IMPLEMENTACIÓN DE UN SISTEMA DE ESTABILIZACIÓN DE CÁMARA DE DOS EJES INSTALADO EN UN VEHÍCULO AÉREO NO TRIPULADO

Tesis para optar el Título de Ingeniero Electrónico, que presenta el bachiller

Paulo Francisco Concepción Zavaleta

ASESOR: Ing. Gonzalo Cucho Padín

Lima, febrero del 2013
RESUMEN

Actualmente, a nivel mundial el uso de aeromodelos y aeronaves con sistemas de cámaras incorporados tiene cada vez mayor demanda para diversas aplicaciones como en la industria cinematográfica, sistemas de vigilancia, detección de incendios, monitoreo de bosques, búsqueda y rescate de personas, etc. En todas estas aplicaciones, el uso de un sistema de estabilización para la cámara es de vital importancia para obtener una buena calidad de imagen y video.

Un campo de aplicación de dichos sistemas es el monitoreo de cultivos. La Pontificia Universidad Católica del Perú en conjunto con el Centro Internacional de la Papa, desarrollaron un proyecto de Agricultura de Precisión, cuyo objetivo era adquirir información de terrenos agrícolas a partir de la interpretación de imágenes tomadas a baja altura desde aeromodelos. Para cumplir este objetivo se emplearon equipos aéreos radiocontrolados con cámaras incorporadas. Sin embargo, debido a la carencia de un sistema de estabilizador para las cámaras, se encontraron inconvenientes durante la captura de imágenes como vibraciones aéreas, que generaban movimientos bruscos en la cámara, dando como resultado imágenes con errores de rotación.

Basándonos en la problemática encontrada en esta experiencia previa, el objetivo general de este trabajo de tesis es el diseño e implementación de un sistema de estabilización de dos ejes para una cámara instalada en un aeromodelo, que permita reducir los errores generados por las vibraciones durante la toma de imágenes.

Luego de la etapa de implementación del sistema se obtuvieron dos resultados importantes. En primer lugar, se logró estimar correctamente la orientación de la plataforma para el movimiento de cabeceo y alabeo utilizando el filtro de Kalman. Finalmente, se consiguió la estabilización de la plataforma para una orientación deseada establecida por un dispositivo transmisor, dentro de un rango de trabajo de +30° a -30° para el cabeceo y +20° a -24° para el alabeo. El error promedio de cabeceo resultó de 2.8°, mientras que el alabeo tiene un error de 2.2°.
Gracias a Dios por todo lo que tengo.

A mis padres, Luis y Francisca, mi madrina Isabel y mi padrino Nilthon, por su apoyo incondicional, aliento y comprensión a lo largo de toda la carrera.

A mis hermanos Gabriel y Marcio, por alentarme siempre y ser mis amigos.

A mi abuelo Heraldo que desde el cielo es y seguirá siendo mi ejemplo a seguir.

A mi asesor, el Ing. Gonzalo Cucho, por la confianza, apoyo y guía constante.

A todos mis amigos que formaron parte de mi vida universitaria, por todas las experiencias y gratos momentos juntos.
ÍNDICE

INTRODUCCIÓN ... 1

CAPÍTULO 1: PROBLEMÁTICA ACTUAL EN LA ADQUISICIÓN DE IMÁGENES DESDE UN VEHÍCULO AÉREO NO TRIPULADO

1.1. Captura de imágenes desde vehículos aéreos no tripulados 2
1.2. Metodología para la captura de imágenes en proyecto de Agricultura de Precisión .. 2
1.3. Declaración de la problemática .. 3
1.3.1. Variables internas ... 3
1.3.2. Variables externas ... 4

CAPÍTULO 2: EQUIPOS ESTABILIZADORES DE CÁMARA

2.1. Estado del arte .. 6
2.1.1. Presentación del asunto de estudio ... 6
2.1.2. Estado de la investigación .. 7
2.1.2.1. Equipos de estabilización de cámaras comerciales 7
2.1.2.2. Patentes de estabilizadores de cámaras instaladas en vehículos aéreos 9
2.1.3. Síntesis del asunto de estudio .. 12
2.2. Conceptualizaciones generales ... 13
2.2.1. Unidad de Medición Inercial (IMU) ... 13
2.2.2. Giroscopio electrónico ... 14
2.2.3. Acelerómetro capacitivo .. 14
2.2.4. Sistema cardán (Sistema *gimbal*) ... 15
2.2.5. Servomotores .. 16
2.2.6. Equipos de radiocontrol ... 17
2.2.6.1. Transmisor de radiocontrol (RC) ... 17
2.2.6.2. Receptor de radiocontrol (RC) ... 17
2.2.7. Vehículo Aéreo no Tripulado (UAV) ... 18
2.3. Técnicas para estimación de ángulos de navegación ... 19
2.3.1. Filtro Complementario .. 19
2.3.2. Filtro Kalman Discreto .. 19
2.3.2.1. Predicción ... 20
2.3.2.2. Corrección ... 21
2.4. Objetivos .. 21
2.4.1. Objetivo General .. 21
2.4.2. Objetivos Específicos .. 21
CAPÍTULO 3: IMPLEMENTACIÓN DEL SISTEMA DE ESTABILIZACIÓN DE CÁMARA

3.1. Introducción.. 22
3.2. Descripción del sistema ... 22
3.3. Requerimientos del sistema ... 23
3.4. Hardware empleado ... 23
 3.4.1. Unidad de medición inercial (IMU) ... 23
 3.4.1.1. Selección de IMU ... 23
 3.4.1.2. Ancho de banda de sensores de la IMU .. 25
 3.4.2. Tarjeta de microcontrolador ... 26
 3.4.3. Transmisor y receptor de radiocontrol ... 27
 3.4.4. Circuito esquemático y diseño del PCB ... 28
3.5. Selección del Sistema Cardán ... 29
3.6. Servomotores ... 32
3.7. Batería .. 33
 3.7.1. Cálculo de la autonomía de funcionamiento del sistema 33
3.8. Desarrollo del Software .. 34
 3.8.1. Adquisición de datos de los sensores... 34
 3.8.2. Frecuencia de operación de la unidad de medición inercial 35
 3.8.3. Conversión de valores analógicos a magnitudes físicas 36
 3.8.3.1. Aceleración ... 36
 3.8.3.2. Velocidad angular... 36
 3.8.4. Cálculo de ángulos de rotación utilizando el acelerómetro 37
 3.8.5. Filtro Kalman para unidad de medición inercial 38
 3.8.5.1. Ecuaciones de predicción .. 39
 3.8.5.2. Ecuaciones de corrección .. 40
 3.8.6. Cálculo del ancho de pulsos de señales del receptor .. 41
 3.8.6.1. Configuración de frecuencia de operación del temporizador 1 41
 3.8.7. Cálculo de relación entre pulso de servo y ángulo sensado por IMU 42
 3.8.7.1. Ensayo realizado para servomotor del movimiento de cabeceo 43
 3.8.7.2. Ensayo realizado para servomotor del movimiento de alabeo 45
 3.8.8. Diagrama de flujo del programa principal ... 47
CAPÍTULO 4: PRUEBAS Y RESULTADOS DEL SISTEMA DE ESTABILIZACIÓN

4.1. Pruebas de ángulo sensado según posición de tarjeta ... 48
4.1.1. Tarjeta en posición de reposo (Ángulo cabeceo =0°, Ángulo alabeo =0°) 48
4.1.2. Ángulo de cabeceo a 45° .. 49
4.1.3. Ángulo de cabeceo a 60° .. 49
4.1.4. Ángulo de alabeo a 45° ... 49
4.1.5. Ángulo de alabeo a 60° ... 49
4.2. Pruebas de Filtro Kalman implementado en microcontrolador 50
4.3. Pruebas de comunicación de receptor con microcontrolador 51
4.3.1. Ancho de pulso mínimo de canales 6 y 7 (Perillas ajustadas al mínimo) 52
4.3.2. Ancho de pulso máximo de canales 6 y 7 (Perillas ajustadas al máximo) 52
4.4. Movimiento de servomotores con lectura de canales del receptor 53
4.5. Sistema cardán estabilizado sin comunicación con receptor 54
4.6. Sistema cardán estabilizado con comunicación de receptor 56
4.7. Parámetros característicos del sistema .. 58
4.7.1. Cálculo del error del sistema ... 58
4.7.2. Cálculo del respuesta del sistema .. 58

CONCLUSIONES ...59

RECOMENDACIONES Y TRABAJOS FUTUROS ...60

BIBLIOGRAFÍA ...61

ANEXOS ...63
INTRODUCCIÓN

El presente trabajo de tesis tiene como objetivo el desarrollo de un sistema de estabilización para una cámara instalada en un aeromodelo, a fin de reducir los errores de rotación e inclinación en las imágenes. En un principio se describe la importancia actual de los sistemas estabilizadores de cámara y se mencionan sus campos de aplicación. Asimismo, se describe la problemática de donde surge la necesidad de implementar una plataforma estabilizada.

En el segundo capítulo se presentan conceptos generales sobre los sistemas de estabilización y se describen patentes desarrolladas al respecto, así como las técnicas de control empleadas. Además, se presentan las definiciones generales y principios de funcionamiento de los sensores, actuadores y equipo necesario para implementar un sistema de estabilización.

En el tercer capítulo se describen las principales características de los elementos empleados que conforman el sistema de estabilización. Asimismo, se describe el proceso para lograr una correcta adquisición de las señales provenientes de los sensores. Se concluye el capítulo obteniendo experimentalmente las ecuaciones que relacionan el ancho de pulso de las señales aplicadas a los servomotores y el ángulo de giro detectado por la unidad de medición inercial. En base a estas ecuaciones se podrá estabilizar la plataforma de la cámara.

Finalmente, en el cuarto capítulo se desarrollan pruebas en base al controlador previamente diseñado. Para ello, se empleó un pedestal de madera que permitió fijar el sistema de estabilización y a su vez simular movimiento alrededor de sus ejes. Además, se establecen conclusiones y recomendaciones para futuros trabajos.
CAPÍTULO 1

PROBLEMÁTICA ACTUAL EN LA ADQUISICIÓN DE IMÁGENES DESDE UN VEHÍCULO AÉREO NO TRIPULADO

1.1. Captura de imágenes desde vehículos aéreos no tripulados

El sensado remoto se puede definir como la medición y adquisición de información de una determinada propiedad de un objeto o fenómeno a través de un dispositivo de grabación que no está en contacto físico con dicho objeto de estudio. Para cumplir dicho objetivo se emplean dispositivos tales como cámaras, sistemas de radar, sonar, etc.

Un claro ejemplo de sensado remoto es el uso de vehículos aéreos no tripulados con cámaras incorporadas para recolectar información del medio ambiente. Un punto importante a resaltar es que estos equipos cuentan con un sistema de estabilización para la cámara que permite eliminar los errores de rotación y traslación en las imágenes generados durante el vuelo del aeromodelo. En la actualidad, los sistemas de estabilización de cámara tienen una gran variedad de aplicaciones. En la mayoría de casos van incorporadas a un vehículo aéreo no tripulado. De las principales aplicaciones podemos destacar las siguientes:

- Sistemas de vigilancia para cumplimiento de la ley
- Monitoreo de bosques y cultivos, exploración geográfica
- Aplicaciones comerciales como en la industria cinematográfica, televisiva
- Aplicaciones para vehículos aéreos como UAV, helicópteros

A continuación, se describe un campo de aplicación de los sistemas estabilizadores de cámara de donde nace la problemática del presente trabajo de tesis.

1.2. Metodología empleada para la captura de imágenes en proyecto de Agricultura de Precisión

La Pontificia Universidad Católica del Perú junto con el Centro Internacional de la Papa trabajó en el proyecto “Agricultura de Precisión para la Producción de Cultivos de Seguridad Alimentaria y de Agro Exportación”, cuyo objetivo consistía en adquirir información de parcelas de cultivo a partir de la interpretación de imágenes
tomadas a baja altura. Los métodos empleados se valen del uso de imágenes multiespectrales para realizar un monitoreo y obtener un mayor rendimiento de los cultivos. Debido al alto costo de las imágenes satelitales se optó por el uso de aeronaves que tengan la capacidad de transportar cámaras digitales capaces de obtener imágenes multiespectrales [1].

La metodología empleada para la obtención de las imágenes desde los aeromodelos se ilustra en la figura 1.1. Primeramente, se establecen los parámetros de imagen y video, cuando el vehículo aún se encuentra en tierra. Posteriormente, se da inicio al vuelo del aeromodelo integrado con el sistema de adquisición de imágenes. Seguidamente, se procede a realizar la toma de fotografías y video desde el aeromodelo utilizando una cámara multiespectral adherida al fuselaje del vehículo. Una vez concluida la sesión, se aterriza el aeromodelo y finalmente se analizan las imágenes y videos para descartar aquellas muestras que contengan errores de rotación e inclinación.

1.3. Declaración de la problemática

1.3.1. Variables internas

El proyecto “Agricultura de Precisión para la Producción de Cultivos de Seguridad Alimentaria y de Agro Exportación” cuenta con equipos aéreos radiocontrolados para realizar la captura de imágenes de las parcelas de cultivo. Sin embargo, durante este proceso se presentan inconvenientes de imprecisión debido a las vibraciones aéreas durante la trayectoria del avión. Esto conlleva a errores de rotación e inclinación en las imágenes y hacen necesaria la toma de una considerable cantidad de ellas, las cuales deben pasar por una etapa de selección para su futuro análisis. Debido a esto, el desarrollo de un sistema de estabilización para la cámara incorporada en el aeromodelo se presenta como una alternativa eficaz y eficiente para solucionar estos inconvenientes, especialmente para evitar tomar gran cantidad de imágenes y mejorar la calidad de trabajo del personal especializado encargado de su selección.

En la siguiente figura se muestra el diagrama del proceso empleado para la captura de imágenes, en el cual se indican los requerimientos necesarios así como las falencias que este sistema presenta. El desarrollo del presente trabajo de tesis pretende solucionar los puntos 3 y 4 detallados en la figura 1.1.
INICIO

Establecer parámetros de imagen y video (tiempo de exposición, número de fotos, tiempo/foto)

INICIO

Iniciar el vuelo del aeromodelo radiocontrolado con sistema de adquisición de imágenes

1) El usuario debe maniobrar adecuadamente el aeromodelo, personal capacitado

Realizar las tomas de fotografías y video desde el aeromodelo

2) Campo de visión limitado del usuario del aeromodelo

Aterrizar el aeromodelo

3) Se requiere tomar una cantidad considerable de imágenes

Analizar imágenes y video descartar aquellas muestras que tengan errores de rotación e inclinación

4) Personal especializado para la selección de las imágenes y video aptas para el post-procesamiento digital (histograma de distribución uniforme, alto contraste, menor a 5% de píxeles saturados)

FIN

Figura 1.1: Proceso seguido para la captura de imágenes desde aeromodelos carentes de sistema de estabilización de cámara.

1.3.2. Variables externas

A continuación, se muestra un diagrama general donde se ilustran los diversos ámbitos donde se encuentra inmerso el desarrollo de un sistema de estabilización de una cámara instalada en un vehículo aéreo no tripulado, así como los beneficios que su implementación traería consigo.
Figura 1.2: Variables externas involucradas en el sistema de estabilización de cámara.
2.1. Estado del Arte

2.1.1. Presentación del asunto de estudio

Se entiende por estabilidad de una cámara a su capacidad de mantenerse en la misma orientación relativa en tres dimensiones mientras la plataforma a la cual se encuentra unida está en movimiento. Mientras mayor sea la resolución de la cámara, mayor será la importancia del sistema de estabilización. Nosotros, los seres humanos, mantenemos el equilibrio en nuestros movimientos mediante ciertos órganos como nuestro oído interno, los ojos, músculos y articulaciones que brindan información hacia nuestro cerebro, el cual es el encargado de enviar señales para llevar a cabo un determinado movimiento del cuerpo [2].

Los sistemas estabilizadores de cámara cuentan con bloques funcionales similares a los del cuerpo humano: un sistema cardán (también llamado gimbal) que le otorga libertad de movimiento a la cámara, sensores como los giroscopios y acelerómetros que permiten medir directamente la rotación y aceleración sobre un eje del sistema cardán, herramientas de análisis de video que detectan cuánto y hacia qué dirección una imagen se movió, servomotores para controlar el movimiento de cada eje del sistema y un controlador que se encarga de procesar la información proveniente de los giroscopios y acelerómetros para generar un determinado movimiento de la cámara mediante los servomotores.

El resultado que puede obtenerse mediante el uso de un sistema de adquisición de imágenes giroestabilizado es un video con menores problemas de rotación o deformación por vibraciones. Los sistemas más empleados para darle capacidad de estabilización a la cámara son las unidades de medición Inercial (IMU) conformados por sensores tales como: giroscopios, acelerómetros, magnetómetros, entre otros; que permiten recolectar información de la posición de la cámara en todo momento.

A continuación, se presenta información de sistemas de estabilización comerciales, así como patentes y trabajos desarrollados de equipos estabilizados que permiten la captura de imágenes aéreas.
2.1.2. Estado de la investigación

2.1.2.1. Equipos de estabilización de cámaras comerciales

Para tener una noción clara de las especificaciones de estos equipos, definiremos los siguientes parámetros técnicos.

a) Ángulos de rotación de una cámara: En la siguiente figura se observan los ángulos de rotación de una cámara en tres dimensiones. El ángulo de rotación \(\text{pan} \) es también conocido como guiñada, el ángulo de \(\text{tilt} \) como cabeceo, mientras que el ángulo de \(\text{roll} \) como alabeo.

![Figura 2.1: Ángulos de rotación de una cámara en tres dimensiones. Fuente: www.mapsys.info](image)

b) Número de ejes de estabilización: Una cámara solo puede ser rotada físicamente sobre tres ejes (guiñada, cabeceo, alabeo). Sin embargo, para sistemas de estabilización complejos se deben emplear arreglos de motores que permitan controlar un solo eje [2]. Por ello es común encontrar equipos comerciales giroestabilizados con 5 ejes, sin embargo, físicamente solo realizan movimientos de cabeceo y guiñada por ejemplo.

c) Cobertura de guiñada, cabeceo, alabeo:
Se refiere a los límites de los ángulos de rotación de una cámara en tres dimensiones.

d) \(\text{Slew Rate} \) (°/s): Parámetro que indica la velocidad de respuesta del sistema de estabilización frente a un cambio en su orientación sobre uno de sus ejes.

e) Estabilización (μrad): Parámetro que indica la magnitud angular mínima que puede ser corregida por el sistema de estabilización.
En la siguiente tabla se muestran algunos equipos comerciales y sus especificaciones.

Tabla 2.1: Cámaras giroestabilizadas comerciales.

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Fabricante</th>
<th>Especificaciones</th>
<th>Figura</th>
</tr>
</thead>
</table>
| TASE300 | Cloudcap Technology | - Cobertura guiñada: Continuo
- Cobertura cabeceo: +40° / -200°
- **Slew Rate:** 200°/s
- Estabilización típica: 400 µrad | Figura 2.2: TASE 300.
Fuente: www.cloudcaptech.com |
| 300 HDIR | SWESYSTEM | - Cardán giro-estabilizado de 4 ejes
- Cobertura guiñada: 360° Continuo
- Cobertura cabeceo: +20° a -120°
- Estabilización típica: 25 µrad | Figura 2.3: 300 HDIR.
Fuente: www.swesystem.se |
| OTUS-U135 | DST Control | - Cobertura guiñada: Continuo
- Cobertura cabeceo: Continuo
- **Slew Rate:** 120°/s como máximo
- Estabilización: Menor a 100 µrad | Figura 2.4: OTUS-U135.
Fuente: http://www.dst.se |
| Cineflex V14HD | Axsys Technologies | - Sistema giro-estabilizado de 5 ejes
- Cobertura guiñada: 360° continuo
- Cobertura cabeceo: +20° a -195°
- Cobertura alabeo: +/- 45°
- **Slew Rate:** >55°/s | Figura 2.5: Cineflex V14HD.
Fuente: www.rent-helicopters.com |
| Cine-G | Nettmann Systems | - Cobertura guiñada: 360° Continuo
- Cobertura cabeceo: +45° a -75°
(Ajustable hasta -125°)
- Cobertura alabeo: +88° a -88°
- Estabilización: Menor a 5 µrad
- **Slew Rate:** Hasta 90°/s | Figura 2.6: Cine-G.
Fuente: www.camerasystems.com |
2.1.2.2. Patentes de estabilizadores de cámaras instaladas en vehículos aéreos

A) AIRBORNE PHOTOGRAPHING APPARATUS

Invento desarrollado por Shunji Murai y Yoshitaka Matsumoto, el cual consiste en un dispositivo que permite fotografiar imágenes en tierra continuamente desde un aeroplano y grabar las mismas en forma digital y en tiempo real. El sistema de estabilización está constituido por un sensor de cámara de tres líneas para tomar fotos en tres direcciones (oblicuo hacia adelante, oblicuo hacia atrás y verticalmente), un giroscopio montado en el alojamiento del sensor de cámara para determinar su orientación mientras se realizan las tomas y un GPS para proporcionar información sobre la posición instantánea de la cámara en el espacio tridimensional. En la figura 2.7, se observa el diagrama de bloques del sistema.

La parte central del dispositivo es la unidad de procesamiento que recopila la información proveniente del giroscopio y del GPS y brinda como salida señales de control para el estabilizador, el cual se encarga de controlar la orientación de la cámara, ajustar su eje óptico de forma vertical todo el tiempo y contrarrestar la vibración del aeroplano [3]. Adicionalmente, dicho sistema integra un registrador de datos para almacenar información de las imágenes, un visualizador de imágenes y un analizador de datos.

Figura 2.7: Diagrama de bloques de AIRBORNE PHOTOGRAPHING APPARATUS constituido por sensor de cámara, giroscopio y GPS [3].
B) Arquitectura de Control para un Cardán de Cámara montado en un UAV con movimiento de Guiñada/Cabeceo/Alabeo

Este proyecto se llevó a cabo en el Instituto Tecnológico de Georgia, en el helicóptero UAV de búsqueda GTMax (ver figura 2.8). El controlador desarrollado tiene tres modos de operación: puede mantener la cámara en un ángulo fijo con respecto al helicóptero, hacer que la cámara apunte en la dirección del vector velocidad del helicóptero o rastrear una ubicación específica. La cámara se encuentra montada en un sistema cardán liviano (ver figura 2.9). Cada eje es manejado por un servomotor y codificadores ópticos los cuales miden los ángulos de orientación del cardán. Un controlador PID digital con anti-windup y filtrado derivativo fue diseñado en Simulink y posteriormente implementado en el sistema real.

El sistema está diseñado tal que cuenta con movimiento continuo para la guiñada, el movimiento de alabeo está limitado a ángulos de -100° hasta 100° y el movimiento de cabeceo desde -90° hasta 90°.

![Figura 2.8: GTMAX con Cardán para cámara [4].](image1)

![Figura 2.9: Cardán para Cámara [4].](image2)
El sistema de control de todo el equipo (helicóptero y cámara) se subdivide en dos partes: un sistema alto nivel que controla los tres modos de operación anteriormente mencionados y un control de bajo nivel el cual es implementado usando un controlador PID digital que proporciona como salida la velocidad de cada motor y las mediciones de los ángulos de los codificadores ópticos son retroalimentados.

B.1) Sistema de control de bajo nivel

El controlador de bajo nivel lee el valor de salida de cada encoder y calcula una señal PWM para cada servomotor a una frecuencia de 50Hz. Además, recibe los valores de los tres ángulos deseados del controlador de alto nivel y también tres entradas de desplazamiento que son usadas al inicio en caso de que el cardán se encuentre en posición incorrecta. Se implementó un controlador PID con *anti-windup* para cada servomotor, debido a la saturación de los actuadores y también un filtro derivativo. El diagrama de bloques y los resultados para cada controlador se muestran en las figuras 2.10 y 2.11 respectivamente.

![Diagrama de bloques del sistema simulado para el control del cardán de cámara en el GTMAX](image)

Figura 2.10: Diagrama de bloques del sistema simulado para el control del cardán de cámara en el GTMAX [4].
2.1.3. Síntesis del asunto de estudio

Existen en la actualidad equipos comerciales que cuentan con sistemas de estabilización de cámaras especializados. Dichos equipos son empleados en vigilancia, cine, monitoreo de bosques, detección de incendios, etc. También, se han desarrollado sistemas especializados para la toma de imágenes aéreas donde es imprescindible contar con un sistema de estabilización, como se vio en las patentes explicadas.

Podemos concluir que las partes principales de un sistema de estabilización para una cámara son el sistema cardán que permite su libre movimiento, los sensores (giroscopios, acelerómetros, codificadores) que nos dan información sobre la rotación, aceleración de los ejes donde está montada, servomotores que son los encargados de mover los ejes del cardán y un controlador que se encarga de procesar la información proveniente de los sensores y en base a ello dar señales de actuación a los servomotores para posicionar la cámara. Además, es necesaria la implementación de un sistema de control que permita mantener la posición deseada de la cámara.
2.2. Conceptualizaciones generales
A continuación, procedemos a definir ciertos conceptos que estarán implicados en el desarrollo de la presente investigación.

2.2.1. Unidad de Medición Inercial (IMU)

De forma general, podemos definirla como una combinación de sensores (acelerómetros, giroscopios y otros) usada para detectar la orientación, localización y movimiento de un determinado objeto (ver figura 2.12). Su uso está ampliamente difundido en aviones, vehículos aéreos no tripulados (UAV) y sistemas de navegación. Típicamente, una IMU detecta la aceleración y los cambios de orientación instantáneamente (ángulos de alabeo, cabeceo y guiñada). Además, se encarga de integrar dicha información para obtener el cambio total de movimiento sobre la posición inicial [5].

Sin embargo, una unidad de medida inercial sufre de un efecto denominado error acumulado o de deriva. Esto se debe a que suma continuamente los cambios detectados en la posición y cualquier error entre la posición hallada por la IMU y la posición real del objeto es acumulado [5].

Existen otros sistemas tales como los GPS (usados para corregir el término de deriva en la posición), el barómetro (empleado para la corrección de la altitud), o un magnetómetro (para la corrección de la orientación) que compensan las limitaciones propias de una IMU. Sin embargo, es importante notar que estos sistemas también tienen sus propios defectos, los cuales son compensados entre ellos.

![Figura 2.12: Unidad de medición inercial conformada por acelerómetro, giroscopios, magnetómetro y barómetro.](www.pixhawk.ethz.ch)
2.2.2. **Giroscopio electrónico**

Es un sensor capaz de medir la velocidad angular utilizando el efecto Coriolis. Para entender su principio de funcionamiento consideremos dos bloques de masa m oscilando de forma constante con una velocidad V como se observa en la figura 2.13. Al aplicar un movimiento angular Ω_z se producen un par de fuerzas de Coriolis, que genera a su vez una variación en la distancia entre las placas de un condensador. Dicha variación es medida mediante una interfaz sensora capacitiva y posteriormente, se conecta a un amplificador diferencial de carga que se encarga de traducir las variaciones capacitivas en variaciones de tensión. Las fuerzas de Coriolis son proporcionales a la velocidad angular que es la magnitud de interés [6].

![Par de fuerzas Coriolis y giroscopio.](http://www.electroiq.com/)

Para obtener mediciones angulares con respecto a un eje de rotación es posible utilizar un giroscopio y realizar una integración discreta. Sin embargo, el efecto de deriva inherente a este sensor hace que el valor de salida en una posición estable se desplace, perdiendo toda la referencia y obteniendo una lectura errónea del ángulo.

2.2.3. **Acelerómetro capacitivo**

Sensor inercial que mide la aceleración del objeto al cual está unido, respecto de una masa inercial interna. Un acelerómetro mide la fuerza de inercia generada cuando una masa es afectada por un cambio de velocidad. Su principio de funcionamiento es similar al giroscopio electrónico.
Para explicar su funcionamiento nos valemos de la figura 2.14, en la cual se observa un sensor micromecanizado en forma de "H". Los delgados y largos brazos del sensor están fijos al sustrato. Cada filamento actúa como una placa de un condensador variable. La aceleración o desaceleración en el eje del sensor ejerce una fuerza a la masa central. Al moverse libremente, la masa desplaza las minúsculas placas del condensador, provocando un cambio de capacidad, el cual es detectado y procesado para obtener un voltaje de salida. [7].

El dispositivo realmente trabaja en un lazo de control electrónico, ya que evita el movimiento de la masa en aceleración, por la aplicación de voltaje en las placas del condensador de polaridad contraria. Dicho voltaje aplicado es directamente proporcional a la aceleración [7].

![Figura 2.14: Acelerómetro capacitivo en reposo y respuesta frente a una aceleración aplicada. Adaptado de [7].](image)

A diferencia de los giroscopios, los acelerómetros no sufren el efecto de la deriva; sin embargo, son muy inestables y sensibles al ruido. Existen técnicas de filtrado que permiten fusionar la información proveniente de giroscopios y acelerómetros para obtener una correcta estimación de la orientación angular.

2.2.4. Sistema cardán (Sistema gimbal)

Un cardán es un dispositivo que sirve como un soporte que puede girar alrededor de un eje. Un sistema cardán enlaza varios cardanes juntos para proporcionar libertad de movimiento al objeto que se encuentra en su centro y responder sin restricciones a las fuerzas externas. Como resultado, un sistema cardán mantiene los objetos en el nivel del centro en un entorno inestable, proporcionando un número de grados de libertad [8]. Muy usado en equipos de fotografía portátil para permitir un movimiento equilibrado de la cámara y las lentes.
2.2.5. Servomotor

Es un motor de corriente continua capaz de ser controlado por posición, es decir, se ubica en una determinada posición dentro de su rango de operación y se mantiene estable en ella. Son ampliamente usados en sistemas de radiocontrol y robótica debido al control preciso que otorgan. Un servomotor dispone de tres cables, de los cuales dos son usados para su alimentación y el tercero lleva la señal de control PWM (modulada por ancho de pulso). Están compuestos de cuatro elementos fundamentales: motor de corriente continua, engranajes reductores, sensor de desplazamiento y circuito de control.

Al aplicar una señal de entrada PWM al servomotor, el circuito de control compara esta señal de referencia (posición deseada) con la posición actual medida por el sensor de desplazamiento, que consiste en un potenciómetro conectado al eje de salida del servo y permite conocer su posición angular. La diferencia de estas señales es amplificada y empleada para mover el motor en la dirección necesaria que reduzca el error [9]. Para un servomotor estándar la señal PWM a aplicar es de 50Hz con un ancho de pulso que varía de 1000 a 2000us. En la siguiente figura, se observa la respuesta del servomotor frente a distintas señales PWM.
2.2.6. Equipos de radiocontrol

Para el vuelo de los aeromodelos radiocontrolados (helicópteros, aviones, etc.) es indispensable el uso de un transmisor manejado desde tierra por el piloto y un receptor dentro de la aeronave que decodifique las señales de la fuente emisora para controlar los servomotores que otorgan movimiento a las distintas partes del aeromodelo (alerones, frenos, aterrizaje, etc.).

Ambos equipos están caracterizados por el número de canales que poseen, parámetro que nos indica cuántos servomotores pueden manejar y a su vez el número de operaciones que puede ejecutar el aeromodelo. A continuación, describiremos brevemente cada uno de estos equipos.

2.2.6.1. Transmisor de radiocontrol (RC)

Este dispositivo está conformado por un conjunto de palancas (sticks), perillas, pulsadores e interruptores. Su función consiste en interpretar los movimientos que ejerce el usuario sobre dichos elementos y convertirlos en una señal de radio a ser emitida para el movimiento del avión. El circuito encargado de convertir el movimiento mecánico en señales binarias se le conoce como codificador y emplea técnicas de codificación PPM y PCM para ello [10]. Posteriormente, el envío de estas señales se realiza usando técnicas de modulación AM y FM.

![Transmisor FUTABA de 8 canales.](http://www.futaba-rc.com)

Figura 2.17: Transmisor FUTABA de 8 canales. Fuente: http://www.futaba-rc.com

2.2.6.2. Receptor de radiocontrol (RC)

Dispositivo pequeño que va alojado en el aeromodelo. Se encarga de demodular y decodificar las señales que recibe del transmisor y convertirla en impulsos eléctricos que harán mover los correspondientes servomotores asociados a cada canal.
Para recibir la señal correspondiente al transmisor debe tener instalado un cristal de cuarzo que define la frecuencia de trabajo. Por lo general, el receptor da como salida una señal con ancho de pulso de 1000 a 2000 us, con una frecuencia que va de 50 – 60 Hz.

Figura 2.18: Receptor FUTABA de 8 canales.
Fuente: http://www.futaba-rc.com

2.2.7. Vehículo Aéreo no Tripulado (UAV)

Se entiende por vehículo aéreo no tripulado aquel que es capaz de volar sin necesidad de contar con un piloto humano a bordo. Su vuelo puede ser controlado autónomamente por computadoras dentro del vehículo o bajo control remoto en tierra.

Fueron creados en un principio con fines militares, sin embargo, actualmente existen una gran variedad de aplicaciones civiles donde la visión aérea es de gran ayuda, por ejemplo en la detección de incendios, control policial, reconocimiento de desastres naturales, etc. Entre sus principales ventajas encontramos un menor costo en comparación con las aeronaves tripuladas, no se arriesgan vidas, cuentan con la capacidad de integrar varios sensores y además, gracias a estos sistemas es posible acceder a lugares peligrosos.

Figura 2.19: Aeromodelo del tipo cuadricóptero.
Fuente: http://www.parallax.com
2.3. **Técnicas para estimación de ángulos de navegación**

2.3.1. **Filtro Complementario**

Filtro empleado para sistemas de navegación inercial, se caracteriza por no considerar una descripción estadística del ruido que afecta a las señales de entrada y por ser obtenido mediante un análisis en el dominio de la frecuencia [11]. El filtro complementario es sencillo de desarrollar matemáticamente y debido a su baja complejidad de implementación consume pocos recursos computacionales.

Se sabe que las mediciones por parte de los giroscopios son correctas para periodos cortos de tiempo, ya que sufren el efecto de deriva, mientras que el acelerómetro debido a su dinámica lenta ofrece mediciones adecuadas para periodos largos de tiempo. El filtro complementario está compuesto de un filtro pasa bajos para el acelerómetro y un filtro pasa altos para el giroscopio, ya que el giroscopio tiene una buena respuesta para altas frecuencias y el acelerómetro provee de información correcta para bajas frecuencias. La salida de cada filtro es sumada para formar un único valor. La siguiente figura ilustra el funcionamiento del filtro.

![Diagrama del Filtro Complementario](image)

Figura 2.20: Filtro complementario formado por filtro pasabajos para acelerómetro y filtro pasa-altos para giroscopio.

2.3.2. **Filtro Kalman Discreto**

El Filtro Kalman es una herramienta matemática que permite estimar variables de un amplio rango de procesos. A diferencia del filtro complementario, este filtro tiene mayor complejidad matemática y consume mayores recursos computacionales. El filtro Kalman discreto aborda el problema de estimar el estado de un proceso controlado de tiempo discreto. Para emplearlo y eliminar el ruido de la señal deseada, el proceso que estamos midiendo debe describirse como un sistema lineal. En términos generales, un sistema lineal puede ser descrito por las siguientes ecuaciones en diferencia:
Ecuación de estado:
\[x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1} \]
(2.1)

Ecuación de salida:
\[z_k = Hx_k + v_k \]
(2.2)

Donde:
- \(x \): Estado del sistema a estimar
- \(z \): Salida medida del sistema
- \(A, B, H \): Matrices representativas del sistema
- \(u \): Entrada del sistema
- \(w \): Ruido del proceso
- \(v \): Ruido de la medición
- \(k \): Instante de tiempo

El vector \(X \) contiene toda la información acerca del estado presente del sistema, pero no puede ser medido directamente. Por ello, medimos \(Z \) que es una función de \(X \) afectada por el ruido \(V \) [12]. Para aplicar el filtro deben cumplirse ciertas condiciones referentes al ruido que afecta al sistema. El ruido del proceso \(W \) y el ruido en la medición \(V \), deben tener una distribución normal tipo blanco gaussiano y no debe existir correlación entre ellas [13]. La distribución de probabilidad normal del ruido se describe como:

\[p(w) \sim N(0,Q) \]
(2.3)

\[p(v) \sim N(0,R) \]
(2.4)

Donde \(Q \) y \(R \) corresponden a las matrices de covarianza del ruido del proceso y la medición respectivamente, las cuales se asumen constantes. Una vez establecido el proceso y las condiciones anteriormente mencionadas, procedemos a explicar el algoritmo del filtro. El filtro se divide en una etapa de predicción y una etapa de corrección, que serán explicadas a continuación.

2.3.2.1. Predicción

Etapa encargada de pronosticar estimaciones a priori del estado del sistema y de la matriz de covarianza de error. El pronóstico del estado a priori está basado en el valor anterior del vector de estados y la entrada (2.5). Además, la etapa de predicción involucra el cálculo de la matriz de covarianza del error a priori, que está dada por el valor anterior de la matriz de error de covarianza y la covarianza del ruido del proceso (2.6). Las ecuaciones involucradas en esta etapa son:
2.3.2.2. Corrección
Durante esta etapa se calcula la ganancia de Kalman K_k de tal forma que minimice la covarianza del error de la nueva estimación del estado (2.7). El valor de la ganancia es mínimo cuando la covarianza del error del estado tiende a cero. Posteriormente, se procede a obtener la medición z_k, para generar un estado estimado a posteriori que incorpore dicha medición (2.8). Finalmente, se actualiza la matriz de correlación de error (2.9). Las ecuaciones involucradas son las siguientes:

$$
x_k^- = Ax_{k-1} + Bu_{k-1} \quad (2.5)
$$

$$
P_k^- = AP_{k-1}A^T + Q \quad (2.6)
$$

$$
K_k = P_k^- H^T (HP_k^- H^T + R)^{-1} \quad (2.7)
$$

$$
\hat{x}_k = \hat{x}_k^- + K_k (z_k - H \hat{x}_k^-) \quad (2.8)
$$

$$
P_k = (I - K_k H)P_k^- \quad (2.9)
$$

Para el presente trabajo, el filtro Kalman permitirá fusionar información proveniente del acelerómetro con la información del giroscopio para estimar los ángulos de alabeo y cabeceo del sistema cardán.

2.4. Objetivos

2.4.1. Objetivo General
Desarrollar un sistema de estabilización de dos ejes (cabeceo y alabeo) para una cámara instalada en un vehículo aéreo no tripulado, que permita reducir los errores generados por las vibraciones aéreas durante la toma de imágenes.

2.4.2. Objetivos Específicos

- Seleccionar el hardware electrónico y el sistema cardán a utilizar para la estabilización de la cámara.
- Diseñar un algoritmo de control que en base a la lectura de los sensores de la IMU brinde las señales de actuación correspondientes a los servomotores.
- Seleccionar, implementar y probar el filtro adecuado que procese la información proveniente de los sensores y estime los ángulos de alabeo y cabeceo.
- Implementar la comunicación entre el receptor RC y el microcontrolador.
- Implementar el programa de estabilización en el microcontrolador.
- Realizar pruebas del sistema de estabilización.
CAPÍTULO 3

IMPLEMENTACIÓN DEL SISTEMA DE ESTABILIZACIÓN DE CÁMARA

3.1. Introducción
El presente capítulo contiene información respecto a los criterios tomados en cuenta para la implementación del sistema de estabilización, tanto en software como en hardware.

3.2. Descripción del sistema
El diagrama de bloques del sistema de estabilización a desarrollar se observa en la figura 3.1. Las partes fundamentales son el microcontrolador, giroscopio, acelerómetro, los servomotores, el transmisor y el receptor de radiocontrol. Para iniciar con el proceso de estabilización, el operador de la cámara indica la posición de referencia utilizando el transmisor. Dicha información es captada por el receptor quién le envía la información al microcontrolador. Una vez que el aeromodelo se encuentra en vuelo, los sensores posicionados sobre la plataforma de la cámara envían constantemente información de la rotación y aceleración en los ejes de movimiento al microcontrolador, quien se encarga de procesarla y en base a ellas envía señales de actuación a los servomotores para orientar la cámara, logrando así la estabilización. Es importante destacar que a diferencia de sistemas comerciales existentes donde un único hardware controla el movimiento del aeromodelo y del cardán de la cámara, el presente trabajo de investigación tiene como objetivo el control del movimiento únicamente del cardán, por lo cual este será independiente del sistema de control de vuelo aeromodelo, permitiendo así que pueda ser instalado en cualquier tipo de aeromodelo.

![Figura 3.1: Sistema de estabilización conformado por microcontrolador, IMU, servomotores, transmisor y receptor.](image-url)
3.3. Requerimientos del sistema

- El sistema a implementar debe ser capaz de mantener orientada la cámara en 2 ejes de estabilización (alabeo y cabeceo).
- La posición de la cámara puede ser cambiada en cualquier momento del funcionamiento del sistema.
- El sistema a implementar debe ser capaz de ser anexado a cualquier tipo de aeromodelo.

3.4. Hardware empleado

3.4.1. Unidad de medición inercial (IMU)

3.4.1.1. Selección de IMU

Como requerimiento principal, la unidad de medición inercial a emplear debe tener un mínimo de 5 grados de libertad; es decir, un acelerómetro de 3 ejes (X, Y, Z) y un giroscopio de 2 ejes (alabeo y cabeceo) para poder estimar los ángulos de navegación de alabeo y cabeceo. Las unidades de medición inercial son tarjetas electrónicas, con componentes ya soldados y se venden ensambladas. A continuación, se muestra una tabla donde figuran las principales características de las unidades estudiadas.

<table>
<thead>
<tr>
<th>Tabla 3.1: Unidades de medición inercial evaluadas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIDAD DE MEDICION INERCIAL</td>
</tr>
<tr>
<td>Acelerómetros</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Rango de medida</td>
</tr>
<tr>
<td>Ancho de banda (f3dB)</td>
</tr>
<tr>
<td>Resolución</td>
</tr>
<tr>
<td>Protocolo de comunicación digital</td>
</tr>
<tr>
<td>Giroscopios</td>
</tr>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Rango de medida</td>
</tr>
</tbody>
</table>
Pese a que la unidad de medición inercial digital ofrece mayores prestaciones, se optó por la unidad analógica 5DOF (ver figura 3.2) teniendo como prioridad el factor económico. Además, al ser nuestros sensores analógicos, las salidas entran directamente a un convertidor análogo - digital de un microcontrolador y se evita el uso de un protocolo de comunicación digital. Una ventaja adicional de esta unidad de medición inercial es que cuenta con la etapa acondicionamiento y filtrado incluido para ambos sensores.

<table>
<thead>
<tr>
<th></th>
<th>2.1KHz</th>
<th>Seleccionable desde 3.9 hasta 8KHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de banda (f3dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolución</td>
<td>Dependencia del ADC del microcontrolador</td>
<td>16 bits</td>
</tr>
<tr>
<td>Protocolo de comunicación digital</td>
<td></td>
<td>I²C</td>
</tr>
<tr>
<td>Voltaje de alimentación</td>
<td>3 -16V</td>
<td>3.3V</td>
</tr>
<tr>
<td>Precio</td>
<td>$ 35.95</td>
<td>$64.95</td>
</tr>
</tbody>
</table>

Es importante resaltar que utilizando la unidad de medición inercial elegida no es posible obtener una medición correcta del ángulo de pan o guiñada (ver figura 2.1). Esto se debe a que al girar el sistema alrededor del eje z, la salida del acelerómetro correspondiente a dicho eje seguirá siendo el voltaje correspondiente a la gravedad terrestre. En la siguiente figura mostramos el circuito esquemático de la unidad de medición inercial 5DOF, donde podemos observar que esta cuenta con un regulador de 2.8V para alimentar tanto al acelerómetro como al giroscopio.
3.4.1.2. Ancho de banda de sensores de la IMU

a) Acelerómetros

Según la hoja de datos del acelerómetro ADXL335 (ver Anexo 1), las salidas X_{OUT}, Y_{OUT} y Z_{OUT} pueden ser limitadas en banda agregando un capacitor en cada uno de estos pines, para formar un filtro pasabajos que reduzca el ruido y evite el fenómeno de réplicas. La fórmula dada por el fabricante para calcular el ancho de banda es:

\[
 f_{-3dB} = \frac{1}{2\pi (32K\Omega \times C_{(x,y,z)})}
\]

Donde $32K\Omega$ es una resistencia interna del sensor. Como se observa en la figura 3.3, la unidad de medición inercial adquirida cuenta con condensadores de 0.1uF para las salidas de los acelerómetros. Por ello, el ancho de banda definido por el fabricante de la IMU es:

\[
 f_{-3dB} = \frac{1}{2\pi (32K\Omega \times 0.1uF)} \approx 50Hz
\]

Sin embargo, en base a estudios realizados [14], existe ruido no deseado a bajas frecuencias debido a los motores del aeromodelo los cuales pueden afectar las mediciones del acelerómetro. Por esta razón, se colocaron condensadores de 0.47uF en paralelo con los de 0.1uF para limitar más el ancho de banda. Con ello, el ancho de banda resultante es de:

\[
 f_{-3dB} = \frac{1}{2\pi \times 32K\Omega \times (0.1uF + 0.47uF)} \approx 9Hz
\]
b) Giroscopios

Observando el circuito esquemático de la IMU, podemos apreciar que la salida del giroscopio IDG500 también cuenta con un filtro pasabajos para cada eje para evitar el fenómeno de réplicas. Para este caso, el ancho de banda definido por el fabricante de la IMU es:

\[
f_{-3dB} = \frac{1}{2\pi \times 750\Omega \times 0.1\mu F} \approx 2.1\,\text{kHz}
\]

Al igual que en los acelerómetros, se colocaron condensadores de 0.47\mu F en paralelo con los de 0.1\mu F. El ancho de banda resultante para el giroscopio es de:

\[
f_{-3dB} = \frac{1}{2\pi \times 750\Omega \times (0.1\mu F + 0.47\mu F)} \approx 372\,\text{Hz}
\]

3.4.2. Tarjeta de microcontrolador

La tarjeta del microcontrolador se encargará de las siguientes funciones:

- Realizar la conversión análoga-digital de la información proveniente de los sensores.
- Procesar la información de los sensores para estimar adecuadamente los ángulos de rotación.
- Implementar el algoritmo de estabilización para la cámara.
- Leer los anchos de pulso provenientes de los canales del receptor para posicionar la cámara.
- Brindar señales de salida PWM para el movimiento de los servomotores.

En base las tareas anteriormente definidas, los requerimientos mínimos con los que debe contar el microcontrolador son:

- Poseer 5 canales ADC para leer las salidas de los acelerómetros y giroscopios
- Poseer 2 fuentes de interrupción externa para capturar las señales provenientes del receptor
- Poseer 2 salidas PWM para el movimiento de los servomotores

Basándonos en la experiencia previa adquirida a lo largo de la carrera, emplearemos un microcontrolador de la familia Atmega. Para ello analizamos los microcontroladores que se presentan en la siguiente tabla.
Tabla 3.2: Microcontroladores evaluados.

<table>
<thead>
<tr>
<th>MICROCONTROLADOR</th>
<th>Atmega8L</th>
<th>Atmega328P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canales de ADC</td>
<td>6 (Empaque DIP)</td>
<td>6 (Empaque DIP)</td>
</tr>
<tr>
<td>Canales PWM</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Frecuencia de operación</td>
<td>1-16MHz</td>
<td>1-20MHz</td>
</tr>
<tr>
<td>Temporizadores</td>
<td>2 de 8 bits y 1 de 16 bits</td>
<td>2 de 8 bits y 1 de 16 bits</td>
</tr>
<tr>
<td>Precio</td>
<td>$ 3.32</td>
<td>$ 2.88</td>
</tr>
</tbody>
</table>

Se observa que ambos microcontroladores cumplen con los requerimientos antes mencionados. Sin embargo, debido a que se contaba de antemano se empleó la tarjeta Arduino Uno, basada en el ATmega328 (ver figura 3.4) y que es una plataforma de electrónica abierta para la creación de prototipos basada en software y hardware flexibles y fáciles de usar.

Figura 3.4: Tarjeta Arduino UNO.

3.4.3. Transmisor y receptor de radiocontrol

Para orientar la cámara desde tierra es necesario usar un sistema de 2 canales que transmitan las señales de control para los servomotores encargados del movimiento de cabeceo y alabeo. Debido al alto costo de estos equipos, se empleó un transmisor Futaba 10C de 10 canales a 2.4GHz y un receptor Futaba R617FS de 7 canales a 2.4 GHz, equipos compatible entre sí y con los cuales se contaba antes del desarrollo de la tesis. A continuación, se muestran imágenes de dichos equipos.

Figura 3.5: (a) Transmisor 10C Futaba, (b) receptor Futaba R617FS.
Los canales del receptor a emplear para mover los servomotores encargados del movimiento de cabeceo y alabeo serán el 6 y 7 (ver figura 3.5.a), los cuales están asociados al movimiento de dos perillas en el transmisor (ver figura 3.5.b). Para la elección de dichos canales, se tuvo en cuenta los anchos de pulso de las señales PWM de salida en el receptor, los cuales variaban de 960 a 2080 us. La frecuencia de la señal es de 62.34 Hz. A continuación, se presentan imágenes de las señales capturadas con un osciloscopio.

![Figura 3.6: (a) Mínimo ancho de pulso de señal de salida de canales del receptor, (b) máximo ancho de pulso.](image)

Posteriormente, mediante software los límites de ancho de pulso de la señal de cada canal serán escalados según los anchos de pulso límites de señal PWM de cada servomotor.

3.4.4. Circuito esquemático y diseño del PCB

Para la presente tesis se diseñó una tarjeta que irá montada encima de la tarjeta Arduino UNO. En el diseño del circuito esquemático y del PCB, se tuvieron en cuenta las siguientes consideraciones:

- Pulsador con circuito anti-rebote, para que una vez instalada la tarjeta en el sistema cardán se proceda a la calibración y adquisición de datos de la unidad de medición inercial. Además, la tarjeta cuenta con un led indicador que se prende al inicio del proceso y se apaga cuando la calibración se terminó.

- Separación de tierras entre la IMU y demás componentes utilizando red LC. Con ello se evita que la señal de control de los servomotores cuya frecuencia es de 50Hz, así como la señal proveniente del receptor afecten las mediciones de los sensores.
A continuación se muestra el diagrama esquemático y la tarjeta impresa del sistema de estabilización.

Figura 3.7: Circuito esquemático de sistema de estabilización de cámara.

Figura 3.8: Tarjeta impresa del sistema de estabilización de cámara.

3.5. Selección del Sistema Cardán

Debido a que la estabilización de la cámara se realizará en los ejes correspondientes al alabeo y cabeceo, seleccionamos un cardán que permita el movimiento en estos ejes. Además, el sistema debe ser lo más liviano posible para que pueda ser instalado en el aeromodelo y no altere su estabilidad en el aire.
Teniendo como principal criterio el factor económico y el hecho de que el cardán incluya los servomotores adecuados a ser usados, se optó por el SKYEYE 2-AXIS CAMERA GIMBAL que permite el movimiento de la cámara en los ejes antes mencionados. Sin embargo, el sistema cardán seleccionado cuenta con algunas deficiencias mecánicas, por ejemplo la transmisión del movimiento de los servomotores a los ejes del cardán no es directa sino a través de varillas metálicas delgadas que se encargan de efectuar palanca en la plataforma.

Los ángulos de movimiento de cabeceo y alabeo fueron limitados para los rangos de -30° a 30° y -24 a 20° respectivamente, para evitar que los servomotores flexionen las varillas y además para trabajar con una expresión lineal que relacione el ángulo sensado por la IMU y el ancho de pulso de la señal PWM de cada servomotor como se verá posteriormente en el apartado 3.8.7. A continuación se observan imágenes del sistema cardán adquirido.

![Figuras 3.9: (a) Vista frontal de Skyeye 2-Axis Camera Gimbal, (b) vista de perfil.](image)

En la tabla 3.3 se muestran los equipos evaluados para la correcta selección del sistema cardán y sus respectivas características.
<table>
<thead>
<tr>
<th>Empresa</th>
<th>Nombre</th>
<th>Peso</th>
<th>Precio</th>
<th>Material</th>
<th>Ángulo de alabeo</th>
<th>Ángulo de cabeceo</th>
<th>Carga máxima</th>
<th>Dimensiones</th>
<th>Servos necesarios</th>
<th>Incluye Servos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxtechfpv</td>
<td>MC 6500 V3 dual axis cam mount</td>
<td>115g total con servos</td>
<td>$190</td>
<td>No indica</td>
<td>>40°</td>
<td>>80°</td>
<td>500g</td>
<td>144mm(ancho) x100mm(profundidad)x109mm(altura)</td>
<td>2</td>
<td>Sí, 2</td>
</tr>
<tr>
<td>Ycopter</td>
<td>YC-113 2-Axis Gimbal with Shutter Controller</td>
<td>100 g sin servos</td>
<td>$68</td>
<td>Fibra de vidrio</td>
<td>No indica</td>
<td>No indica</td>
<td>500g</td>
<td>No indica</td>
<td>3</td>
<td>Sí, los 3(1 TowerPro SG-5010 Standard Servo, 2 TowerPro SG90 9g Servo)</td>
</tr>
<tr>
<td>Foxtechfpv</td>
<td>Skyeye 2-axis Camera Gimbal(with 2 servos)</td>
<td>103g total con servos</td>
<td>$79</td>
<td>Fibra de carbón</td>
<td>60°</td>
<td>80°</td>
<td>500g</td>
<td>170mm(ancho) x158mm(profundidad)x110mm(altura)</td>
<td>2</td>
<td>Sí, los 2 (Goteck GS-9025MG)</td>
</tr>
</tbody>
</table>
3.6. **Servomotores**

La adquisición del cardán incluyó 2 servomotores de la empresa Goteck, modelo GS-9025MG cuyas principales características se muestran en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tabla 3.4: Características de servomotor GS-9025MG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>Analógico con engranajes metalizados</td>
</tr>
<tr>
<td>Voltaje de operación</td>
</tr>
<tr>
<td>4.8V-6.0V</td>
</tr>
<tr>
<td>**Velocidad *</td>
</tr>
<tr>
<td>0.12 s/60° @ 4.8v</td>
</tr>
<tr>
<td>Torque</td>
</tr>
<tr>
<td>2.35 kg-cm @ 4.8v</td>
</tr>
</tbody>
</table>

![Figura 3.10: Servomotor Goteck GS-9025MG.](Fuente: www.altitudehobbies.com)

Empíricamente se realizaron pruebas con los servomotores sin carga aplicándoles señales PWM de 50Hz con tiempo en alta variable, para determinar los límites del ancho de pulso a aplicar tal que nos brinden un movimiento de 0 a 180° en el eje del servomotor y con ello evitar dañarlo internamente. Los resultados obtenidos se muestran en las siguientes tablas:

<table>
<thead>
<tr>
<th>Tabla 3.5: Límites de pulso para movimiento de servomotor de cabeceo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servomotor de cabeceo</td>
</tr>
<tr>
<td>Pulso (us)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>740</td>
</tr>
<tr>
<td>1450</td>
</tr>
<tr>
<td>2160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 3.6: Límites de pulso para movimiento de servomotor de alabeo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servomotor de alabeo</td>
</tr>
<tr>
<td>Pulso (us)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>720</td>
</tr>
<tr>
<td>1430</td>
</tr>
<tr>
<td>2140</td>
</tr>
</tbody>
</table>

* Las especificaciones de velocidad para servomotores están dadas en segundos por cada 60°.
3.7. Batería

Para la alimentación de todo el sistema se tuvieron las siguientes consideraciones:
- Voltaje de alimentación de tarjeta Arduino: 7 - 12V
- Corriente máxima de consumo del sistema: 1A

Teniendo en cuenta estos parámetros, se optó por el uso de una batería de polímero de litio (LiPo) empleada en equipos de radiocontrol como helicópteros, aviones, etc. Este tipo de baterías cuenta con un conector adicional a los bornes de voltaje de salida, el cual se conecta a un dispositivo balanceador de carga cuyo fin es mantener la diferencia de voltaje entre las celdas al mínimo. La batería empleada es la Rhino 2150 (ver figura 3.11). A continuación, se muestran sus principales características.

Tabla 3.7: Características de batería Rhino 2150.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>LiPo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje</td>
<td>11.1V (3 celdas)</td>
</tr>
<tr>
<td>Capacidad</td>
<td>2150 mAh</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>113 x 35 x 25mm</td>
</tr>
</tbody>
</table>

![Figura 3.11: Batería Rhino 2150.](image)

3.7.1. Cálculo de la autonomía de funcionamiento del sistema

Para el cálculo del tiempo de funcionamiento del sistema se realizaron mediciones al voltaje nominal de 11.1V para obtener el consumo de corriente de cada bloque integrante. En la siguiente tabla se resumen los resultados obtenidos.

Tabla 3.8: Consumo de corriente de componentes del sistema.

<table>
<thead>
<tr>
<th>Dispositivo</th>
<th>Consumo de corriente máxima (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino y IMU</td>
<td>20</td>
</tr>
<tr>
<td>Receptor de R/C</td>
<td>80</td>
</tr>
<tr>
<td>Servomotores</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>600</td>
</tr>
</tbody>
</table>
La duración del sistema de estabilización sería:

\[
\text{Capacidad de batería} \times \text{Voltaje de batería} = \frac{2150 \text{ mAh} \times 11.1V}{600 \text{ mA} \times 5V} = 8h
\]

3.8. Desarrollo del Software

El lenguaje de programación del Arduino está basado en C/C++. Esto facilita los cálculos matemáticos necesarios para el desarrollo del programa.

3.8.1. Adquisición de datos de los sensores

Debido a que la unidad de medición inercial adquirida cuenta con giroscopios y acelerómetros analógicos, estos deben pasar por un conversor análogo – digital. La tarjeta Arduino UNO cuenta con un convertidor análogo digital de 6 canales de entrada con una resolución de 10 bits. A continuación, se muestra el diagrama de conexión de la unidad de medición inercial 5DOF y el Arduino.

![Diagrama de conexiones de Arduino UNO y la unidad de medición inercial.](image)

Figura 3.12: Diagrama de conexiones de Arduino UNO y la unidad de medición inercial.

Fuente: Elaboración propia

El pin AREF de la tarjeta es el voltaje de referencia para el ADC y está conectado a 3.3V, para obtener mediciones correctas de los sensores. De este modo, el valor mínimo del ADC está representado por la conexión a tierra, mientras que el valor máximo de 1023 corresponderá a 3.3V.
3.8.2. Frecuencia de operación de la unidad de medición inercial

Según la hoja de datos del Atmega328P (ver Anexo 5), la frecuencia de trabajo del ADC debe estar entre 50KHz y 200KHz para obtener una mayor resolución del circuito de aproximaciones sucesivas. La tarjeta Arduino UNO tiene una frecuencia de reloj del sistema de 16MHz y además el factor pre-escalador establecido por defecto para el reloj del ADC es de 128. La frecuencia de operación del ADC es:

\[
\frac{f_{CLK}}{Preescale_{ADC}} = \frac{16MHz}{128} = 125KHz
\]

Debido a que una conversión típica dentro del ADC de un dato demora 13 ciclos de reloj del ADC, el tiempo de conversión resulta ser de:

\[
t_{conv} = 13t_{ADC} = 13 \times \frac{1}{f_{ADC}} = 104\mu s
\]

Por ende, la frecuencia de muestreo aproximada de un dato es de \(\frac{1}{104\mu s} = 9.6KHz\), la cual es mucho mayor que el doble del ancho de banda de cada sensor según el criterio de Nyquist. Debido a que la IMU tiene 5 señales de salida (3 del acelerómetro y 2 del giroscopio), concluimos que para obtener una trama de datos de nuestra unidad de medición inercial necesitamos un tiempo total de \(5 \times t_{conv} = 520\mu s\). Por ende, la frecuencia de trabajo máxima teórica de la IMU será de aproximadamente 1.92KHz. A continuación, se muestra un diagrama de tiempos de la adquisición de datos de los sensores.

Figura 3.13: Diagrama de tiempos de IMU con una frecuencia de reloj de 16MHz.

Fuente: Elaboración propia
3.8.3. Conversión de valores analógicos a magnitudes físicas

3.8.3.1. Aceleración

El acelerómetro ADXL335 de tres ejes entrega un voltaje de salida para cada eje cuando se encuentra en posición horizontal. Por ello, es necesario restar este valor antes de obtener la aceleración instantánea. Debido a la naturaleza ruidosa del acelerómetro, para calcular este parámetro se toma el promedio de 100 mediciones de cada la salida de los ejes cuando el acelerómetro está en reposo y posición horizontal. El cálculo de la aceleración se realiza usando la siguiente ecuación:

$$Aceleración_{eje} = \frac{(ADC_{out} - ADC_{offset}) \times V_{ref}}{Sensibilidad_{eje} \times 2^N} (g)$$ \hspace{1cm} (3.2)

Donde ADC_{offset} corresponde al valor promedio de salida del ADC correspondiente al acelerómetro en posición horizontal en cada eje del sensor, V_{ref} es el voltaje de referencia del ADC del microcontrolador que en nuestro caso es 3.3V. La sensibilidad típica de cada eje es de 300mV/g para una alimentación de 3V, donde g corresponde a la aceleración de la gravedad. Según el fabricante, este parámetro varía proporcionalmente al voltaje de alimentación (ver Anexo 1). Como el acelerómetro está alimentado con 2.8V, la sensibilidad de cada eje será de 280mV/g. Por último, N representa la resolución del ADC que para nuestro caso es 10bits. Reemplazando estos valores, la ecuación queda de la siguiente manera:

$$Aceleración_{eje} = \frac{(ADC_{out} - ADC_{offset}) \times 3.3V}{0.28V/g \times 2^{10}} = \frac{(ADC_{out} - ADC_{offset})}{86.8} (g)$$ \hspace{1cm} (3.3)

3.8.3.2. Velocidad angular

Al igual que el acelerómetro, el giroscopio IDG500 de dos ejes entrega un voltaje de salida para cada eje cuando se encuentra en posición horizontal. Por ello se sigue un procedimiento similar al detallado en el cálculo de la aceleración.

$$Velocidad\ angular_{eje} = \frac{(ADC_{out} - ADC_{offset}) \times V_{ref}}{Sensibilidad_{eje} \times 2^N} (°/s)$$ \hspace{1cm} (3.4)

Para nuestro caso, la sensibilidad de cada eje del giroscopio es de 2mV/°/s (grados sexagesimales por segundo) e independiente del voltaje de alimentación. Reemplazando los datos, la expresión de la velocidad angular es:
3.8.4. Cálculo de ángulos de rotación utilizando el acelerómetro

Para este cálculo tomamos como referencia una hoja de aplicación de Analog Devices que nos explica cómo obtener ángulos de navegación (cabeceo y alabeo) usando los tres ejes de un acelerómetro [15]. Una ventaja de este método es la sensibilidad constante que se obtiene, es decir el cambio en la salida del acelerómetro (en unidades de g) con respecto a un cambio en el ángulo de inclinación (en grados), a pesar del costo computacional que implica su implementación.

Para ello se debe tomar una posición de referencia que típicamente es la orientación del sensor con el eje X e Y en el plano horizontal (0 g) y el eje Z ortogonal al plano (1g) como se aprecia en la figura 3.14.a. El ángulo θ corresponde al ángulo entre el plano horizontal y el eje X del acelerómetro (cabeceo), ψ corresponde al ángulo entre el plano horizontal y el eje Y del acelerómetro (alabeo) y ϕ corresponde al ángulo entre el plano horizontal y el eje Z del acelerómetro.

![Figura 3.14: Ángulos entre ejes del acelerómetro y marco de referencia [14].](image)

Se pueden demostrar las siguientes fórmulas, aplicando relaciones trigonométricas:

\[
V_{\text{angular eje}} = \frac{(ADC_{\text{out}} - ADC_{\text{offset}}) \times 3.3V}{2mV/(\circ/s) \times 2^{10}} = \frac{(ADC_{\text{out}} - ADC_{\text{offset}})}{0.62} (\circ/s) \tag{3.5}
\]

Ángulo de cabeceo = $\theta = \tan^{-1}\left(\frac{Ax_{\text{out}}}{\sqrt{Ay_{\text{out}}^2 + Az_{\text{out}}^2}}\right)$ \hspace{1cm} (3.6)

Ángulo de alabeo = $\psi = \tan^{-1}\left(\frac{Ay_{\text{out}}}{\sqrt{Ax_{\text{out}}^2 + Az_{\text{out}}^2}}\right)$ \hspace{1cm} (3.7)
Las operaciones trigonométricas emplean datos tipos flotante y son realizadas siguiendo el estándar IEEE para aritmética en coma flotante (IEEE 754).

3.8.5. Filtro Kalman para unidad de medición inercial

Para la presente tesis, el filtro a usar para estimar los ángulos de cabeceo y alabeo será el filtro Kalman, el cuál es el filtro por excelencia empleado para en mediciones inerciales que considera los aspectos físicos del sistema, elimina satisfactoriamente el ruido inherente de los sensores, cuenta con una ganancia autoajustable y es el más usado en los equipos de navegación inercial (UAV, helicópteros, etc.).

El filtro Kalman permite estimar correctamente los ángulos de cabeceo y alabeo de nuestra unidad de medición inercial, eliminando el efecto de deriva inherente a los girosopios con ayuda del ángulo calculado usando el acelerómetro.

La ecuación de estados discretos que representa a nuestro proceso (ver ecuación 2.1) se muestra a continuación:

\[
\begin{bmatrix}
\text{ángulo} \\
\text{deriva}
\end{bmatrix}_k =
\begin{bmatrix}
1 & -dt \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\text{ángulo} \\
\text{deriva}
\end{bmatrix}_{k-1} +
\begin{bmatrix}
dt \\
0
\end{bmatrix}
\begin{bmatrix}
\text{giro}
\end{bmatrix}_{k-1} +
\begin{bmatrix}
q_{ángulo} \\
0
\end{bmatrix}
\begin{bmatrix}
q_{deriva}
\end{bmatrix}
\]

Donde:

\[
A = \begin{bmatrix}
1 & -dt \\
0 & 1
\end{bmatrix}, \quad B = \begin{bmatrix}
dt \\
0
\end{bmatrix}, \quad x_k = \begin{bmatrix}
\text{ángulo} \\
\text{deriva}
\end{bmatrix}_k, \quad u_k = \begin{bmatrix}
\text{giro}
\end{bmatrix}_k, \quad w_k = \begin{bmatrix}
q_{ángulo} \\
0
\end{bmatrix}
\begin{bmatrix}
q_{deriva}
\end{bmatrix}
\]

El vector de estados está conformado por el ángulo de rotación y el valor de deriva del giroscopio. La entrada al sistema es el valor del giroscopio y \(dt\) nos indica el periodo entre muestras [15].

La medición proviene del ángulo calculado usando el acelerómetro. Por ello, la ecuación de salida (ver ecuación 2.2) del sistema viene dada por la siguiente expresión:

\[
\text{ángulo acc}_k = \begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
\text{ángulo} \\
\text{deriva}
\end{bmatrix}_{k-1} + \gamma_{ángulo}
\]

Donde:

\[
z_k = \text{ángulo acc}_k \\
H = \begin{bmatrix}
1 & 0
\end{bmatrix} \\
v_k = \gamma_{ángulo}
\]
Los valores de covarianza de error del proceso y la medición, fueron tomados del filtro Kalman desarrollado por Trammel Hudson como parte del proyecto de fuente abierta Autopilot para el desarrollo de vehículos aéreos autónomos (ver Anexo 7). Para este proyecto, el filtro Kalman empleado fusiona información de un acelerómetro de 2 ejes y un giroscopio de 1 eje y en base a ello estima el ángulo de cabeceo. Los valores tomados son los siguientes:

- Covarianza de error de proceso: \(Q = \begin{bmatrix} q\text{ángulo} & 0 \\ 0 & q\text{deriva} \end{bmatrix} = \begin{bmatrix} 0.001 & 0 \\ 0 & 0.003 \end{bmatrix} \)
- Covarianza de error de medición: \(R = r_{\text{ángulo}} = 0.03 \)

3.8.5.1. Ecuaciones de predicción

a) Estimación a priori del estado del sistema

Según la ecuación 2.5 anteriormente descrita, la ecuación de estimación a priori del estado será:

\[
\begin{bmatrix} \text{ángulo} \\ \text{deriva} \end{bmatrix}_k^- = \begin{bmatrix} 1 & -dt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \text{ángulo} \\ \text{deriva} \end{bmatrix}_{k-1} + \begin{bmatrix} dt \\ 0 \end{bmatrix} [\text{giro}]_{k-1}
\]

\[(3.10) \]

Desarrollando la matriz de estados a priori se obtiene, las ecuaciones a implementar en el microcontrolador serán:

\[
\text{ángulo}_k^- = \text{ángulo}_{k-1} + dt \times (\text{giro}_{k-1} - \text{deriva}_{k-1})
\]

\[(3.11) \]

\[
\text{deriva}_k^- = \text{deriva}_{k-1}
\]

\[(3.12) \]

b) Estimación a priori de la matriz de covarianza del error

Según la ecuación 2.6 previamente descrita, la ecuación de estimación a priori de la matriz de covarianza del error será:

\[
\begin{bmatrix} P[0][0] & P[0][1] \\ P[1][0] & P[1][1] \end{bmatrix}_k^- = \begin{bmatrix} 1 & 0 \\ P[0][0] & P[0][1] \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -dt & 1 \end{bmatrix} \begin{bmatrix} P[0][0] & P[0][1] \\ P[1][0] & P[1][1] \end{bmatrix}_{k-1} + \begin{bmatrix} q_{\text{ángulo}} & 0 \\ 0 & q_{\text{deriva}} \end{bmatrix}
\]

\[(3.13) \]

Desarrollando y simplificando los términos de las matrices, las ecuaciones a implementar en el microcontrolador serán:

\[
P[0][0]_{k^-} = P[0][0]_{k-1} - dt \times (P[0][1]_{k-1} + P[1][0]_{k-1}) + dt^2 \times P[1][1]_{k-1} + q_{\text{ángulo}}
\]

\[(3.14) \]
3.8.5.2. Ecuaciones de corrección

a) Cálculo de la ganancia de Kalman

Según la ecuación 2.7 anteriormente descrita, la ecuación para el cálculo de la ganancia de Kalman será:

\[K_k = \left[\begin{array}{c} P[0][0] P[0][1] \\ P[1][0] P[1][1] \end{array} \right] \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \left(\begin{array}{cc} P[0][0] & P[0][1] \\ P[1][0] & P[1][1] \end{array} \right) \left[\begin{array}{c} 1 \\ 0 \end{array} \right] + R \right)^{-1} \]

Desarrollando y simplificando los términos de las matrices, las ecuaciones a implementar en el microcontrolador serán:

\[K[0]_k = \frac{P[0][0]_k -}{P[0][0]_k + R} \]
\[K[1]_k = \frac{P[1][0]_k -}{P[0][0]_k + R} \]

b) Estimación a posteriori del estado del sistema

Según la ecuación 2.8 previamente descrita, la ecuación de estimación a posteriori del estado del sistema será:

\[\mathbf{x}_k = \left[\begin{array}{c} \text{ángulo} \\ \text{deriva} \end{array} \right]_k - \left[\begin{array}{c} \text{ángulo} \\ \text{deriva} \end{array} \right]_k + \left[K[0]_k \right] \left(\text{ángulo}_k - \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \left[\begin{array}{c} \text{ángulo} \\ \text{deriva} \end{array} \right]_k \right) \]

Desarrollando y simplificando los términos de las matrices, las ecuaciones a implementar en el microcontrolador serán:

\[x[0]_k = \text{ángulo}_k = \text{ángulo}_k - + K[0]_k \times (\text{ángulo}_k - \text{ángulo}_k) \]
\[x[1]_k = \text{deriva}_k = \text{deriva}_k - + K[1]_k \times (\text{ángulo}_k - \text{ángulo}_k) \]

c) Estimación a posteriori de la matriz de covarianza del error

Según la ecuación 2.9 anteriormente descrita, la ecuación para el cálculo a posteriori de la matriz de covarianza del error será:

\[P[0][1]_k = P[0][1]_k - dt \times P[1][1]_k \]
\[P[1][0]_k = P[1][0]_k - dt \times P[1][1]_k \]
\[P[1][1]_k = P[1][1]_k + q_{\text{deriva}} \]
Desarrollando y simplificando los términos de las matrices, las ecuaciones a implementar en el microcontrolador serán:

\[
P_k = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} K[0]_k \\ K[1]_k \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \right) \begin{bmatrix} P[0][0] \\ P[0][1] \end{bmatrix} = \begin{bmatrix} P[1][0] \\ P[1][1] \end{bmatrix}_k
\] (3.24)

3.8.6. Cálculo del ancho de pulsos de señales del receptor

Para calcular el ancho de pulso de las señales de PWM provenientes de los canales del receptor encargados del movimiento de los servomotores, se emplean las dos fuentes de interrupción externas del microcontrolador (INT0, INT1) e interrupciones para el temporizador 1 en modo CTC.

3.8.6.1. Configuración de frecuencia de operación del temporizador 1

Como se mencionó anteriormente, el ancho de pulso estándar de las señales provenientes del receptor se encuentra en un rango de 1000 a 2000us, donde 1000us corresponde al desplazamiento mínimo del servomotor (0°), mientras que 2000us corresponde al desplazamiento máximo (180°). Con estos datos obtenemos la siguiente relación:

\[
\frac{(Pulso_{\text{max}} - Pulso_{\text{min}})(\mu s)}{\text{Desplazamiento del servomotor}({}^\circ)} = \frac{1000\mu s}{180^\circ} = 5.5\ (\mu s/{}^\circ)
\]

Para el presente trabajo, se configura el Timer 1 del Atmega328P para temporizar intervalos de tiempo de 10us, por ello la frecuencia a configurar será:

\[
f = \frac{1}{10\mu s} = 100\text{KHz}
\]

Como se debe capturar el ancho de pulso de las señales del receptor se configuran inicialmente las interrupciones externas (INT0, INT1), para detectar un flanco de subida. Una vez detectado este flanco, el Timer 1 comienza a contar el número de intervalos de 10us y se procede a configurar la interrupción externa para detectar un flanco de bajada. Finalmente, cuando se detecta el flanco de bajada, se leen los intervalos de 10us contabilizados por el Timer 1 y con ello se obtiene el ancho de pulso de la señal. Los diagramas de flujo para la interrupción externa e interrupción en el temporizador empleados para la leer un canal se muestran a continuación.
3.8.7. Cálculo de relación entre pulso de servomotor y ángulo sensado por IMU

Para estabilizar la plataforma donde se encontrará la cámara, es necesario obtener una ecuación que relacione el ángulo de movimiento del servomotor y el ángulo de inclinación de la plataforma, tanto para el movimiento de cabeceo y alabeo. Para ello, no se incurrió en un análisis dinámico del sistema cardán debido a las limitaciones mecánicas anteriormente mencionadas, sino que se optó por realizar ensayos experimentales donde se varía el ancho de pulso de cada servomotor y se registra el ángulo sensado por la IMU. Posteriormente, estos datos son graficados en MATLAB, para determinar una zona lineal de trabajo.
La herramienta CFTOOL de MATLAB permite obtener un ajuste lineal con los datos registrados. Para realizar estos ensayos, se construyó un pedestal de madera que permitió mantener fijo el sistema cardán. Para mayor detalle consultar el Anexo 14. En la siguiente figura, se observa el montaje del sistema así como las conexiones realizadas.

3.8.7.1. Ensayo realizado para servomotor del movimiento de cabeceo (tilt)
En la siguiente tabla se muestran los resultados del ensayo realizado para el servomotor encargado del movimiento de cabeceo.

Tabla 3.9: Resultados del ensayo aplicado para el movimiento de cabeceo.

<table>
<thead>
<tr>
<th>Ancho de pulso de servomotor de cabeceo (us)</th>
<th>Ángulo de cabeceo registrado (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>37.55</td>
</tr>
<tr>
<td>850</td>
<td>36.84</td>
</tr>
<tr>
<td>900</td>
<td>35.46</td>
</tr>
<tr>
<td>950</td>
<td>33.94</td>
</tr>
<tr>
<td>1000</td>
<td>31.8</td>
</tr>
<tr>
<td>1050</td>
<td>28.87</td>
</tr>
<tr>
<td>1100</td>
<td>25.32</td>
</tr>
<tr>
<td>1150</td>
<td>21.96</td>
</tr>
<tr>
<td>1200</td>
<td>18.92</td>
</tr>
<tr>
<td>1250</td>
<td>14.78</td>
</tr>
<tr>
<td>1300</td>
<td>10.63</td>
</tr>
<tr>
<td>1350</td>
<td>7.82</td>
</tr>
<tr>
<td>1400</td>
<td>3.59</td>
</tr>
<tr>
<td>1450</td>
<td>-0.09</td>
</tr>
<tr>
<td>1500</td>
<td>-3.82</td>
</tr>
<tr>
<td>1550</td>
<td>-7.1</td>
</tr>
</tbody>
</table>
Graficando los datos registrados en MATLAB, se obtiene:

<table>
<thead>
<tr>
<th>Pulso_servo_tilt</th>
<th>Ángulo de cabeceo sensado por IMU en función al pulso aplicado al servomotor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>10.94</td>
</tr>
<tr>
<td>1650</td>
<td>13.42</td>
</tr>
<tr>
<td>1700</td>
<td>16.95</td>
</tr>
<tr>
<td>1750</td>
<td>19.94</td>
</tr>
<tr>
<td>1800</td>
<td>23.24</td>
</tr>
<tr>
<td>1850</td>
<td>26.16</td>
</tr>
<tr>
<td>1900</td>
<td>29.5</td>
</tr>
</tbody>
</table>

De la gráfica podemos observar que la curva se puede aproximar a una línea recta para un rango de 1000 hasta 1900us (-30° hasta 30°). Con este rango, empleamos la herramienta CFTOOL para realizar un ajuste lineal y obtener una ecuación lineal que pueda ser implementada en el microcontrolador. En la siguiente figura, se muestran los resultados del ajuste lineal para el movimiento de cabeceo (\textit{tilt}).

Figura 3.18: Ángulo de cabeceo sensado por IMU en función al pulso aplicado al servomotor.

Figura 3.19: Ajuste lineal obtenido para el movimiento de cabeceo usando herramienta CFTOOL.
La relación entre el ángulo de cabeceo sensado y el pulso del servomotor aplicado está dada por la siguiente ecuación:

\[
Pulso_{\text{Servo_Cabeceo}} = 1459 - 14.4 \times \text{Ángulo_Cabeceo}\] (3.29)

Esta ecuación será implementada en el microcontrolador para corregir la posición de la cámara respecto al eje de cabeceo.

3.8.7.2. **Ensayo realizado para servomotor del movimiento de alabeo (roll)**

En la siguiente tabla se muestran los resultados del ensayo realizado para el servomotor encargado del movimiento de alabeo.

<table>
<thead>
<tr>
<th>Ancho de pulso del servomotor de alabeo (us)</th>
<th>Ángulo de alabeo registrado (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>26.94</td>
</tr>
<tr>
<td>900</td>
<td>26.51</td>
</tr>
<tr>
<td>950</td>
<td>25.78</td>
</tr>
<tr>
<td>1000</td>
<td>24.15</td>
</tr>
<tr>
<td>1050</td>
<td>22.6</td>
</tr>
<tr>
<td>1100</td>
<td>20.44</td>
</tr>
<tr>
<td>1150</td>
<td>17.36</td>
</tr>
<tr>
<td>1200</td>
<td>15.34</td>
</tr>
<tr>
<td>1250</td>
<td>10.88</td>
</tr>
<tr>
<td>1300</td>
<td>8.25</td>
</tr>
<tr>
<td>1350</td>
<td>5.07</td>
</tr>
<tr>
<td>1400</td>
<td>2.07</td>
</tr>
<tr>
<td>1450</td>
<td>-1.71</td>
</tr>
<tr>
<td>1500</td>
<td>-3.79</td>
</tr>
<tr>
<td>1550</td>
<td>-8.3</td>
</tr>
<tr>
<td>1600</td>
<td>-11.03</td>
</tr>
<tr>
<td>1650</td>
<td>-14.62</td>
</tr>
<tr>
<td>1700</td>
<td>-16.93</td>
</tr>
<tr>
<td>1750</td>
<td>-20.87</td>
</tr>
<tr>
<td>1800</td>
<td>-24.36</td>
</tr>
</tbody>
</table>

Graficando los datos registrados en MATLAB, se obtiene:
Figura 3.20: Ángulo de alabeo sensado por IMU en función al pulso aplicado al servomotor.

De la gráfica podemos observar que la curva se puede aproximar a una línea recta para un rango de pulsos desde 1100 hasta 1800us (-24° hasta 20°). Teniendo en cuenta este rango, empleamos la herramienta CFTOOL para realizar nuevamente un ajuste lineal y obtener una expresión lineal que pueda ser implementada en el microcontrolador. En la siguiente figura, se muestran los resultados del ajuste lineal para el movimiento de alabeo (roll).

La relación entre el ángulo de alabeo sensado y el pulso del servomotor aplicado está dada por la siguiente ecuación:

\[\text{Pulso}_\text{Servo Alabeo} = 1427 - 15.6 \times \text{Ángulo Alabeo} \] \hspace{1cm} (3.30)

Esta ecuación será implementada en el microcontrolador con el fin de corregir la posición de la cámara con respecto al eje de alabeo.
3.8.8. Diagrama de flujo del programa principal

El sistema funciona del siguiente modo. Una vez instalado en el aeromodelo, se espera a que un pulsador de inicio sea presionado. Luego de presionar el pulsador, comienza el proceso de calibración de los sensores de la IMU para realizar medidas correctas. Posterior a ello, se da inicio a la lectura de los canales del receptor según la posición de las dos perillas en el transmisor. Los servomotores mueven la plataforma según la información leída y los pulsos son convertidos en ángulos deseados. Seguidamente, se realizan las operaciones correspondientes a la IMU hasta calcular el ángulo de salida del filtro Kalman. Finalmente, se calcula la diferencia entre el ángulo deseado y el ángulo del filtro, la cual será corregida por el servomotor. A continuación, se muestra el diagrama de flujo principal del sistema.

![Diagrama de flujo del programa principal en microcontrolador.](Figura_3.22)
4.1. Pruebas de ángulo sensado según posición de tarjeta

Para comprobar el correcto funcionamiento de los sensores de la IMU y el filtro Kalman implementado se ubicó la tarjeta en distintas posiciones con ayuda de escuadras. Además, se utilizó una regla de nivel que nos permite verificar la horizontalidad de la superficie de trabajo. Las imágenes de este instrumento se muestran a continuación.

![Regla de nivel ubicada sobre superficie de trabajo](image1)

![Burbuja en posición central](image2)

Figura 4.1: (a) Regla de nivel ubicada sobre superficie de trabajo, (b) burbuja en posición central.

En la figura 4.1 (b) se observa que el indicador de burbuja se encuentra en la parte central, lo cual nos indica que la superficie de trabajo está horizontal y se tendrá un menor margen de error en las mediciones a realizar.

Los valores del ángulo según el acelerómetro y el filtro Kalman calculados por el microcontrolador son enviados por el puerto serial, a una velocidad de comunicación de 9600 baudios. El formato de impresión es el siguiente:

- **Tilt/Roll Acc:** Ángulo cabeceo/alabeo calculado por el acelerómetro
- **Tilt/Roll Kalman:** Ángulo cabeceo/alabeo estimado por el filtro Kalman

A continuación, se muestran los resultados obtenidos según la posición de la tarjeta.

4.1.1. Tarjeta en posición de reposo (Ángulo cabeceo = 0°, Ángulo alabeo = 0°)

![Tarjeta en posición de reposo](image3)

Figura 4.2: (a) Tarjeta en posición de reposo, (b) ángulos calculados por microcontrolador.
4.1.2. Ángulo de cabeceo a 45°

![Figura 4.3: (a) Tarjeta con ángulo de cabeceo (tilt) en 45°, (b) ángulos calculados por microcontrolador.](image)

4.1.3. Ángulo de cabeceo a 60°

![Figura 4.4: (a) Tarjeta con ángulo de cabeceo (tilt) en 60°, (b) ángulos calculados por microcontrolador.](image)

4.1.4. Ángulo Alabeo a 45°

![Figura 4.5: (a) Tarjeta con ángulo de alabeo (roll) en 45°, (b) ángulos calculados por microcontrolador.](image)

4.1.5. Ángulo Alabeo a 60°

![Figura 4.6: (a) Tarjeta con ángulo de alabeo (roll) en 60°, (b) ángulos calculados por microcontrolador.](image)
Se puede observar en todos los casos que el filtro Kalman estima correctamente el ángulo de inclinación de la tarjeta, mientras que el valor del ángulo calculado usando el acelerómetro es muy inestable.

4.2. Pruebas de Filtro Kalman implementado en microcontrolador

Para observar gráficamente la bondad del filtro Kalman y verificar el comportamiento del giroscopio y el acelerómetro, los ángulos calculados por el microcontrolador usando cada sensor por separado y usando ambos sensores (filtro Kalman) son enviados por comunicación serial al software MATLAB para ser graficados. Para estas gráficas se realizaron movimientos aleatorios sobre la tarjeta alrededor del eje de cabeceo. La velocidad de transmisión empleada fue de 115200 baudios. A continuación, se muestran los resultados obtenidos para el ángulo de cabeceo calculado por el giroscopio y el acelerómetro por separado.

![Gráfica de ángulos de cabeceo calculados usando acelerómetro y giroscopio por separado.](image)

Figura 4.7: Ángulos de cabeceo calculados usando acelerómetro y giroscopio por separado.

De esta gráfica se puede verificar el comportamiento de ambos sensores. La señal del acelerómetro es inestable y ruidosa. Por otra parte, la señal del giroscopio no es ruidosa, sin embargo tiene un error respecto a la señal del acelerómetro debido al efecto de deriva, el cual origina que el valor de un ángulo en una posición estable
se desplace. Ello se puede observar al final de la gráfica, donde se pierde la referencia de 0°, y el ángulo sensado se desplaza hacia un valor negativo. A pesar de que el ángulo calculado por el acelerómetro es inestable es la fuente que contiene mayor información sobre el ángulo actual sensado. En la siguiente gráfica se observa el ángulo calculado por el acelerómetro y el ángulo calculado por el filtro Kalman.

Figura 4.8: Ángulos de cabeceo calculados usando acelerómetro y filtro Kalman.

4.3. Pruebas de comunicación de receptor con microcontrolador

Para realizar estas pruebas se elaboró un programa en el microcontrolador siguiendo los diagramas de flujo de las interrupciones mostrados en las figuras 3.15 y 3.16. El programa principal se encarga de enviar el valor ancho de pulso leído al monitor serial del IDE Arduino para su visualización. A continuación, se muestran las conexiones físicas realizadas para esta prueba.
4.3.1. Ancho de pulso mínimo de canales 6 y 7 (Perillas ajustadas al mínimo)

Los resultados del ancho de pulso mínimo leído por el microcontrolador, corroboran las mediciones efectuadas con el osciloscopio según la figura 3.6.a.

4.3.2. Ancho de pulso máximo de canales 6 y 7 (Perillas ajustadas al máximo)
Los resultados del ancho de pulso máximo leído por el microcontrolador, corroboran las mediciones efectuadas con el osciloscopio según la figura 3.6.b.

4.4. Movimiento de servomotores con lectura de canales del receptor

Los límites de ancho de pulso provenientes de los canales 6 y 7 varían desde 960 hasta 2070us. Sin embargo, estos no son adecuados para el movimiento de nuestros servomotores. Como se menciona en los apartados 3.7.7.1 y 3.7.7.2, los rangos de ancho de pulso de trabajo para el servomotor de cabeceo y alabeo son de 1000 a 1900us y de 1100 hasta 1800us respectivamente. Por ello, es necesario escalar los valores leídos para que pertenezcan al rango de pulsos válidos. Para ello se utilizará la función `map` de Arduino que permite escalar valores. En la siguiente figura, se muestra las conexiones y el montaje realizado para esta prueba.

![Figura 4.12: Instalación y montaje del sistema para prueba de movimiento de servomotores.](image)

Para el movimiento de alabeo, si la perilla del canal 7 está colocada al mínimo, se enviará una señal PWM con ancho de pulso de 960us. El microcontrolador se encargará de leer dicho valor, escalarlo y convertirlo a 1100us que corresponde al ancho de pulso mínimo de trabajo del servomotor encargado del alabeo. Igualmente, con las perillas al máximo (ancho de pulso de 2070us), el valor escalado será de 1800us que corresponde al ancho de pulso máximo de trabajo. En las siguientes gráficas se muestran los resultados obtenidos.
4.5. Sistema cardán estabilizado sin comunicación con receptor

Para probar la estabilización del sistema cardán se registraron imágenes del sistema antes de estabilizarse y durante la estabilización. La captura de estas imágenes se realizó a través de una cámara digital montada en un trípode (ver Anexo 17).

Antes de comprobar el funcionamiento del sistema en conjunto, se realizarán pruebas de la estabilización del cardán para ángulos de cabeceo y alabeo de 0° (posición horizontal), sin leer la información proveniente de los canales del receptor. Para ello, la suma del ángulo sensado por la IMU y el ángulo de movimiento generado por servomotor en el cardán debe ser igual a cero. Para calcular los pulsos necesarios para cada servomotor se emplearán las ecuaciones 3.29 y 3.30. A continuación, se muestran imágenes de los ensayos realizados.
En la siguiente tabla, se muestran algunos datos obtenidos por el microcontrolador tomados durante el ensayo realizado.

Tabla 4.1: Resultados del ensayo de estabilización sin comunicación con receptor.

<table>
<thead>
<tr>
<th>Ángulo cabeceo (°)</th>
<th>Ángulo alabeo (°)</th>
<th>Ángulo servo cabeceo (°)</th>
<th>Ángulo servo alabeo (°)</th>
<th>Pulso servo cabeceo (us)</th>
<th>Pulso servo alabeo (us)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.87</td>
<td>-0.62</td>
<td>0.87</td>
<td>0.62</td>
<td>1447</td>
<td>1417</td>
</tr>
<tr>
<td>-19.44</td>
<td>-0.5</td>
<td>19.44</td>
<td>0.5</td>
<td>1179</td>
<td>1419</td>
</tr>
<tr>
<td>-39.54</td>
<td>-2.61</td>
<td>30</td>
<td>2.61</td>
<td>1100</td>
<td>1400</td>
</tr>
<tr>
<td>1.19</td>
<td>16.68</td>
<td>-1.19</td>
<td>-16.68</td>
<td>1476</td>
<td>1687</td>
</tr>
<tr>
<td>-0.23</td>
<td>-10.41</td>
<td>0.23</td>
<td>10.41</td>
<td>1456</td>
<td>1265</td>
</tr>
</tbody>
</table>

De la tabla, se observa que el ángulo de cabeceo en la fila 3 es -39.54°, por lo cual el servomotor debería corregir 39.54°. Sin embargo, debido a las limitaciones del cardán y de acuerdo a nuestro rango de trabajo, el servomotor corregirá solo 30°.
Para llevar a cabo esta prueba se sigue el diagrama de flujo mostrado en la figura 3.22. Adicionalmente, se consideraron los siguientes aspectos en la programación:

- El ángulo de movimiento que genera cada servomotor, el ángulo sensado por la IMU en cada eje y el ángulo comandado desde el transmisor están limitados según el rango lineal de trabajo.

- El pulso de corrección final enviado al servomotor para mantener la plataforma orientada según el ángulo deseado es filtrado del siguiente modo: Si el ángulo de orientación de un eje de la plataforma cambia ligeramente y la diferencia entre el pulso de corrección actual y el pulso anterior es menor a 40us, el microcontrolador toma el pulso anterior. Este último valor se determinó experimentalmente. El filtrado se realizó debido a que al enviar señales PWM consecutivas al servomotor con anchos de pulso muy cercanos se generaban vibraciones en el eje.

A continuación, se muestran imágenes de las pruebas realizadas para el movimiento de alabeo. Nuevamente, se usó el monitor serial para corroborar el funcionamiento del algoritmo. El formato de impresión es el siguiente:

- **Ch7**: Lectura del canal de alabeo (roll) (en us)
- **Roll SP**: Ángulo de alabeo (roll) deseado por usuario
- **Roll**: Ángulo de alabeo (roll) estimado por filtro Kalman
- **SRoll**: Ángulo que servomotor de alabeo (roll) debe aportar
- **RollPulse**: Pulso en us necesario para servomotor

Figura 4.17: Ángulo de alabeo (roll) deseado de -23.46° con pedestal vertical.
Se procede a inclinar el pedestal de modo que el ángulo de alabeo sensado cambie y el pulso del servomotor sea tal que mantenga el ángulo de alabeo deseado.

Debido a esta inclinación, se obtienen los siguientes resultados:

Se observa en las figuras 4.18 y 4.20 que la suma del ángulo sensado más el ángulo aportado por el servomotor es igual al ángulo deseado. Además, la plataforma se mantiene con la orientación deseada pese a la inclinación del pedestal. Para mayores detalles sobre las pruebas 4.5 y 4.6 consultar el Anexo 16.
4.7. Parámetros característicos del sistema

4.7.1. Cálculo del error del sistema

De las tablas 3.9 y 3.10 se pueden extraer los siguientes parámetros:

- Variación promedio de ángulo de cabeceo por variación de pulso de 50us: 3.05°
- Variación promedio de ángulo de alabeo por variación de pulso de 50us: 2.7°

Considerando el factor de filtrado anterior de 40us el sistema tendría un error teórico de:

- Error de promedio en movimiento de cabeceo: \[
\frac{3.05°}{50 \text{ us}} \times 40 \text{ us} = 2.8°
\]
- Error de promedio movimiento de alabeo: \[
\frac{2.7°}{50 \text{ us}} \times 40 \text{ us} = 2.2°
\]

4.7.2. Cálculo de la respuesta del sistema

Este parámetro fue obtenido experimentalmente. Para ello, se usó el Timer 0 del microcontrolador para determinar el tiempo que demora el servomotor en cambiar de posición. La siguiente tabla resume las características del sistema de estabilización:

<table>
<thead>
<tr>
<th>Tabla 4.2: Parámetros característicos del sistema.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobertura cabeceo (°)</td>
</tr>
<tr>
<td>Cobertura alabeo (°)</td>
</tr>
<tr>
<td>Error promedio de cabeceo (°)</td>
</tr>
<tr>
<td>Error promedio de alabeo (°)</td>
</tr>
<tr>
<td>Slew rate (°/s)</td>
</tr>
</tbody>
</table>
CONCLUSIONES

De acuerdo a los resultados obtenidos se afirma que el filtro Kalman es una herramienta matemática que permite estimar adecuadamente ángulos de orientación de un objeto para nuestro caso los ángulos de cabeceo y alabeo del sistema cardán. A su vez, la elección del hardware electrónico influyó en el buen desempeño del filtro. Sin embargo, pueden lograrse mejores resultados empleando una unidad de medición inercial digital.

Los equipos de radiocontrol tienen en la actualidad un amplio uso en el campo del aeromodelismo. Estos equipos son capaces de comunicarse con otros sistemas digitales. Como prueba de ello, tenemos la comunicación exitosa que se logró entre el receptor de radiocontrol y el microcontrolador, la cual permitió el movimiento del sistema cardán de manera remota.

La metodología empleada para obtener la relación entre el movimiento del servomotor y el movimiento del sistema cardán dio resultados aceptables. Este método se realizó debido a que el movimiento del servomotor no está directamente relacionado con el de la plataforma, sino a través de varillas. La flexión de las varillas es una característica no lineal del sistema como se puede observar en las figuras 3.21 y 3.23 que afecta negativamente la tarea de control. Debido a estas limitaciones mecánicas, se trabajó con el rango lineal de esta relación.

Finalmente, podemos concluir que el algoritmo implementado en el microcontrolador para estabilizar el sistema cardán frente a una orientación determinada deseada por el usuario dio resultados aceptables para el rango de trabajo definido.
RECOMENDACIONES Y TRABAJOS FUTUROS

1) Con respecto a la parte mecánica, para un mejor control de la orientación de la cámara se recomienda adquirir un sistema cardán más sofisticado y con mayor libertad de movimiento tanto cabeceo y alabeo, donde el movimiento del servomotor se relacione directamente con el movimiento de la plataforma y no a través de elementos intermedios. Esto implicaría un mayor costo.

2) A fin de mejorar los resultados, se recomienda emplear una unidad de medición inercial digital para obtener datos más exactos de los sensores, debido a que estas unidades cuentan con acelerómetros y giroscopios que incluyen sus propios convertidores análogo-digitales de hasta 16 bits. Para ello, será necesario utilizar un protocolo de comunicación digital.

3) Para mejorar los resultados con respecto al tiempo que demora la toma de datos y los cálculos matemáticos asociados, una solución puede ser el uso de FPGA u otro microcontrolador con mayores prestaciones en cuanto a frecuencia y a manejo de memoria RAM.

4) Como trabajo futuro, se propone anexar un sistema de telemetría a la IMU, a fin de visualizar los datos de la posición de la cámara desde una estación en tierra. Para ello, es necesario el desarrollo de una interfaz que ofrezca al usuario un entorno sencillo de uso, permita almacenar datos de los sensores por cada vuelo y una visualización gráfica de los resultados.

5) Si se desea controlar el movimiento de la cámara en los tres ejes (alabeo, cabeceo, guiñada), se debe emplear una unidad de medición inercial de nueve grados de libertad que incorpore un magnetómetro de tres ejes. Este sensor mide la intensidad del campo magnético en tres ejes ortogonales.

6) Si se desea emplear una estrategia de control para mantener la orientación deseada del cardán, como por ejemplo un control PID se debe cambiar parte del hardware electrónico por ejemplo usar motores DC en vez de servos y a su vez usar un sistema cardán con mejores características mecánicas.

7) Se recomienda realizar pruebas del sistema de estabilización instalado en un vehículo aéreo y en pleno vuelo.
BIBLIOGRAFÍA

[3] MURAI, Shunji y Yoshitaka MATSUMOTO

[4] JAKOBSEN, Ole y Eric JOHNSON

[5] RIVAS, Miguel

[6] QUERO, José

[7] ARENAS, Marta

[9] CANDELAS Francisco y Juan CORRALES.

[13] WELCH, Greg y Gary BISHOP.

[14] TIIMUS, Kristjan y Mart TAMRE.

2010 Using an Accelerometer for Inclination Sensing. AN-1057 Application Note. Analog Devices.

[16] RETANA David y Aldo VARGAS.
Anexo 1: Hoja de datos técnica de Acelerómetro de tres ejes ADXL 335
Anexo 2: Hoja de datos técnica de Giroscopio de dos ejes IDG 500
Anexo 3: Circuito esquemático de Unidad de Medición Inercial 5DOF
Anexo 4: Circuito esquemático de Sistema de Estabilización
Anexo 5: Hoja de datos técnica de Atmega 328P
Anexo 6: Hoja de aplicación de Analog Devices para sensado de ángulos usando acelerómetro
Anexo 7: Código fuente de Trammel Hudson
Anexo 8: Código fuente de prueba de sensores
Anexo 9: Código fuente en Arduino para comunicación entre MATLAB y Arduino
Anexo 10: Código fuente en MATLAB para comunicación entre MATLAB y Arduino
Anexo 11: Código fuente de comunicación de microcontrolador y receptor
Anexo 12: Código fuente de estabilización de sistema cardán sin receptor
Anexo 13: Código fuente de sistema cardán estabilizado
Anexo 14: Plano de pedestal de madera construido para pruebas
Anexo 15: Tabla de duración de subrutinas en microcontrolador
Anexo 16: Videos del sistema estabilizado
Anexo 17: Imágenes de instrumentos empleados para pruebas y video
Anexo 18: Documento de tesis