000 filter coefficients. The figure shows

the properties of a FIR low-pass filter with 1000 filter coefficients and a cutoff
frequency of 40 Hz. In the left picture, the gain (blue line) and the linear phase
(orange line) of the filter can be seen. In the right picture, the resulting linear
group delay can be seen.

A way to compensate the time delays is to filter the signal first and switching the filtered signal

in time afterwards. A more elegant way is to filter the signal with a zero-phase filter, which can

be called by the matlab command ”filtfilt” [48]. A zero phase filter reverses the filtered sequence

and runs it back through the filter automatically.

As you can see in the following figure and in Figure 3.25, FIR filters have a constant time group

delay of samples, which corresponds to the half number of filter coefficients. Here, a FIR filter

with 1000 filter coefficients produce a time delay of 500 Samples, which is equal two a delay of

2 s at a Sampling Rate of 250 Samples/s.
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Figure 3.26: Comparison of a linear-phase and a zero-phase FIR filtered signal. The
amplitudes of the signals are identical; the group delay is exactly two seconds for
the linear-phase filtered signal over all measure points.
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In contrast to FIR filters, Butterworth filters have a non-linear phase, which lead to non-linear

time group delays. Normally the time delays of Butterworth filters are not high. However,

when filtering close to 0, the time delay increases enormously. When, like here, a Butterworth

high-pass filter of 8th-order with a cut-off frequency of 0.5 Hz is used, the time delay at 0.5 Hz

after filtering is around 750 Samples, which means a time delay of 3(!) s at a Sampling rate of

250 Hz.
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Figure 3.27: Properties of a Butterworth high-pass filter of 8th-order. The figure
shows the properties of a Butterworth high-pass filter with an order of 8 and a
cutoff frequency of 0.5 Hz. The picture on the left shows that Butterworth filters
have a non-linear phase and resulting non-linear group delays (right picture).

IIR filters can, like FIR filters, also be constructed as zero-phase filters. However, when using

this filter the values of the amplitudes can differ. In the following figure, a EEG raw signal can

be seen, which were parallel filtered by a Butterworth high-pass non-linear and by a Butterworth

high-pass zero-phase filter with cut-off frequencies of 0.5 Hz each. When comparing the both

results, it can be seen that the amplitudes at around 60 Hz (power supply artifact) differ.
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Figure 3.28: Comparison of the results of a zero-phase and a non-linear-phase FIR
filtered signal. The figure shows that the amplitudes of the zero-phase filtered
signal (orange line) differ to the non-linear-phase filtered signal (blue line).
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The results of the filter tests showed that for the elimination of EEG signals below 0.5 Hz the

signals need to be high-pass filtered with a Butterworth filter. Since a zero-phase Butterworth

filter falsify the amplitude a normal (non-linear-phase) Buttwerworth filter was used instead.

As a compromise of a high-slope between the pass- and stop-band, which requires a filter with

a high filter order and a low time-delay, what is only guaranteed when using filters with low

filter orders, a Butterworth high-pass filter with an order of 8 was used to limit the range

below 0.5 Hz. Afterwards this elimination, the range higher than 40 Hz was limited with a

window-based zero-phase low-pass FIR filter with 1000 filter coefficients.

Re-referencing

To enhance the focal activity from the local sources the signal was re-referenced. As re-

referencing method re-referencing with a CAR was used. A CAR is the mean of all electrodes

for every measured time. These values were subtracted from every electrode channel, according

to the following equation:

X(t)CAR
n = X(t)n −

1

N

N∑
n=1

X(t)k (3.1)

In this equation are X(t)CAR
n the re-referenced signals and X(t)n the signals before the re-

referencing for the channels n at the time point t.

The difference between an original signal and a CAR re-referenced signal can be seen in Fig-

ure 3.29.
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Figure 3.29: Re-referencing with a CAR. The figure compares a signal before (blue line)
and after (orange line) the re-referencing with a CAR.
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Extraction of the EEG data for all Movement Blocks

After the re-referencing, the EEG signals were extracted for all MBs using the EEG data time

stamp (see Figure 3.8) and the start times of every MB written immediately before the first

beep of every MB (see Figure 3.9).

Artifact reduction

After the extraction of the EEG data for all MBs the data could be visually checked for para-

doxical phenomena.

One finding here was that when plotting the FFT of the EEG signals for a MB a peak at 30 Hz

could be seen. Since the peak is relatively higher when observing only the data of the MBs as

when observing the data of the whole measured time, it is assumed that it is an artifact, which

occurs only or more intensively during the experiment. Due to the characteristic of the artifact

(high peak at exactly 30 Hz) it can be assumed that this artifact is generated by the Kinect.

Another finding was that the artifacts written by hand during the recording can be retrieved in

the time course.
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Figure 3.30: EEG artifact findings. The figure shows two EEG artifacts, evoked by the
Kinect system (upper part, frequency course) and evoked by blinking (lower part,
time course).

Since the Kinect artifact also occurred, when the with the Kinect connected PC was far away

from the EEG system, it can be assumed that the artifact is directly produced of the Kinect

system, for this reason it cannot be well shielded. Also, sometimes a blink cannot be avoided.

A possibility to deal with these artifacts is to make an ICA. In an ICA decomposition, the

signals are separated into maximal temporal independent components (ICs). After an ICA ICs,

which present noise, blinking artifacts etc., can be subtracted. For this project the ICs were

calculated with the ”runica” algorithm using the Matlab Toolbox ”EEGLAB” [49].
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3 Methodology

Normally, in an ICA decomposition the number of ICs corresponds to the number of used EEG

channels. However, in these datasets the rank (29) and the number of channels (30) differed.

Since with EEGLAB it didn’t work to reduce the number of ICs with a PCA to the number

of rank in order to obtain proper results with an ICA, one channel was excluded from the ICA

manually. Without doing this, the ICA would add noise to the datasets when subtracting an

IC.

Figure 3.31: Calculated ICs by an ICA. The figure shows the 29 calculated ICs with its
spatial occurrence.

IC 6 of Figure 3.31 can easily be identified as a blinking artifact because of the smoothly

decreasing EEG spectrum and because of the strong-far-frontal projection shown in the scalp

map (see Figure 3.32, left) [50]. To prove whether the IC is actually a blinking artifact, the

plot of the channel activation (see Figure 3.32, right) can also be checked. Like you can see, the

blink can be clearly identified at 13 - 14 seconds, (which is the same than in Figure 3.30 at the

relative time of around 332 s).

Figure 3.32: Channel activations of different ICs. The channel activation shows a strong
impulse at IC 6 between the relative time from 11.5 to 12.5 s. Since at that time
an artifact was suspected after writing down all times of blinking, this confirms
the assumption that IC6 is a blinking artifact.
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3 Methodology

In the PSD (see Figure 3.33) can be seen that a portion of the Kinect artifact is presented in all

ICs, which means that this kind of artifact is not temporal independent and hence, it cannot be

subtracted by the use of an ICA.
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Figure 3.33: Power spectral density of the ICs. The figure shows the PSD of the 29
calculated ICs of the EEG signals for a MB. It is striking that the proportion of
the Kinect artifacts is distributed over all ICs.

To reduce the artifacts, due to the results of the investigation of the ICA, the IC for the blinks

were removed and the ICs showing Kinect artifacts were kept. Since it is expected that the most

information necessary for the movement prediction can be found in the SMR, which are in the

mu and low beta frequency band, the frequency space of around 30 Hz was excluded from further

investigation. The following figure shows the same detail than the previous figures, before and

after subtracting the IC of the blink.
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Figure 3.34: Blinking artifact reduced EEG signal. The figure shows an EEG signal with
a blinking artifact (blue line) and the same signal after the removal of this artifact
(orange line) by an ICA.
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EMG and ECG artifacts could normally also be made visible with an ICA and subsequently be

removed, however, to recognize these kind of artifacts is much more difficult and could not be

done within this Master’s Thesis.

Baseline Correction

To correct the baselines (DC offsets), the mean value of all time points were calculated for each

EEG channel and subtracted from all EEG points in all MBs according to Equation 2.1.

Separation into different frequency bands

It can be assumed, that the CCs between the EEG data and the kinematic data are higher,

when calculating the correlation separately for different frequency bands. For this reason the

last step in the EEG data preprocessing is the separation of the signals in six non-overlapping

frequency bands.

According to subsection 2.2.1 the signals were separated in the following frequency bands:

• Delta waves (0.5 - 3.5 Hz)

• Theta waves (3.5 - 7.5 Hz)

• Mu (Alpha) waves (7.5 - 12 Hz)

• Low Beta waves (12 - 18 Hz)

• High Beta waves (18 - 29 Hz,)

• Low Gamma waves (31 - 40 Hz)

The frequency space at around 30 Hz was excluded because of the artifact generated by the

Kinect (see section 3.7.4).

To separate the signals in the different spectra, they were parallel filtered. Since the spectra

was already limited from 0.5 to 40 Hz (see section 3.7.4), the lowest spectra were separated by

a low-pass filter with a cut-off frequency of 3.5 Hz and the highest spectra were separated with

a high-pass filter with a cut-off frequency of 31 Hz. All the other spectra were separated with

bandpass filters. All the used filters were (like in section 3.7.4) zero-phase FIR filters with 1000

filter coefficients.

The following figure shows a section of the recorded signal separated into the six different,

non-overlapping frequency bands.
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Figure 3.35: Six non-overlapping EEG frequency spectra. The figure shows the during
the experiment recorded EEG signal at electrode CP1, separated in six non-
overlapping frequency spectra.

3.7.5 EEG Data Feature Extraction

According to the results of Korik et al. [12], the standardized BP was chosen as the EEG feature

for the Calculation of the correlation between the kinematic and EEG data. The standardized

BP was calculated for every frequency spectra separate in time windows of 500 ms, according to

equation 2.3 and subsequently standardized according to equation 2.4. To match the kinematic

data sampling rate of 30 fps, the BP time windows were overlapped and switched for 33.33 ms.

Since with the provided recording frequency (250 Hz) of the used EEG system it was not possible

to switch the windows exactly of 33.33 ms, which are 8.33 (250/30) points, the windows were

switched in an order of ”8-9-8-8-9-8-...” points. Since the BP is calculated for time windows of

500 ms symmetrically around a time point no BP values can be calculated for the first and last

250 ms.

Figure 3.36: Band Power Time Windows. The figure shows how the BP Time Windows
of 500 ms have been shifted in steps of 1/30 s from one end to the other.

The following figure shows the result of the BP calculation for the same section as in Fig-

ure 3.35.
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Figure 3.37: Standardized BP values. The figure shows the calculated standardized BP
values of the same data as in Figure 3.35.

To get a feeling about what data are used to calculate the correlation for the prediction of motion

trajectories, the BPs of Figure 3.37 corresponding velocity data were plotted below.
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Figure 3.38: Corresponding kinematic data. The figure shows the to Figure 3.37 corre-
sponding velocity data (left) and the original trajectory in an x-y plane (right).

3.7.6 Data verification, data synchronization and creation of a Data Structure

Verification of the kinematic data

For the verification of the kinematic data plots of the time courses of the motion data before

the feature extraction were visually inspected for any paradox values, separately for all MBs.

Although there were no errors in the kinematic data recording at the end of the preliminary-tests,

some errors appeared in the actual experiment. The errors were noise, which couldn’t be filtered

out with an MA filter and recording errors during the movement to the lower target point. Since

both types of errors only occurred in two MBs, however continuously in both MBs, these MBs,

as you can see in the following figure, were completely excluded from further analysis.
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Figure 3.39: Verification of the kinematic data. The figure shows the preprocessed kine-
matic data for all MBs in a time course for x and y coordinates separately. The
data in the red-framed MBs show some errors and were completely excluded from
further analysis.
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Verification of the EEG data

For the verification of the EEG data, the data before the separation into the different frequency

spectra were visually inspected. To avoid the artifact produced by the Kinect in this inspection,

the data were filtered with a zero-phase FIR band-stop filter with a cutoff frequency of 30 Hz

before.

Since transients resulting from the movements of the initialization phases could be found up to

the first 4 s of nearly each MB, the first 4 s of all MBs were excluded from further analysis. Also,

the data of the last 0.25 s were excluded as for these times no BP values could be calculated

(see subsection 3.7.5).
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Figure 3.40: Transients at the beginning of the Movement Blocks. The figure shows a
transient phase at the first 3 - 4 s of a MB resulting from the movements in the
initialization phase before.

Synchronization of the data

To match the kinematic data sampling frequency, the EEG BPs were calculated in time windows

that were shifted for 33.33 ms (see subsection 3.7.5). The datasets were already synchronized

at the extraction of the EEG and Kinematic data in the preprocessing part, however since the

first BP values are at 250 ms because of the symmetrical calculation in a window around a time

point, is a time-shift of 7 points between the BP and the velocity components existing.

Creation of a Data Input Structure

For the calculation of the correlations using a mLR it was necessary to create a Data Input

Structure, in which each computed velocity component (dependent data) can be assigned to the

computed BP components (independent data) for each channel n at the same time, and further

times in a time lag distance k according to Equation 2.6.
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The investigated timelag distances were chosen from 0 to 500 ms, which yields an embedding

dimension (L + 1) of 16. The consideration of a time lag is important because of different

reasons:

• The action potentials occurring in the brain during the preparation of the movements are

passing over the spinal cord to the motoneurons, which lead to a contraction of the muscles

and to a movement. This chain of action takes some time.

• Filtering the signals cause time shifts which, however, have been reduced due to the selec-

tion of optimal filters (see section 3.7.4).

• Since the BP is calculated with values that are symmetric to a time point, future values

are included, which may have to be compensated by a time-shift.

The investigated numbers of EEG channels n are 30, as already described.

These parameters cause the input structure, which is shown in the following figure. This input

structure was created for every investigated time point and separately for the both investigated

velocities and the six investigated frequency spectra.

Figure 3.41: Data Input Structure. For all six frequency bands, each computed velocity
component is assigned to the computed BP components of 30 EEG channels
within 16 time lag distances.
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3.8 Development of a Trajectory Decoder

3.8.1 Prediction of trajectories

Overview

For the prediction of trajectories, it is necessary to have a training and a test set of the extracted

velocity data in x and y direction and BP data of the six frequency spectra data. With the

training data, the regression parameter between the velocities and the BPs, can be calculated.

The regression parameter can subsequently be used to predict the trajectories from the BP of

the test set. At the end with the Pearson’s CC the strenth of the correlation between the original

velocity data of the test set and the predicted velocity trajectories can be calculated.

Figure 3.42: Overview of the prediction of trajectories and the calculation of the
prediction accuracies. The figure shows how trajectories can be predicted and
how the accuracies of the predicted trajectories can be calculated.

Data validation

In order to get a proper evaluation of the results, the training data should not be used as test

data. To separate the data into an independent training and test set, a validation is necessary.

For this experiment, the data were validated manually; the data of the first MB were defined as

(outer-fold) test set and the data of the other seven MBs were defined as (outer-fold) training

set.

Figure 3.43: Creation of an outer-fold training and test set. The data of the first
Movement Block were used as outer-fold test set, the data of the other seven
Movement Blocks were used as outer-fold training set. The data of the MBs 2
and 6 were already excluded at the verification of the data (see Figure 3.39).
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Calculation of the initial outer-fold trajectories

Like above described, with the full dataset of 16 embedding timelag distances and 30 embedding

EEG channels, the regression parameter between the (outer-fold) velocity and EEG BP data of

the training sets were calculated for all frequency spectra in both velocity dimensions using the

matlab function ”regress”.

With this regression parameter and the EEG BP data of the test sets, the test set trajectories

were predicted and the CCs between the reconstructed trajectories and the original test set tra-

jectories were calculated. The CC was defined as the accuracy of the reconstructed trajectories.

The results can be seen in the following figure.
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Figure 3.44: Predicted initial outer-fold trajectories. The figure shows the measured
and reconstructed velocity profiles of the hand movements in x and y direction
separately. For the reconstruction for all frequency spectra the full dimensions of
EEG channels and timelags were used.
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3.8.2 Improvement of the Trajectory Decoder

Overview

As you can see in the legends of Figure 3.44, the accuracies of the velocity profiles are very low

and often negative, hence they cannot be used for the control of a BCI device or application.

The reason for these low accuracies is that the used datasets for the calculation of the regression

parameter contain many dimensions (16 timelag and 30 EEG channels) with a low level of

information, what decreases the quality of the decoder. For this reason to get a good Trajectory

Decoder it is necessary to find the optimal timelag and EEG channel combinations.

To find these optimal combinations, it is necessary to separate the outer-fold training set into

k inner-folds since the ecological validation, resulting by the self-selection of the targets is not

high enough. For these inner-folds, one fold is always used as test set, while the others build the

training sets.

The process to improve the Trajectory Decoder is the following:

• For all constellations of test and training sets, the trajectories are predicted with all chan-

nels for each timelag separately and averaged over all folds. This approach makes it possible

to rank the timelags for their accuracies.

• In a new calculation, the number of timelags sorted according to their ranks is varied and

the trajectories are predicted for different numbers of timelags and the accuracies averaged

over all folds. With this process the optimal number of timelags can be found.

• after finding the optimal timelags, for the constellation of the EEG channels the same

procedure is repeated, however, this time the accuracies over all (optimized) timelags is

calculated for all EEG channels separately.

• When for the inner-folds an optimal constillation for the timelags and EEG channels is

found, this setup is used to optimize the outer-fold training set, what hence improves the

Trajectory Decoder.
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A graphical overview of the optimization process of the Trajectory Decoder is shown in the

following figure.

Figure 3.45: Processing scheme for the optimization of the Trajectory Decoder. In
the inner-fold level is used to find an optimal setup of timelags and EEG channel
montage, and to improve the Trajectory Decoder. The outer-fold level is used to
evaluate the results of the Trajectory Decoder.

Validation

The higher the number of inner-folds, the better the decoder can be improved, however with the

number of folds the computational effort increase linearly. Here, the inner-folds were created by

a 6-fold CV.

55



3 Methodology

Since Matlab is not able to separate the used kind of dataset by a CV, a manual CV was carried

out. The steps to do this were the following:

• the data of the MBs, which were used for the outer-fold training set were separated in six

equal sized sub intervals.

• With the computer a random sequence of numbers from 1-6 was created, here ”4-2-6-1-5-3”.

• The six numbers were in the generated sequence assigned to the sub intervals.

• With the numerated sub intervals the six inner-folds were created.

Figure 3.46: Creation of an inner-fold data structure. The inner-folds were created from
the outer-fold training set. For the participant MB 2 and MB 6 (light blue) have
already been excluded in the outer-fold training set (see Figure 3.43).

As already described above, each inner-fold were used once as test set while the other five folds

were used together as training set. Because of the six different combinations of training and test

datasets, this procedure is called 6X6 CV.

Figure 3.47: Inner-fold training and test set combinations. In the inner-fold training,
each inner-fold is used once as test set while the other five inner-folds build to-
gether the training set.
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The velocity profiles of all inner-folds can be seen in the following figure.
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Figure 3.48: Inner-fold velocity profiles. The figure shows the velocity profiles for all six
inner-folds in the x and y dimension. These profiles were used for the training of
the Trajectory Decoder.

Calculation of the initial inner-fold trajectories

The first step in the inner-fold optimization stage was to calculate the accuracies for the predicted

trajectories in each fold and the averaged values over all six folds; these results were subsequently

compared with the results, got from the outer-fold calculation.

The result of this evaluation (see Table 3.1) is that the calculated accuracies for the averaged

inner-folds and the outer-fold differ enormously, as well as the accuracies between all the inner-

folds differ enormously. It is assumed that the results, which are random, have been caused by

an overfitting of the model with its 481 dimensions.
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Accuracy vx(%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Average Outfold

0.5 - 3.5 Hz 7.5 - 11.5 - 9.2 4.4 - 1.9 19.1 1.4 28.6

3.5 - 7.5 Hz 2.4 - 3.5 - 16.1 7.5 - 3.1 - 1.2 - 2.4 - 0.9

7.5 - 12 Hz 14.2 - 21.0 18.5 1.1 13.3 7.5 5.6 - 30.3

12 - 18 Hz 8.6 - 0.0 6.1 - 0.9 10.9 13.0 6.3 - 7.3

18 - 29 Hz 19.5 - 4.7 11.2 - 17.0 - 31.6 10.7 - 2.0 1.8

31 - 40 Hz - 2.3 9.4 - 18.2 0.5 10.4 22.3 3.7 7.4

Accuracy vy(%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Average Outfold

0.5 - 3.5 Hz - 3.2 - 11.2 -18.4 - 8.8 - 29.4 - 7.4 - 13.1 - 1.2

3.5 - 7.5 Hz - 8.9 - 13.0 4.7 - 4.5 7.8 1.1 - 2.1 - 4.1

7.5 - 12 Hz 23.6 20.8 - 4.1 21.5 6.5 11.9 13.4 - 4.5

12 - 18 Hz 24.9 10.9 - 25.8 - 14.5 - 1.6 - 15.0 - 3.5 - 8.4

18 - 29 Hz - 6.6 - 31.4 - 17.8 - 10.0 - 12.0 - 7.0 - 14.3 4.5

31 - 40 Hz 11.6 - 11.4 - 9.8 1.6 - 3.8 14.6 0.5 9.3

Table 3.1: Prediction accuracies for trajectories predicted with initial Parameters

Optimization of the timelags

The dataset seems too big for a practical one-step optimization, for this reason the timelags

and the EEG channels were optimized separately, beginning with the timelags. To optimize

the timelags first the trajectories over all 30 EEG channels were calculated for each timelag

separately in all six folds. Then, the accuracies for each fold were calculated and finally the

accuracies were over all six folds averaged.

It was assumed that the ”accuracy courses” have a similar shape to a downwardly opened

parabola or to a sinus function (because of the periodic character of the movements) with peaks

at different timelag distances. Furthermore, it was assumed that the accuracy courses calculated

from the mu (7.5 - 12 Hz) and low beta (12 - 18 Hz) frequency spectra have the best results and

that the curve shapes of the accuracies in the x and y dimension are similar. Figure 3.49 shows

the actual results.
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Figure 3.49: Timelag-accuracy-courses using all 30 EEG channels (sep. in x and y
dim.). The figure shows expected accuracy courses with the highest maximum in
the x dimension for the low beta (violet) frequency band and in the y dimension
for the mu (yellow) frequency band.

The figure shows that, as assumed, the most curves have a sinusoidal appearance. Also, the

accuracies calculated from the mu and low beta band are the highest, as expected.

Since it is assumed that the final timelag distances are independent of the movement directions,

the over the x and y dimension averaged results are used for the optimization. The averaged

values of the last evaluation are shown in the following figure.
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Figure 3.50: Timelag-accuracy-courses using all 30 EEG channels (av. in x and y
dim.). The figure shows that the accuracies for the mu (yellow) and low beta
(violet) frequency bands have still the highest maximums when the x and y values
are averaged.

The results from the last evaluation were particularly as expected, however, the medium and

maximum accuracy values are very low for all frequency spectra. To check if these low values are

due to too many channels with low information content, the same procedure like above described
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was repeated, however this time the number of electrode channels was reduced from 30 to the

six channels that are placed over the motor cortex. The used channel montage can be seen in

the following figure.

Figure 3.51: Reduction of the EEG channels to six over the motor cortex placed
electrodes. For the following evaluation were just the data produced by these
six marked EEG electrodes used.

The evaluation (see Figure 3.52) shows very different results regarding the shapes of the curves,

the timelags and also the highest maximum.
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Figure 3.52: Timelag-accuracy-courses using six central EEG channels (sep. in x
and y dim.). The results calculated from six central channel differ particularly
enormous from the results calculated from all 30 EEG channels (see Figure 3.49)

The over the x and y dimension averaged results are plotted in the following figure.
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Figure 3.53: Timelag-accuracy courses using six central EEG channels (av. in x and
y dim.). The figure shows, that the accuracies for the mu (yellow) and low beta
(violet) band have deteriorated compared to Figure 3.50.

When comparing the results from the over x and y dimension averaged accuracies for the pre-

dicted trajectories over all 30 EEG channels (see Figure 3.50) and over six central EEG channels

(see Figure 3.53), it can be seen that the mu and low beta band have their highest maximum,

when they were calculated from all 30 EEG channels and the other four frequency bands have

their highest maximum, when they were calculated from the six central channels. This is other

than expected, because the SMR which include the mu and low beta spectra is particularly found

over the motor cortex, while other frequency spectra are often found in other brain regions.

Due to the results of both evaluations, the timelags for the mu and low beta band were ranked

according to Figure 3.50 and the timelags of the other four frequency bands were ranked accord-

ing Figure 3.53. Thereby, the timelag with the best accuracy was assigned to rank 1 and the

timelag with the worst accuracy was ranked as 16.

After ranking the timelags the optimal number of timelags has been determined. To do this, the

accuracies were calculated for the trajectories from a varying number of channels, sorted by its

ranks. This means, that a trajectory predicted by 5 timelags is calculated by the timelags with

the ranks 1-5. The results for the optimization of the timelags are shown in Figure 3.54.

Optimization of the channel montage

After the timelags, the EEG channel montage had to be optimized. To optimize the channel

montage, the averaged accuracies for each channel were calculated in a similar way as the

optimization of the timelags. For the calculation of the accuracies, the determined optimized

timelags were used. Also, like in the optimization of the timelags, the channels were first ranked

and after the optimal number of channels were calculated using the ranks of the channels. The

results for the optimization of the EEG channel montage are shown in Figure 3.55.
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Figure 3.54: Optimization of the timelags. On the left side you can see the accuracies for
each timelag, which were subsequently ranked according this evaluation. On the
right side are the accuracies that are depending of the number of timelags from
the timelags with the rank 1 to the timelags with the rank x.
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Figure 3.55: Optimization of the EEG channel montage. On the left, the accuracies for
each EEG channel, which were subsequently ranked according to this evaluation
can be seen. On the right are the accuracies depending of the number of channels
from the channel, with the rank 1 to the channel with the rank x.
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After the optimization of the EEG channel montage, the timelags were re-optimized. To do

this, the procedure described above was repeated. However, this time the determined optimized

channel montage was used. This procedure improved the results for the frequency spectras 7.5 -

12 Hz, 12 - 18 Hz, 18 - 29 Hz and 31 - 40 Hz, for the frequency spectras of 0.5 - 3.5 Hz and

3.5 - 7.5 Hz the results stayed the same.

In the following figure, the process of the re-optimization of the timelags for the four frequency

spectra, which were improved, is plotted.
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Figure 3.56: Re-optimization of the timelags. On the left are the accuracies for each
timelag, which were subsequently ranked according this evaluation. On the right
are the accuracies depending of the number of timelags from the timelags with
the rank 1 to the timelags with the rank x.
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After the re-optimization of the timelags the EEG channel montage can also be re-optimized

using the re-optimized timelags. The process of alternating optimization of the timelags and

channels can be continued as desired. Here, the process was terminated if no further improvement

of the accuracies resulted. However, since it is a process to find a local and not a global maximum

it is possible that the results will deteriorate but will reach a new maximum at a later point.

The final results of the optimization are shown in the following section.
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4.1 Achieved results

The results of the inner-fold optimization (see Table 4.1) is that the accuracies over all six inner-

folds and both spatial dimension averaged has improved for each frequency band, what confirms

that the chosen optimization process is working. Furthermore, the results show that the highest

accuracies were calculated from the mu and low beta band, where it was expected. It was also

assumed that the optimal timelag distances would be at around 200 - 300 ms for all frequency

bands higher than 3.5 Hz. For the delta frequency band (0.5 - 3.5 Hz) a higher timelag distance

was expected because of the time delay of lower frequencies resulting from the non-linear phase

of the Butterworth filter (see Figure 3.27). All timelag distances determined, except for the mu

band (7.5 - 12 Hz) are according the assumption. The course of the Accuracy depending on the

timelags, see also Figure 3.54 and Figure 3.56 seem surprising.

Results Inner-folds 0.5-3.5 Hz 3.5-7.5 Hz 7.5-12 Hz 12-18 Hz 18-29 Hz 31-40 Hz

Optimal TL dist. 500 ms 300 ms
0 ms, 33 ms,

500 ms
267 ms 267 ms 133 ms

Optimal no. of Ch. 7 3 20 9 3 1

Acc. optimized 11.3 % 14.1 % 23.9 % 18.1 % 13.2 % 9.4 %

Acc. before opt. -5.8 % - 2.3 % 9.5 % 1.4 % - 8.1 % 2.1 %

Table 4.1: Averaged inner-fold accuracies after the parameter optimization

The optimized channel montages shown in Figure 4.1 are a bit surprising. While the optimized

montage for the mu band is very symmetrical, the montages for the other frequency bands are

very unsymmetrical and especially for the low beta band it is surprising that only one of the

nine optimal calculated electrodes is placed of the central cortex.
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Figure 4.1: Optimized EEG channel montage. The red circles mark the determined opti-
mal EEG channels which are necessary to calculate the highest possible accuracy.

The following figure shows what accuracies are predictable for each channel in each frequency

spectra when using the optimized timelags.

0.5 – 3.5 Hz R 3.5 – 7.5 Hz R 7.5 – 12 Hz R

12 – 18 Hz
R 18 – 29 Hz R 31 – 40 Hz R

Figure 4.2: Topographic map of the predicted accuracies for each channel. For this
evaluation 2D Gaussian functions were multiplied with the calculated accuracy for
each channel, shifted to the channel positions and subsequently overlaid.
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The plots of the topographical maps show that the EEG channels above the motor cortex can not

be used to calculate trajectories with higher accuracies, and that the majority of the channels

produce negative accuracies. This could possibly indicate a problem of the selected optimization

method.

In order to see if this has negative effects, the accuracies in the outer-folds using the optimized

combination of timelags and EEG montage were calculated and with the outer-fold values before

the optimization as well as with the values of the optimized inner-folds themselves compared.

The results of this evaluation separately for the x and y dimension can be seen in the following

table.

Results, x dim. 0.5-3.5 Hz 3.5-7.5 Hz 7.5-12 Hz 12-18 Hz 18-29 Hz 31-40 Hz

aver. Inner-folds 16.5 % 19.3 % 22.7 % 20.1% 11.9 % 13.4 %

Outer-fold bef. opt. 28.6 % - 0.9 % - 30.3 % - 7.3 % 1.8 % 7.4 %

Outer-fold aft. opt. 7.8 % 12.2 % - 34.4 % - 2.2 % 0.2 % 17.0 %

Results, y dim. 0.5-3.5 Hz 3.5-7.5 Hz 7.5-12 Hz 12-18 Hz 18-29 Hz 31-40 Hz

aver. Inner-folds 6.0 % - 0.3 % 25.0 % 16.2 % 14.6 % 5.3 %

Outer-fold bef. opt. - 1.2 % - 4.1 % 4.5 % - 8.4 % 4.5 % 9.3 %

Outer-fold aft. opt. - 7.1 % 15.0 % -4.0 % 9.2 % 0.7 % 19.2 %

Table 4.2: Outer-fold accuracies after optimization

Table 4.2 shows that there is a huge difference in the results between the optimized inner-folds

and the optimized outer-fold test set. A huge variance between the results can be a sign that

the number of k in the k-fold CV is not sufficient, however a variance as huge as shown in

the previous table cannot be attributed to the number of k folds. Since also only the outer-

fold accuracies calculated from three frequency spectra improved in both dimensions while the

accuracies calculated from the other three frequency spectra decreased, it seems that the chosen

optimization process is not transferable from the inner-fold level to the outer-fold level. The

reasons are explained in the following section.

4.2 Discussion of the results and problems

The chosen optimization method is a method to find a local maximum. That means that the

found local maximum could theoretically differ significant from the global maximum. A method

to find a global maximum would need to calculate independently of the ranks all combinations

of timelags including the number and the chosen timelags, and all combinations of EEG channel
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montages, including the number of channels and the chosen channels itself. For a optimization

of 480 parameters the computational effort would be enormous. It can be assumed that the local

maximum after the optimization of the time lags, the optimization of the channel montage and

the re-optimization of the timelags are close to the global maximum.

The reason why the chosen optimization method cannot be transferred from the inner-fold to

the outer-fold level seems to have its origin in the chosen ranking method of the timelags. To

understand the problem the kinematic and EEG feature vectors for a training set are plotted in

the following figure.
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Figure 4.3: Correlation between the EEG BP and associated velocity data. In this
figure, for the training set of inner-fold 1, the feature vectors of the velocity in x
dimension and the EEG BP of channel CP2 in the low beta band with a timelag
distance of 267 ms are plotted.

First, it can be seen, no matter which regression line is plotted, the reproduction of an original

trajectory in the test set is with this line hardly possible since the variance of the data is

extremely high. For this reason, the method of multiple linear regression has been applied, since

this method can be used to combine information from different dimensions (timelags and EEG

channels), and thus the overall variance can be reduced during optimization what improves the

CC.

Second, without applying a regression line, it can be seen that this line would have a slope of

almost zero. The problem that arises is that some single points could convert a positive slope

of the straight line into a negative slope or a negative slope of the straight line into a positive

slope. It seems very probably, that for many training sets negative (positive) slopes (equal to

the regression parameter b were calculated while for the test sets positive (negative) regression

parameter were determined.
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The effect of a different sign of the CCs can be understand better when understanding better the

meaning of the CC. The CC measures the strength of the contemporaneous linear association

between two series [51] and can have values between -1 and 1. Figure 4.4 gives an example of

correlations between contemporaneous datasets and Figure 4.5 gives an example of correlations

between a sinuns function and time shifted sinuns functions, what means that the datasets are

time shifted and not contemporaneous.

Figure 4.4: Examples of correlations between contemporaneous datasets (adapted
from [52]).

Figure 4.5: Examples of correlations between time-shifted datasets.

As you can see in Figure 4.5 in the left graphic, the amplitude of the sin functions don’t have

an effect on the CC respectively the r value, however a time-shift, as you can see in the other

three graphics, has a huge impact. Although there is a 100% linear dependency between the

two functions in the second graphic from the right, the CC is 0 and in the right graphic the CC

is -1.
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Transferred to the analysis of the correlation between the kinematics and EEG datasets does

this mean that regression parameter with different signs in the training sets leads to predicted

trajectories which are mirrored on the time axis although there is no time-shift between both

datasets.

This effect can be observed in the inner-fold level many times between two neighbor timelag

distances. In the following, a visualization of this effect is done by the data from electrode CP2,

which predicts in the low beta frequency range at a time interval of 8 (267 ms) a trajectory with

a relatively high accuracy compared to the other electrode channels.
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Figure 4.6: Investigated EEG channel. The over the motor cortex placed EEG channel
CP2 shows a relatively good prediction accuracy in the low beta band.

For the electrode channel CP2, all predictable accuracies were calculated for each timelag sep-

arately in all six folds and two spatial dimensions, averaged and plotted in the following figure

on the right. As can be seen, there is a huge jump in the accuracy course between the timelags

10 and 12. This jump can be made even clearer in the x dimension in the inner-fold 1, see the

following figure on the right.
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Figure 4.7: Timelag-accuracy-courses for EEG channel CP2 in the low beta band.
On the left is the timelag accuracy course averaged over all six inner-folds and both
spatial dimensions on the right is the timelag accuracy course for timelag 1 and the
spatial dimension x to detail the accuracy jump in the timelag accuracy course.

As can be seen in the previous figure on the right, there is a jump in the prediction accuracy
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course of about +0.3 to slightly below -0.3 between the timelags 11 and 12. This jump results

since the regression parameter b changes from -0.000149 in timelag 11 to +0.000584 in timelag

12.

In the following figure, the training and test sets of fold 1 with its feature vectors are plotted.

The feature vectors are the BP data in the low beta spectra created from EEG channel CP2

with timelags of 367 and 400 ms with its corresponding velocity data in the x dimension. In the

training sets calculated regression lines were added to the plots of the training and corresponding

test sets.
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Figure 4.8: Feature vectors of training and test sets with a timelag distance differ-
ence of 33 ms. The figure shows the high similarity between the feature vectors
in the training and test sets of neighbor timelags. Also the regression lines look
nearly exactly the same.

The kinematic data of the training sets as well as the kinematic data of the test sets are the

same. The EEG BP data differ marginally between the two timelags. For this reason it could

be expected that the predicted trajectories of both timelags are very similar, however as in

Figure 4.7 was supposed, in the following figure is confirmed that the trajectories predicted from

the timelag distances 267 ms and 300 ms are more or less mirrored at the time axes.
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Figure 4.9: Predicted trajectories from two timelags with a difference of 33 ms. The
figure shows that the trajectories predicted from two neighbor timelags can be
mirrored on the time axes when the sign of the regression parameter change.

It was shown in an example that if the regression parameter b is very small the accuracy of

the predicted trajectory can be reversed by the change of a single timelag, this means that the

timelags, which produce small regression parameter are very sensitive timelags. In the chosen

optimization method it is not clear whether a timelag is sensitive or not. As can be seen in

Figure 4.6, the timelag twelve has a good ranking; although there is this effect like shown

before.

Besides the fact that sensitive timelags are not shown in the chosen ranking method, the prob-

lem is that if the functions which are compared are periodic, a negative CC does not give any

information about, whether this was due to a time-shift or due to a wrong sign of the regres-

sion parameter in the training sets. The method is successful in the inner-folds because when

averaging the values over all folds negative values in the folds can be eliminated, however if

in the outer-folds the parameter differ only a little bit, the in the parameter optimized in the

inner-folds have no value in the outer-folds. An approach to solve this problem is given in

subsection 5.2.1.

Figure 4.9 shows another problem, the problem that only standardized velocities can be pre-

dicted, that means that the velocity values from the test set need to be divided by the standard

deviation to make both sets comparable. The standardized value decreases with the decrease of

the regression parameter. Converting the standardized velocity into the real velocity is possible,

however it seems very challenging in a real time prediction.
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Besides all the shown problems it is assumed that the main reason for the low accuracy is a very

low SNR. There are some reasons to suggest that:

• The used EEG system has dry electrodes, which effect very high impedances between the

electrodes and the skin and thus the quality of the measured signals is impaired.

• The experiment was not carried out in a shielded BCI laboratory, but in an electronic

laboratory with many electronic devices around and WiFi connection. This makes the

measured signals susceptible to artifacts.

• With an ICA, EOG artifacts were removed, however other components like EMG or noise

couldn’t be identified and removed.
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5.1 Summary

The aim of this Master’s Thesis was to develop a naturally controllable BCI that can predict

motion trajectories from the imagination of motor execution. The approach to reach this aim

was to find a correlation between movement and brain data, which can subsequently be used for

the prediction of movement trajectories only from brain signals. To calculate this correlation, an

experiment was carried out, in which a participant had to do triggered movements, synchronized

by beep tones, to four different targets and back to the start position. The four targets were

placed on an acrylic plate in a horizontal or vertical distance of 10 cm to a center point. For a

high ecological validity the order of the targets to which the participant made his movements was

self-selected by the participant. While the participant executed 10 MBs with 12 center-to-target

and target-to-center movements each, the positions of the hand were tracked by the Kinect

camera system with a frequency of 30 fps and the brain data were recorded by the g.nautilus

EEG system with 32 active and dry electrodes at a frequency of 250 Hz. In a preprocessing stage,

the qualities of the kinematic and EEG data were improved when applying different filters. After

the preprocessing, features of the kinematic and EEG data were extracted for the calculation of

the correlation. As kinematic features the velocities, separately in x and y direction, and as EEG

features a standardized BTS in six different frequency spectra in overlapping time-windows of

500 ms were calculated. To make the data of the kinematic and EEG features comparable, the

time-windows for the calculation of the EEG BP were respectively shifted by 33.33 ms. For all

six EEG frequency bands, datasets were created which include the BP data of 30 EEG channels

in 15 timelag dimensions from 0 to 500 ms. The EEG and kinematic datasets were serial divided

into two different levels. First, in an outer-fold level, the kinematic and EEG data of the first

MB were defined as outer-fold test set and the data of the other MBs together were defined as

outer-fold training set. Second, the data of the outer-fold training set were defined as inner-fold

set and separated into six folds by a 6-fold CV. In this inner-fold level, in change, the data of

five folds together were defined as training sets and the data of the one fold left were defined

as test sets. In the training sets regression parameter between the kinematic and EEG data

were calculated using a multiple linear regression. Subsequently, with the calculated regression

parameter of the training set and the EEG data of the test set, trajectories were predicted. The

predicted trajectories were compared with the original trajectories of the kinematic test sets and

the correlation coefficient between the original and predicted trajectories were calculated. The
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CCs were averaged for all six frequency spectra over all six folds and both spatial dimensions.

To avoid overfitting, the setup of timelag and used EEG channels were optimized. To calculate

an optimized timelag distance, the accuracies were calculated for each timelag separately with

a fixed EEG channel montage. According to these results, the timelags were ranked. At the

end of the timelag optimization, the optimal numbers of timelags were calculated; to do this

the accuracies for varying numbers of timelags, sorted by its ranks, were calculated while the

EEG channel montages were kept fix. After the optimization of the timelags, the EEG channel

montages were optimized. This was done in the same way like the optimization of the timelags,

however, with varying channels and a fixed time lag distance.

With an optimized setup the inner-fold accuracies were improved and the best results were as

expected shown in the mu and low beta spectra with accuracies up to 25%. When calculating

the outer-fold test set accuracies using the optimized setup from the inner-folds, there was no

significant improvement. The problem has been that the regression parameters b are very low,

this makes some timelag distances very sensitive for high changes in the accuracies. Beside the

problem of the high sensitivity of the results between the timelags, it is assumed that the SNR is

not high enough for a good prediction. The assumed reasons for the low SNR are that the used

EEG system has dry electrodes with high impedances between the electrodes and the skin, that

the experiment was caried out in a not-shielded laboratory and that EMG, ECG and noise were

not removed in an ICA. As further problem, it was shown that the system could only predict

trajectories with standardized velocities.

For this reasons, the developed BCI system can actually not be used for the control of an

application. However, in the last part of this thesis some future prospects, which show how the

developed system can be improved and how the system could be used for a future application,

are given.

5.2 Future Prospects

5.2.1 Improvements to the current system

It can be expected, that with some changes in the execution of the experiment, in the processing

and in the evaluations, the prediction accuracies of the trajectory decoder could be improved

enormously.

The EEG data basic could be improved when using an EEG system with wet electrodes instead

of dry electrodes. This would lower the impedances between the electrodes and the skin of the

participants. Furthermore, some artifacts could be avoided when examining the experiment in

a shielded BCI laboratory.

With an extended ICA, other components like EMG artifacts or noise could be reduced from the

signal and thus the SNR could be improved. Also, the variance of the results could be reduced
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if the number of k folds in the CV is increased. However, if the number of k folds is increased,

it seems advisable also to higher the number of MBs to keep the same number of measurement

points in all folds.

To make the good inner-fold results transferable to the outer-fold level, it is necessary to include

the sensitivity of the timelags in the inner-fold optimization. An approach to solve this problem

is shown in the following figure. In this figure the timelag course of the regression parameter

is compared with the timelag course of the predictable accuracies. The courses were made for

six central channels (see Figure 3.51) in the low beta spectra. For the timelag courses of the

regression parameter, the absolute values of the regression parameter were averaged over the six

inner-folds and both spatial dimensions.
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Figure 5.1: Comparison of the timelag courses of the regression parameter and the
predicted accuracies. For the timelag courses of the regression parameter (on
the left side) the absolute values were taken. For both courses the values for the six
calculated channels over all six folds and both spatial dimensions were averaged.

The figure shows, that the courses of the timelag sensitivity and the courses of the predictable ac-

curacies are similar for all channels. However, the timelag-sensitivity courses are much smoother

and differ enormously at some timelag distances. As it can be seen, for channel FC1, the highest

accuracy value is at timelag 15 while the sensor activity has one of its lowest values for the same

channel at this timelag.

Since both courses are related, maybe the regression parameter alone could be used as criterion

for the ranking. This would make sense because only regression lines with higher slopes could

guarantee low variances in the datasets.

A total different approach to improve the accuracies could be to change the regression method.

Since it is not sure if there is a linear correlation between movement and brain data, the regression
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could be done by an ANN, that also can calculate non-linear correlations [53].

5.2.2 Concept for the practical use of the Trajectory Decoder

If the BCI system can be improved according to the previously mentioned improvement sug-

gestions and a solution is found to calculate real velocities instead of standardized velocities,

it is recommendable to develop an application for this system. The BCI system was designed

to be optimized for a PC application, however, before the system can be used for a computer

application, it is need to be made online-capable. This could be done in the Matlab environment

with a Simulink model as it is shown in a simplified manner in Figure 5.2. For the online-capable

system, the frequency interval could be limited between 0.5 and 40 Hz by the EEG system block

integrated bandpass filter as well as the re-referencing with a CAR can be done within this block.

An artifact reduction, as well as a baseline correction is not possible in the online-processing

model. That means that the system could only work reliable as long as the users don’t make any

blinks. After the optimizations in the offline system, it is not necessary to separate the signal in

the online-capable system into all six frequency spectra, it is sufficient and useful when the signal

is only separated in the frequency range where the best results were shown in the offline model.

The main parts; the calculation of the standardized BP, the prediction of the velocity from the

BP and the prediction of the position from the velocity can be done in Matlab functions within

a Simulink block. Finally, the calculated positions can be transferred to an application.

Figure 5.2: Simplified model of the online-capable BCI system. In the Simulink model
it is shown which blocks could take over which functions.
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In the application, patterns could be shown with a movable cursor placed on it. The BCI users

could then move this cursor by MI and trace the pattern as it is shown in the following figure.

Figure 5.3: Example for an application for the BCI system. The appliation could show
pattern which could be traced by MI of the BCIs user.

With such a system, a neurofeedback training could be enabled, in which the users learn to

generate MIs. Later, when the users are accustomed to create the necessary MIs for the control

of the cursor, they could draw more difficult shapes which are not shown on the screen and

communicate by this way.

5.2.3 Finding of suitable participants

A look to the results of BCIs that can predict motion trajectories, developed by other researchers

show that the reached accuracies between the different subjects differ enormously. This applies

to common systems that use time series of EEG potentials for reconstructing trajectories, like in

Bradberry et al. [54], as well as it applies to systems that use time series of EEG power spectral

values, as used in this thesis and in Korik et al. [12].

The enormous differences between the individual participants in the same experiments suggest

that there are some participants more suitable for the use of such a BCI system than other

participants. The reason for this phenomenon might be that because of the low spatial resolution

of EEG systems some signals that correlate with the execution or imagination of movements

cannot be measured. As Korik et al. have shown in [12] and in this thesis confirmed, MTP BCIs

that use BTS as features have the best results for trajectories predicted from the mu and low

beta band. To the movements correlating changes in the BPs is in the mu band a result of ERD

and in the low beta band a result of ERS.

It can be assumed, that already before adjusting a MTP BCI system that use BTS, the pre-

dictable accuracies for a particular person can be estimated when having a knowledge about

how strong ERDs and ERSs can be calculated for a particular person.

An approach to find out the strength of ERDs and ERSs that can be measured for a participant

is that the participant does some triggered movements (e.g. the finger to thumb opposition, as

shown in the following figure) and afterwards, the to the movements correlating ERDs and ERSs
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from the EEG BPs according to Figure 2.3 are calculated. The maximum of the ERD and ERS

could be used as criteria for the strength.

Figure 5.4: Finger to thumb opposition [55]. In the finger to thumb opposition, the
participant has to move one finger after the other to the thumb and back in a
triggered sequence.
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A.1 Commissioning of the EEG system

The g.nautilus Research set requires a actual version of Windows 10 Pro and a Matlab Version

of 2015 or newer. After the installation of all necessary software and drivers, paths had to be

set in Matlab in order to put the system into operation.

The first test with the system was to check the electrode-skin-impedance with an equipped in-

ternal impedance check. The result of this test should be that for all the electrodes up to ”Cz”,

which is used for the impedance calculation and cannot measure its own impedance, have higher

impedances than 10 MΩ. The reason for this high impedance is that the used electrodes are dry

electrodes. However, the measured signals have a good quality.

Figure A1: Measuring of the EEG electrodes impedance. The figure shows the expected
result for the measuring of the electrode impedance. Channel ”CZ” is green be-
cause it is used for the calculation of the impedance and cannot measure its own
impedance; all the other channels have impedances higher than 100kΩ, which are
normal values for active electrodes.

According the high impedance, it is recommended to set the sensitivity level for all channels up

to 562.5 mV, which allows higher DC offsets as normally seen with dry electrodes [46]. In order

to enable an optical test of the voltage with a scope for all channels at least a bandpass filter
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had to be set. With the scope certain signal components e.g. created at blinking or jumping are

visible.

Figure A2: EEG settings and EEG scope. The Input Range has to be set to ± 562.5 mV,
to get good results on the EEG scope it is also necessary to set a bandpass (or high
pass) filter.

A.2 Commissioning of the Kinect system

To commissioning the Kinect R© for Windows R© v2 system via Matlab R©, it was necessary to have

Windows 8 or 10 and the Matlab version 2016a or newer installed. Furthermore, the Kinect for

Windows SDK 2.0 and the actual Kinect for Windows Sensor Support Package in Matlab had

to be downloaded and installed [56].

The first test was using the Matlab Image Acquisition Toolbox
TM

to take pictures with the

integrated depth sensor and Color camera and track the 25 possible skeletal points. After this

acquisition the tracked points were overlaid to the photos and in the color image the tracked

points were connected via a connection map, see Figure A3.
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Figure A3: Trackable skeletal points. The left picture shows two people taken by the
Kinect Depth sensor and overlaid by tracked skeleton points. The picture on the
right shows the same situation recorded by the Color Camera, overlaid by the
skeletal points from the depth sensor and connected by a connection map.

A.3 Preliminary tests for the experiment

A.3.1 Memory requirements

Number of necessary computers

During a test run in the constellation of 8 MBs with 12 movement cycles per MB, recorded

by the Kinect sensor, the RAM were observed by the Windows Task manager. The result of

this test was that Matlab, in this constellation, needs up to 6.5 GB of the RAM. Since for the

EEG system a minimum RAM of 4 GB is required and the available computers have just a 8

GB of RAM, it was decided to do the EEG and kinematic data acquisitions on two separate

computers.

Optimal combination of Movement Blocks and Movement Cycles per Movement Block

Originally it was planed to make 6 MBs each with 15 Movement Cycles. However it turned out

that, when running the script the system always crashed at the third MB. Also optimizations

in the script (reducing of used variables and deleting of variables directly when they were not

longer necessary) didn’t have a significant effect on the problem.

The reason for the problem is that Matlab has memory leaks. When deleting variables and

data, there are residues which can only be eliminated by a garbage collector. Matlab has such

a Garbage Collector but this Garbage Collector becomes just active when the system ”think”

that it is necessary [57]. Hence, without the use of Matlab’s Garbage Collector the ”Memory

used by MATLAB” becomes higher after every system run and at the same time the ”Maximum
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possible array” becomes less. Normally this is not a problem but when using the Kinect system,

the Depth sensor first makes all the pictures and then the system evaluates it and copy it into a

Matlab array. So, if for 1200 pictures (10 s Initializing + 30 s MB at a frame rate of 30 fps) with

a solution of 512 x 424 pixels 25 joints are calculated, enormous amounts of data are generated,

which all have to be saved in an array in a short time. Often the array with the metadata

needs more space than the ”Maximum possible array” provides and this causes the crash of the

system.

For the demonstration of the memory leaks, a test was implemented with a single MB of 15

Movement Cycles. Before and after every block the RAM was measured and all data from

the RAM were deleted with the command ”clear all”. Figure A4 shows an illustration of the

results.

Figure A4: Demonstration of the Matlab memory leaks. The figure shows that the
”Memory used by Matlab” (shown as blue bars) increases while the ”Maximum
possible array” (shown as yellow bars) decreases. The reason why the sum of the
two parameter at the end change is probably because Matlab uses the memory of
the hard disk drive (HDD), additional to the RAM.
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To do the experiment with 6 MBs and 15 Movement Cycles like planed, there would be some

alternatives to the described data registration:

• One possibility would be to use a normal camera instead of the Kinect Depth Sensor .

With the camera, the movements could be filmed and a marker (attached to the hands of

the participants or to the pen the participants use) can be tracked by a video analyzing

system like ”Kinovea” [58]. A drawback would be that the calibration of the system would

be a bit more challenging and maybe not accurate enough for the little movements in the

experiment. A bigger drawback would be an enormous expenditure of time to track every

single picture manual. Using a camera with a frame rate of 30 fps means 900 pictures per

block and 5400 pictures per participant which had to be track manual.

• another possibility would be to modify the script so that not first all pictures are made by

the Kinect Depth sensor and then analyzed, but instead that the analysis of the picture is

done immediately after every single picture, before taking a new picture, like it is done in

the Kinect real-time tracking. The advance would be that the enormous amount of data

would be saved over a longer period in the Matlab arrays, which would reduce the risk

of crashes. However, the frame frequency would be lower than 30 fps and so kinematic

information would be lost.

• A third possibility would be to start all the MBs separately. A test showed that for this

case, the data acquisition still worked reliable after 20 repetitions. However, it is to be

feared if there are many new starts of the program, the participants lose their concentration

and the recorded EEG data degrade.

After weighing the alternatives, it was decided to do the data acquisition with the Kinect depth

sensor like planned but the constellation of 6 MBs with 15 Movement Cycles each was changed.

To find a constellation, which comes as close as possible to the planned constellation without

crashing the system, some tests were done. In the tests it was tried to reach the planed 90

Movement Cycles or more in another constellation of MBs and Movement Cycles per MB. The

experiment started with the constellation of 18 MBs with 5 Movement Cycles per MB. After

every successful run, the number of Movement Cycles per MB was increased by one and the

number of MBs has been adjusted to reach 90 Movement Cycles or more. To nearly have

the same conditions after every test, Matlab was closed and restarted. Furthermore, no other

application on the computer was active.

The following combinations of ”Number of MBs x Movement Cycles/MB” were tested:

• 18 x 5 • 15 x 6 • 13 x 7 • 12 x 8 • 10 x 9 • 9 x 10

• 9 x 11 • 8 x 12 • 7 x 13 • 7 x 14

All the runs were successful until the combination of 7 MBs with 14 Movement Cycles per

MB. For this reason, the next lower combination of 7 MBs with each 13 Movement Cycles was
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tested for several times and it also failed sometimes. A combination of 8 MBs with 12 Movement

Cycles was in the entire tests stable. For this reason, this combination was chosen as the optimal

constellation of MBs and Movement Cycles per MB.

Later, the system also crashed sometimes in this constelation, but never because of the RAM.

The crashes happened always because of disk performance issues. To avoid this reason for

crashes, the Windows ”superfetch service” was disabled [59]. With a disabled superfetch service

all the runs worked reliable.

A.3.2 Best suited skeletal point

For the experiment, it seems possible to use the tracked data of the right hand, the right thumb

or the right fingertip. To find out which tracked skeletal point is best suited for the usage in the

experiment a test was done.

In this experiment, there were 12 Movement Cycles (3 to each target alternated and counter-

clockwise beginning with the target on the right) according to Figure 3.3 done, recorded by

the Kinect system and the measured points in a Cartesian coordinate system plotted. Further-

more, a calibration was done, in which the average value of the last 15 measured points of the

initialization phase were subtracted from all measured points.

As you can see in Figure A5, the results of the hand coordinates were a bit closer to the ideal

form. They showed a bit less measuring faults than the results of the fingertips. The results of

the right thumb were worse than the others. The conclusion can be inferred that the tracked

skeletal point of the right hand is the best-suited point for the experiment.
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Figure A5: Comparison of the measuring points of different skeletal points. The
three figures show measured points for the right hand (left), the right finger tip
(middle) and the right thumb (right) during the execution of movements from a
center point to four targets, which were in a 15 cm distance horizontal right and
left and in a 15 cm distance upper and lower to the center point.
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A.3.3 Optimization of the experimental setup

Target Plate position

After finding optimal software configurations and an optimal combination of MBs and Movement

Cycles per MB, the experimental setup had to be optimized in optomechanical aspects.

The first experiment was to position the plate with the targets in a distance of around 1.5 m

directly in front of the Kinect system and to observe the plate with the Kinect Depth sensor.

It was conspicuous that a big black spot appeared directly in front of the Depth sensor on the

plate (see Figure A6, left). That this spot originated by reflections of light could be excluded

by darkening the space. The spot can be traced as the total reflection of the infrared light from

the depth sensor. Since it can be assumed that this spot could falsify the results, the target

plate was shifted horizontally and parallel to the Kinect, until the spot finally disappeared (see

Figure A6). Since this position is still very central, this position was assumed to be as the ideal

position (see Figure A6, right picture).

Figure A6: Spot on the target plate. On the left picture, there is a big spot in the cen-
ter of the plate; resulting by total reflections of the infrared light of the Kinect
depth sensor. While shifting the plate (figures from the left to the right) the spot
disappears.

In the following preliminary tests, 12 Movement Cycles (3 to each target alternating and coun-

terclockwise beginning with the target on the right) according to Figure 3.3 were done. They

were recorded by the Kinect system and the measured points were in a Cartesian coordinate

system plotted. Furthermore, a calibration was done, in which the average value of the last 15

measured points of the initialization phase were subtracted from all measured points.

Positioning of the targets

The measured hand position points (Figure A5, left) to the upper, left and lower targets looked

quite good, however the points to the right target looked just good until around a 10 cm distance

to the center point, then the points stay at a distance of 10 cm on the x-axis and make jumps

on the y-axis. The reason why this happened could be that the right and left target points have

just an 8 cm distance to the edges of the acrylic plate. Since the tests were done with the right
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hand, the hand coordinates came really close at the movement to the right target point to the

right edge of the plate, so the transition of the plate and the air caused this negative effect. To

avoid these errors, all target points and the home position were shifted 6 cm to the left side.

Cleanliness of the plate

After repeating the experiment with the shifted target points, the problem with the missing

5 cm on the right seemed to be solved, however there was a new problem. The movements to

the upper target point weren’t measured (see Figure A7). The reason for this error was, that

when moving the targets, which are adhesive strips, some glue staid on the acrylic plate and

interfered the Kinect Depth sensor.
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Figure A7: Measurement errors caused by a purified acrylic plate. The figure shows
measured points of the right hand position, when doing movements (forward and
backward) from a center point to 4 targets, which are in a 15 cm horizontal and
vertical distance to the center point. The deviations to the ideal shape are due to
the fact that the plate was dirty in the upper area.

Reflections on the plate

One new error appeared after cleaning the acrylic plate with isopropyl. There were suddenly

many random measurement errors and the calibration was not working well (see Figure A8).

It turned out that the cause of the failure was the TFT screen of the used computer, that was

parallel to the acrylic plate, and provoked reflections on the acrylic glass, which disturbed the

depth sensor when it becomes darker outside (around two hours before the sunset).
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Figure A8: Measurement errors caused by reflections. The figure shows measured points
of the right hand position when doing movements (forward and backward) from
a center point to four targets. The targets are in a 15 cm horizontal and vertical
distance to the center point. The deviations to the ideal shape and the not working
calibration are due to reflections on the plate.

Furthermore, it was noted that when it’s sunny outside there are also reflections on the acrylic

plate that was parallel to the window. To solve this problem and the problem with the TFT

screen, the experimental setup were turned by 90◦and punctual light was shielded by a curtain.

Positioning of the targets 2

After all this optimizations, the result in Figure A9 was obtained. According to the Figures

A5 to A9 the same errors were always found; an increased number of measuring points at the

bottom right.

To specify the origin of the errors, a plot of the trajectories over the time separately in x and

y direction were done (see Figure A10). The evaluation of this plots shows that when the

movement to the lower target point is done, the x coordinates of the measured points make a

jump. The reason for this is that the lower point is really close to the end of the plate and hence

to the end the visible field of the depth sensor.
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Figure A9: Measurement errors after optimizations. The figure shows measured points
of the right hand position when doing movements (forward and backward) from
a center point to 4 targets, which are in a 15 cm horizontal and vertical distance
to the center point. The plotted measured points show that there are still some
measurement errors after a process of optimization.

To eliminate these errors, a larger plate with more space from the targets to the borders could

be used or the targets could be shifted closer to the center point. The decision was to reduce

the distance from the target points to the center point from 15 to 10 cm. This change has the

advantage that the resultant basic shape of 20 cm x 20 cm (see Figure 3.2) fit on a 21” screen,

and so the experimental data could be better used for the development of a PC application.
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Figure A10: Specification of the origin of a recurring error. In this figure the movements
in x and y direction were separately plotted over the absolute time. From around
18:42:09 to 18:42:19 was the initialization phase. After the initialization phase
first a movement to a target 15 cm horizontally right of a center point and back
were done, then to a target 15 cm vertical upper a center point and back, then
to a target 15 cm horizontal left and back and finally to a target 15 cm vertical
above to a center point and back. Before repeating the same procedure two more
times. It is noticeable that for all movements to the lower target point (orange
bar) the x coordinates make a jump (red ellipse), which means errors.
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Results for the experimental setup improvement

The result of the tests with the new placement of the target and home position points as well as

with new insights that an additional improvement could be achieved when the participants sat

with their back close to a white wall, which reduces background noise and when the participants

wear tight clothes is shown in Figure A11.

Figure A11: Results after optimization. The left figure shows nearly perfect measured
points for the right hand when three movements from a center point to four
targets on acrylic plate, which are in a 10 cm distance horizontal right and left
and in a 10 cm distance upper and lower to the center point. In the right figure
the movements in x and y direction were separately plotted over the absolute
time. In this figure the movement order (in the phase of the MB, beginning at
around 18:52:16) from the center point to a target point and back to the center
point can be seen very good. It can also be assumed that there is no kinematic
noise.

The results with the last constellation seem to be very good. Hence, in conclusion to get optimal

results it is necessary that:

• the plate has a horizontal offset parallel to the Kinect

• the participants are close with their back to a bright wall

• the plate is not parallel to active screens

• the plate is in a right angle to the windows

• punctual light on the plate is shielded

• the distance between the target points and the edges of the plate is more than 10 cm

• the target plate has to be clean

• the hand is the tracked anatomical point

• the participants do not wear wide clothes
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A.3.4 EEG findings

Transient phase

In a test, in which the EEG data were recorded it could be seen, that the g.nautilus system

has a transient phase at the beginning of the recordings for approx. 15 s. For this reason it is

recommendable not to use the data of the first 20 seconds for the evaluation of the experiment.
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Figure A12: Transient phase at the beginning of the EEG data registration. The
figure shows that the EEG system has an exponential decreasing transient phase
at the beginning of the data recording.
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Preparation	before	all	experiments	
	

Co
m
pu

te
r	"
Ki
ne

ct
"	 deactivating	Win	Superfetch	

								Win	Symbol	+	X	->	Windows	Power	Shell	->	net.exe	stop	superfetch	
starting	Matlab	
choosing	path	
opening	script	"test	position"	and	check	the	position	of	the	Kinect	
opening	script	"savedata"	
check	if	save	data	is	activated	
opening	script	"test	run"	

Co
m
pu

te
r	

"E
EG

"	

starting	Matlab	
choosing	path	
opening	Matlab	script	
check	if	save	data	is	activated	
loading	Simulink	model	and	checking	all	the	EEG	settings	

	
	
Preparation	before	each	experiment	
	

both	
Computer	

check	if	no	data	can	be	replaced	
synchronization	of	the	time	on	both	computer	

Pr
ep

ar
at
io
n	
EE
G	 participant	have	to	take	his/her	cellphone	out	of	his/her	pocket	

ground	the	participant	(touching	3	seconds	a	metal)	
put	on	the	ground	and	reference	electrode	on	the	participants	head	
put	on	the	EEG	system	on	the	participants	head	
switching	on	the	EEG	system	
measuring	the	impedance	and	checking	if	the	system	is	working	with	the			
					gtec	program	g.Need	access	

Preparation	
general	

explaining	the	experiment	(movements,	blinking,	fixing	the	eyes	etc.)	
doing	exercise	runs	using	the	"test	run"	script	

	
	
Performing	of	the	experiment	
	

before	
Experiment	

starting	EEG	measurment	
runing	Kinect	script	"savedata"	

during	
Experiment	 Write	down	blinks	

after	
Experiment	

terminating	EEG	measurment	
runing	EEG	Script	"save	data"	
rename	EEG	and	Kinect	data		
Moving	the	data	in	the	folder	"data"	

	

Appendix

A.4 Experimental Procedure

93



Comité	de	Ética	de	la	Investigación	(CEI)	
Oficina	de	Ética	de	la	Investigación	e	Integridad	Científica	(OETIIC)	
Vicerrectorado	de	Investigación	
	

	
Declaración	de	Compromiso	con	los	Principios	Éticos	de	la	Investigación	

	
Datos	del	investigador	o	investigadora	principal	

Nombre	completo:	Matthias	Petersamer	

	Afiliación	PUCP:	Estudiante	de	la	PUCP	

Profesión	/	Especialidad:	Maestría	en	inginieria	mecatrónica		

Datos	de	la	propuesta	de	investigación	

Titulo	de	la	investigación:	Predicción	de	trayectorias	de	movimiento	basadas	en	Imaginación	
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• Respeto	a	las	personas	
• Beneficencia	no	maleficencia	
• Justicia	
• Integridad	Científica	
• Responsabilidad	
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• Trataré	 de	 manera	 justa	 y	 equitativa	 a	 las	 personas	 que	 participen	 de	 los	 procesos,	

procedimientos	y	servicios	asociados	a	la	investigación.	
• Declaro	no	tener	participación	efectiva	o	potencial	en	una	relación	financiera	o	de	otro	tipo,	

que	 afecte	directa	 y	 significativamente,	 o	que	pudiera	 afectar	mi	 juicio	 independiente	e	
imparcial	en	mi	deber	para	con	la	universidad.		
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RESUMEN	

Una	interfaz	cerebro	computador	(BCI	por	sus	siglas	en	inglés)	es	un	sistema	que	mide	las	
señales	cerebrales	y	luego	las	procesa	mediante	un	ordenador	con	la	finalidad	de	obtener	
información	 relevante	 sobre	 el	 funcionamiento	 del	 cerebro.	 Estos	 dispositivos	
generalmente	 registran	 señales	 eléctricas	 (EEG),	 aunque	 también	 pueden	 registrar	 otro	
tipo	 de	 señales.	 Se	 ha	 probado	 que	 las	 técnicas	 basadas	 en	 el	 análisis	 de	 señales	 EEG	
pueden	detectar	una	correlación	entre	la	actividad	cerebral	medida	y	estímulos	visuales,	
ángulo	de	la	mirada,	intenciones	voluntarias	y	estados	cognitivos,	por	lo	cual	se	han	dado	
lugar	 diversos	 tipos	 de	 sistemas	 basados	 en	 señales	 EEG	 dependiendo	 de	 las	 áreas	
corticales	 analizadas,	 las	 características	 extraídas	 y	 la	 forma	 en	 la	 cual	 se	 provee	
retroalimentación	al	sujeto.		

El	 uso	 de	 sistemas	 BCI-EEG	 puede	 ser	 empleado	 en	 sujetos	 con	 diversos	 trastornos	
motores	como	esclerosis	lateral	amiotrófica,	parálisis	cerebral,	accidente	cerebrovascular,	
parálisis	 y	 amputación.	 Se	propone	el	 diseño	 y	 aplicación	de	un	 sistema	basado	en	una	
interfaz	 cerebro-computador	 para	 el	 análisis	 de	 señales	 electroencefalográficas	 durante	
actividades	de	imaginación	motora.	

El	presente	estudio	pretende	aumentar	el	conocimiento	en	el	área	de	Interfaces	Cerebro-
Computador,	cuyas	principales	aplicaciones	están	destinadas	a	la	mejora	de	la	calidad	de	
vida	 de	 personas	 con	 discapacidades	 como	 las	 que	 han	 sufrido	 accidentes	
cerebrovasculares,	amputaciones,	lesiones	de	médula	espinal,	entre	otros.	

El	objetivo	del	presente	estudio	es	analizar	las	señales	cerebrales	asociadas	a	la	realización	
de	 movimientos,	 a	 través	 de	 un	 electroencefalograma	 y	 un	 sistema	 cinemático	 de	
medición.	

Se	recolectarán	y	analizarán	datos	de	participantes	en	una	sola	sesión.	El	estudio	se	llevará	
a	cabo	en	el	Grupo	de	Investigación	en	Robótica	Aplicada	y	Biomecánica	(GIRAB-PUCP).	Se	
usará	 un	 tamaño	 de	muestra	 de	 5	 participantes,	 consistente	 en	 personas	 sanas	 de	 una	
edad	 mayor	 de	 18	 años,	 sin	 historial	 de	 enfermedades	 neurológicas	 y/o	 motoras.	 El	
equipo	 de	 electroencefalografía,	 así	 como	 el	 sistema	 cinemático	 de	 medición,	 son	 no	
invasivos	y	totalmente	inocuo	por	lo	que	no	implica	ningún	riesgo	para	el	participante.	
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CAPÍTULO	I:	INTRODUCCIÓN	

1.1.	PLANTEAMIENTO	DEL	PROBLEMA	

La	imaginación	de	un	movimiento	implica	un	aumento	o	reducción	de	la	amplitud	en	los	
ritmos	mu	y	beta	en	las	regiones	frontales	y	centrales	del	cerebro.	Con	práctica,	la	gente	
puede	 aprender	 a	 crear	 un	 patrón	 específico	 en	 los	 ritmos,	 conocidos	 como	 Ritmos	
Sensoriomotores	(SMR),	los	cuales	pueden	ser	extraídos	y	clasificados	al	compararlos	con	
una	referencia.	Las	características	clasificadas	permiten	el	control	de	una	prótesis,	el	brazo	
de	robot	y	otras	aplicaciones.	[1]	

Normalmente	 los	 Interfaces	 Cerebro-Computador	 (BCI)	 basados	 en	 Ritmos	
Sensoriomotores	 permiten	 el	 control	 de	 dispositivos	 como	 prótesis,	 sillas	 de	 ruedas,	
movimiento	del	 cursor,	etc.,	en	un	entorno	 real	o	virtual,	 clasificando	 la	 imaginación	de	
movimiento	del	brazo	derecho,	brazo	izquierdo,	los	pies	y	la	lengua.	

Algunos	 SMR	 BCIs	 clasifican	 el	 movimiento	 imaginario	 de	 las	 extremidades	 en	 las	
aplicaciones	 que	 se	 deben	 mover	 en	 tiempo	 real.	 Aunque	 hay	 algunas	 SMR	 BCI	 que	
utilizan	 una	 clasificación	 Multi-Clase	 (MC)	 en	 un	 espacio	 de	 características	
multidimensionales,	los	paradigmas	más	exitosos	se	basan	en	sólo	dos	estados	mentales.	
Esto	significa	que	este	 tipo	de	BCI	 tiene	que	hacer	 frente	a	un	número	muy	 limitado	de	
señales	de	control.	[2]	

MC	SMR	BCIs	son	adecuados	para	la	decodificación	de	un	cierto	número	de	posiciones	de	
destino	final,	aunque	la	decodificación	de	una	trayectoria	no	es	posible	con	esta	técnica.	
Sin	 embargo,	 una	 reconstrucción	 imaginaria	 de	 una	 trayectoria	 de	 movimiento	 de	 las	
extremidades,	así	como	la	estimación	de	los	vectores	de	velocidad	durante	un	movimiento	
ejecutado	o	imaginario,	se	pueden	activar	por	una	nueva	técnica	que	se	llama	Predicción	
de	 Trayectoria	 de	 Movimiento	 (MTP).	 Mientras	 que	 los	 usuarios	 de	 SMR	 BCIs	 se	
concentran	 en	 el	 movimiento	 de	 una	 extremidad	 (extensión,	 flexión,	 o	 rotación),	 los	
usuarios	de	MTP	BCIs	se	concentran	en	el	movimiento	en	general.	Esto	permite	un	control	
más	natural	de	los	dispositivos.	El	principio	de	la	MTP	BCIs	es	que	se	crea	una	correlación	
entre	los	datos	cinemáticos	(velocidad	en	dirección	x,	y,	z)	de	movimiento	real	y	los	datos	
de	 cerebro	 que	 se	 registran	 en	 algunos	 experimentos.	 Esta	 correlación	 conduce	 a	
funciones	de	estimación	que	se	pueden	utilizar	para	reconstruir	la	trayectoria	de	los	datos	
cerebrales.	[3]	
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1.2	JUSTIFICACIÓN	
	

El	presente	estudio	pretende	aumentar	el	conocimiento	en	el	área	de	Interfaces	Cerebro-
Computador,	cuyas	principales	aplicaciones	están	destinadas	a	la	mejora	de	la	calidad	de	
vida	 de	 personas	 con	 discapacidades	 como	 las	 que	 han	 sufrido	 accidentes	
cerebrovasculares,	amputaciones,	lesiones	de	médula	espinal,	entre	otros.	
	
1.3	OBJETIVOS	
	

1.3.1	Objetivo	general	
Predecir las trayectorias de movimiento a partir de señales de EEG. 
 

1.3.2	Objetivos	específicos	
1. Encontrar una correlación entre los datos cinemáticos y los datos 
 cerebrales, que pueden ser utilizados para predecir trayectorias 
 cinemáticas. 
2. Identificar si la baja resolución espacial del sistema EEG sugiere que algunos  

participantes son más adecuados para la predicción de trayectorias de 
 movimiento que otros. 

 
1.4	HIPÓTESIS	
	

El	 cálculo	 de	 la	 correlación	 entre	 las	 señales	 EEG	 y	 la	 velocidad	 de	 la	mano	 en	 las	 tres	
direcciones	 independientes	 x,	 y,	 z	 permitirá	 predecir	 las	 trayectorias	 de	 movimiento	
usando	para	el	cálculo	solo	los	datos	EEG.	
	
CAPÍTULO	II:	MATERIAL	Y	MÉTODOS	
	
2.1	DISEÑO	
	

Se	recolectarán	y	analizarán	los	datos	de	los	participantes	en	una	sesión.	No	se	requiere	
un	seguimiento	posterior.	
	
2.2	LUGAR	DE	ESTUDIO	
	

El	 estudio	 se	 llevará	 a	 cabo	 en	 el	 laboratorio	 del	 Grupo	 de	 Investigación	 en	 Robótica	
Aplicada	 y	 Biomecánica	 (GIRAB-PUCP).	 Los	 investigadores	 de	 este	 estudio	 tienen	 pleno	
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conocimiento	del	uso	del	equipo,	el	cual	fue	adquirido	mediante	la	revisión	de	las	guías	y	
la	 realización	de	pruebas	preliminares.	 El	 electroencefalógrafo	es	un	dispositivo	de	baja	
potencia	y	no	requiere	sistemas	de	seguridad	adicionales	a	 los	que	ya	vienen	integrados	
con	el	equipo.	
	
2.3	POBLACIÓN	Y	MUESTRA	
	

2.3.1.	Criterios	de	inclusión	
Personas	sanas	y	mayores	de	18	años.	
	

2.3.2.	Criterios	de	exclusión	
Personas	con	historial	de	enfermedades	neurológicas	y/o	motoras,	y	personas	zurdas.	
	

2.3.3.	Tamaño	de	muestra	
El	tamaño	de	la	muestra	tendrá	de	5	personas.	
	

2.3.4.	Muestreo	
Se	 escogerá	 aleatoriamente	 a	 un	 total	 de	 5	 participantes	 de	 entre	 todos	 los	 que	hayan	
mostrado	interés	en	participar.	
	
2.4	PROCEDIMIENTO	
	

2.4.1.	Ubicación	y	reclutamiento	de	participantes	
Se	realizará	una	convocatoria	abierta	mediante	redes	sociales	en	Internet.	
	

2.4.2.	Aplicación	de	consentimiento	informado	
Se	les	entregará	un	documento	de	consentimiento	informado	a	cada	participante	antes	de	
la	 sesión.	 Se	 discutirá	 con	 él	 y	 se	 resolverán	 todas	 sus	 dudas	 respecto	 al	 experimento.	
Posteriormente	 se	 le	 pedirá	 que	 firme	 el	 consentimiento	 informado	 como	muestra	 de	
estar	de	acuerdo	con	las	condiciones.	El	participante	se	llevará	una	copia	del	documento.	
	

2.4.3.	Recolección	de	datos	y	evaluación	
Al	participante	se	le	colocarán	electrodos	en	la	cabeza	y	se	le	registrarán	sus	señales	
cerebrales	mientras	ejecuta	movimientos	en	dirección	horizontal	y	vertical	con	su	brazo	
derecho.	Los	movimientos	tienen	que	ser	hechos	desde	un	punto	central	a	cuatro	puntos	
diferentes	de	destino.	El	punto	central	y	los	puntos	de	destino	están	marcados	con	cinta	
adhesiva	sobre	una	placa	de	acrílico.	El	movimiento	será	sincronizado	con	tonos	"bip".	El	
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movimiento	tiene	que	ser	ejecutado	200	veces	desde	el	punto	central	a	los	objetivos	y	de	
vuelta	al	punto	central,	en	un	tiempo	de	alrededor	de	diez	minutos,	en	un	orden	al	azar.	
	
	
	
	
	
	

	
	
	
	
	

Figura	1:	Configuración	experimental	(a	la	izquierda)	y	placa	con	los	objetivos	
	

En	 la	 segunda	 parte	 del	 experimento,	 los	 participantes	 serán	 instruidos	 para	 hacer	
movimientos	desencadenados	 (cómo	se	observa	en	 la	 figura	2).	 Los	movimientos	deben	
estar	sincronizados	con	tonos	"bip".	Esta	parte	del	experimento	se	utilizará	para	investigar	
si	estos	movimientos	se	pueden	atribuir	a	la	resolución	espacial	baja	del	EEG	(en	caso	de	
obtener	diferentes	resultados	en	 la	primera	parte	experimental).	Por	 lo	tanto,	con	estos	
resultados	será	más	precisa	la	elección	de	los	participantes	en	el	futuro.	
	

	
Figura	2:	Movimientos	desencadenados	
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2.5.	INSTRUMENTOS	
	

Electroencefalógrafo:	 Es	 el	 dispositivo	 que	 capta,	 a	 través	 de	 electrodos,	 las	 pequeñas	
señales	eléctricas	en	el	cuero	cabelludo	provenientes	del	cerebro,	las	amplifica	y	las	envía	
a	un	ordenador	para	su	posterior	procesamiento.	
	

Sistema	de	medición	cinemática:	Los	datos	cinemáticos	de	la	mano	derecha	se	medirán	
con	el	sensor	de	profundidad	del	sistema	Kinect	de	Microsoft.	
	

Ordenador:	 Se	 encarga	 de	 procesar	 las	 señales	 EEG	 y	 de	 suministrar	 indicaciones	 al	
participante	mediante	una	pantalla.	
	
2.6	ANÁLISIS	DE	DATOS	
	

Toda	 información	 será	procesada	en	el	 computador.	El	procesamiento	 se	 llevará	a	 cabo	
fuera	de	línea,	es	decir,	no	durante	la	prueba.	Todo	el	procesamiento	de	información	será	
realizado	 mediante	 un	 software	 llamado	 Matlab.	 La	 información	 recogida	 será	
estrictamente	confidencial	y	se	almacenará	en	un	ordenador	protegido	con	contraseña.	La	
información	 se	 mantendrá	 guardada	 durante	 un	 período	 de	 1	 año,	 en	 caso	 de	 una	
auditoría.	
	
2.7.	ASPECTOS	ÉTICOS	
	

2.7.1.	Aprobación	
Este	proyecto	 será	 revisado	por	el	Comité	de	Ética	de	 la	PUCP,	para	 su	aprobación.	 Los	
procedimientos	de	este	proyecto	de	investigación	se	llevarán	a	cabo	únicamente	después	
de	la	aprobación	del	Comité	de	Ética.	
	

2.7.2.	Información	a	los	participantes	
Se	 entregará	 una	 copia	 del	 consentimiento	 informado	 a	 cada	 participante.	 También	
podrán	obtener	algunos	resultados	del	análisis	realizado	posteriormente.	
	

2.7.3.	Confidencialidad	de	la	información	
Todos	los	datos	que	se	obtengan	durante	esta	investigación	solo	estarán	disponibles	para	
los	investigadores	asignados	a	este	proyecto.	La	información	recolectada	será	almacenada	
en	una	base	de	datos	virtual	y	protegida	por	contraseña.	
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2.7.4	Análisis	de	riesgos	y	beneficios	
El	 equipo	 de	 electroencefalografía	 es	 un	 dispositivo	 sensor,	 es	 decir,	 solo	 registra	 las	
pequeñas	 señales	eléctricas	producidas	por	el	 cerebro	 sin	emitir	 ningún	 tipo	de	 señal	o	
energía	 al	 participante.	 Además,	 es	 no	 invasivo,	 ya	 que	 se	 lo	 coloca	 encima	 del	 cuero	
cabelludo.	 Por	 esta	 razón,	 es	 totalmente	 inocuo	 y	 no	 implica	 ningún	 riesgo	 para	 el	
participante	 [4].	El	 sistema	Kinect	mide	 los	movimientos	de	manera	óptica	y	 también	es	
totalmente	inofensivo	para	los	participantes.	Finalmente,	es	importante	mencionar	que	el	
laboratorio	del	GIRAB	cuenta	con	instalaciones	eléctricas	seguras	y	por	las	condiciones	del	
proyecto	no	se	requiere	de	la	participación	de	personal	médico.	

CAPÍTULO	III:	Otros	

3.1	Fin	del	proyecto	
El	proyecto	se	realizará	hasta	septiembre	del	presente	año.	

3.1	PRESUPUESTO	

Los	 equipos	 y	 la	 mayoría	 de	 materiales	 ya	 han	 sido	 adquiridos	 y	 forman	 parte	 del	
laboratorio.	Por	ello,	no	se	incluye	ningún	presupuesto	adicional.	

3.2	CONFLICTOS	DE	INTERÉS	

Los	autores	de	este	proyecto	declaran	no	tener	ningún	conflicto	de	interés.	
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Comité	de	ética	de	la	investigación		–	CEI	
Vicerrectorado	de	Investigación	–	PUCP	

PROTOCOLO	DE	CONSENTIMIENTO	INFORMADO	PARA	PARTICIPANTES	

El	propósito	principal	de	este	protocolo	es	brindar	a	los	participantes	una	explicación	clara	de	la	naturaleza	de	la	
misma,	así	como	del	rol	que	tienen	en	esta	investigación.	

La	presente	investigación	es	conducida	por	Matthias	Petersamer,	estudiante	de	la	Pontificia	Universidad	Católica	
del	 Perú.	 El	 objetivo	 del	 estudio	 es	 encontrar	 una	 correlación	 entre	 señales	 cerebrales	 y	 datos	 cinemáticos	
durante	 la	 ejecución	 de	 movimientos.	 Los	 datos	 cerebrales	 serán	 registrados	 por	 un	 sistema	
electroencefalográfico	y	los	datos	cinemáticos	serán	medidos	por	un	sensor	infrarrojo.		

Los	 sensores	 no	 implican	 ningún	 riesgo	 para	 el	 participante.	 El	 estudio	 nos	 va	 a	 permitir	 incrementar	 el	
conocimiento	en	el	área	de	Interfaces	Cerebro-Computacionales,	cuyas	principales	aplicaciones	están	dirigidas	a	
mejorar	la	calidad	de	vida	de	personas	con	discapacidad,	como	las	que	han	sufrido	accidentes	cerebrovasculares,	
amputaciones,	lesiones	medulares,	entre	otras.	

Si	 usted	 accede	 a	 participar	 en	 este	 estudio,	 se	 le	 colocarán	 electrodos	 sobre	 la	 cabeza	 y	 se	 registrarán	 sus	
señales	cerebrales	mientras	observa	una	pantalla	y	sigue	las	indicaciones	que	se	le	darán.	Esta	toma	de	datos	se	
realizará	en	una	sesión	que	durará	treinta	minutos.	

Su	 participación	 será	 voluntaria.	 La	 información	 que	 se	 recoja	 será	 estrictamente	 confidencial	 y	 no	 se	 podrá	
utilizar	para	ningún	otro	propósito	después	de	culminada	esta	investigación.	

La	 información	 recolectada	 será	 codificada	mediante	 números	 de	 identificación.	 Además,	 la	 información	 será	
conservada	por	un	periodo	de	tres	meses,	por	si	es	necesaria	alguna	revisión	posterior.	

Si	 tuviera	 alguna	 duda	 con	 relación	 al	 desarrollo	 del	 proyecto,	 usted	 es	 libre	 de	 formular	 las	 preguntas	 que	
considere	pertinentes.	Además,	puede	finalizar	su	participación	en	cualquier	momento	del	estudio	sin	que	esto	
represente	ningún	perjuicio	para	usted.	En	caso	de	sentirse	 incómodo	en	algún	momento	durante	 las	pruebas,	
puede	ponerlo	en	conocimiento	de	la	persona	a	cargo	de	la	investigación	y	abstenerse	de	continuar.	

Muchas	gracias	por	su	participación.	

Al	firmar	este	protocolo:	

Doy	mi	consentimiento	para	participar	en	el	estudio	y	 soy	consciente	de	que	mi	participación	es	enteramente	
voluntaria.	

He	recibido	información	en	forma	verbal	y	he	leído	la	información	escrita	párrafos	atrás	sobre	el	estudio	que	se	
está	realizando.	He	tenido	la	oportunidad	de	discutir	sobre	el	estudio	y	hacer	preguntas.	

Entiendo	 que	 puedo	 finalizar	 mi	 participación	 en	 el	 estudio	 en	 cualquier	 momento,	 sin	 que	 esto	 represente	
ningún	perjuicio	para	mí.	

Entiendo	que	 recibiré	una	 copia	de	este	 consentimiento,	 así	 como	 información	del	estudio	y	que	puedo	pedir	
información	 sobre	 los	 resultados	de	este	 estudio	 cuando	éste	haya	 concluido.	 Para	 esto,	 puedo	 comunicarme	
con	Matthias	Petersamer	al	correo	matthias.petersamer@pucp.edu.pe	o	al	teléfono	944561482.	

Nombre	completo	del	(de	la)	participante		 		Firma		 		Fecha	

Nombre	del	Investigador	responsable		 		Firma		 												Fecha	
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VICERRECTORADO DE     

INVESTIGACIÓN 
COMITÉ DE ÉTICA DE LA INVESTIGACIÓN

DICTAMEN 

El Comité de Ética de la Investigación (CEI) informa que, en la sesión del 20 de julio de 
2017, ha revisado la documentación presentada sobre la investigación titulada 
“Predicción de trayectorias de movimiento basadas en imaginación motora para una 
interfaz cerebro-computador” y ha emitido el dictamen N°0016-2017/CEI-PUCP 
(antecedente: Solicitud N°0020-2017/VRI-OETIIC). 

Los documentos revisados pertenecientes a esta investigación fueron los siguientes: 
- Comunicación dirigida al CEI solicitando la revisión ética del protocolo de 

investigación
- Declaración de compromiso con los principios éticos de la investigación
- Protocolo de investigación (proyecto de tesis)
- Protocolo de consentimiento informado para participantes.

Luego de la revisión, el Comité por unanimidad emitió el dictamen de APROBADO con 
recomendaciones. Ello, al amparo de su mandato que señala tienen el deber de: 
“asegurar el compromiso ético de los investigadores, así como certificar y supervisar 
que las investigaciones que sean sometidas a su consideración, tanto que sean llevadas 
a cabo o promovidas por la universidad como por terceros, cumplan con los principios 
éticos de la investigación”1.   

El Comité recomienda al investigador establecer el mismo período de conservación de 
la información recabada, tanto en el protocolo de Consentimiento Informado (CI) 
como en el protocolo de investigación. En ese sentido, se debe establecer si la 
información será conservada por un período de tres meses o un año. Asimismo, se 
indica que a nivel internacional se recomienda conservar la información recabados por 
un periodo no menor de 5 años por temas de posibles auditorías éticas posteriores. 

Agradeceremos que para las comunicaciones futuras aluda al número de dictamen 
aquí asignado. 

Atentamente, 

_____________________________ 
María Isabel la Rosa Cormack 
Presidente 
Comité de Ética de la Investigación  

1 Artículo 1° del Reglamento del Comité de Ética de la Investigación de la PUCP. Puede ver la versión 

completa en: http://cdn02.pucp.education/investigacion/2016/10/14160435/Reglamento-2.pdf 
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[16] M Stöhr and Regina Kraus. Einführung in die klinische neurophysiologie. EMG–EEG–

Evozierte Potentiale. Darmstadt: Steinkopff Verlag, 2002.

[17] Michal Teplan et al. Fundamentals of eeg measurement. Measurement science review,

2(2):1–11, 2002.

[18] Peter Husar. Biosignalverarbeitung. Springer-Verlag, 2010.

[19] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel, Re-
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