“Optical characterization and bandgap engineering of flat and wrinkle-textured FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_x$)$_3$ perovskite thin films”

Artículo para optar el grado de Magíster en Física

AUTOR
Alvaro Tejada Esteves

ASESOR
Dr. Jorge Andrés Guerra Torres

JURADO
Dr. Jan Amaru Palomino Töfflinger
Dr. Rolf Grieseler

LIMA – PERÚ
2017
Agradecimientos:

Agradezco a Cienciactiva y al Consejo Nacional de Ciencia y Tecnología (CONCYTEC) por financiar este trabajo en el marco de una beca completa de maestría (233-2015-1). Reconozco adicionalmente a la Oficina de Internacionalización de la PUCP, y al Servicio de Intercambio Alemán (DAAD) en conjunción con el Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), por facilitar y financiar dos pasantías a Alemania, las cuales fueron vitales para la producción de este trabajo. A su vez, extiendo mi gratitud al Dr. Jan Amaru Palomino Töfflinger y Dr. Jorge Andrés Guerra Torres, del lado peruano, y al Dr. Lars Korte, Dr. Bernd Stannowski, Dr. Steve Albrecht y Prof. Dr. Bernd Rech, del lado alemán, por hacer posibles mis visitas y trabajos en el Helmholtz-Zentrum Berlín (HZB), así como a Lukas Kegelmann y al Dr. Steffen Braunger por su labor en los trabajos realizados. Finalmente reitero mi agradecimiento al Dr. Jorge Andrés Guerra Torres por su fuerte apoyo y guía en cada etapa de este trabajo.
Resumen:

Los índices de refracción complejos de películas delgadas de perovskitas de haluros mixtos de formamidinio-cesio de plomo (FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_{x}$)$_3$), con composiciones variando de $x = 0$ a 0.4, y para topografías planas y de textura rugosa, son reportadas. Las películas se caracterizan por medio de una combinación de elipsometría espectral de ángulo variable y transmitancia espectral en el rango de longitudes de onda de 190 nm a 850 nm. Las constantes ópticas, espesores de las películas y las capas de microrugosidad, son determinadas con un método “punto a punto”, minimizando una función de error global, sin hacer uso de modelos de dispersión, e incluyendo información topográfica proporcionada por un microscopio confocal láser. Para evaluar el potencial de ingeniería del ancho de banda del material, sus anchos de banda y energías de Urbach son determinadas con exactitud haciendo uso de un modelo de fluctuaciones de banda para semiconductores directos. Este considera las colas de Urbach y la región de absorción band to band fundamental en una sola ecuación. Con esta información, la composición que brindaría el ancho de banda óptimo de 1.75 eV para una celda solar tándem Si-perovskita es determinada.

Abstract:

The complex refractive indices of formamidinium cesium lead mixed-halide (FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_{x}$)$_3$) perovskite thin films of compositions ranging from $x = 0$ to 0.4, with both flat and wrinkle-textured surface topographies, are reported. Films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuations model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.
Optical characterization and bandgap engineering of flat and wrinkle-textured $\text{FA}_{0.83} \text{Cs}_{0.17} \text{Pb}(\text{I}_1-x \text{Br}_x)_3$ perovskite thin films

A. Tejada, S. Braunger, L. Korte, S. Albrecht, B. Rech and J. A. Guerra

1) Departamento de Ciencias, Sección Física, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Peru.
2) Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium-Photovoltaik, Kekuléstraße 5, 12489 Berlin, Germany.
3) Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Young Investigator Group for Perovskite Tandem Solar Cells, Kekuléstraße 5, 12489 Berlin, Germany.

(Dated: February 12, 2018)

The complex refractive indices of formamidinium cesium lead mixed-halide ($\text{FA}_{0.83} \text{Cs}_{0.17} \text{Pb}(\text{I}_1-x \text{Br}_x)_3$) perovskite thin films of compositions ranging from $x = 0$ to 0.4, with both flat and wrinkle-textured surface topographies, are reported. Films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuations model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.

I. INTRODUCTION

Organic-inorganic hybrid perovskite materials are currently one of the most promising materials for next generation solar cells1–10 and other optoelectronic devices,3,4 owing to their high cell efficiencies, high absorption, direct bandgap, long carrier diffusion length, bandgap tunability and low manufacturing costs.1–7,10 The use of cesium mixed-cation lead mixed-halide perovskites ($\text{FA}_1-x \text{Cs}_x \text{Pb}(\text{I}_1-x \text{Br}_x)_3$) has also significantly improved upon the stability issues of classical PV perovskites like MAPbI_3.1,7,10 As such they hold great potential for single junction cells and especially for dual junction Si-perovskite tandem cells. Si solar cells are already approaching the 29% Shockley-Queisser efficiency limit (with the current record at 26.6%11), and adding an extra perovskite top cell potentially increase efficiencies beyond 30% if tuned to the optimal 1.75 eV bandgap.1–3,12

Therefore, accurate knowledge of the relation of the complex refractive index n, optical bandgap and Urbach energy, to perovskite composition is of great importance. To date, most relevant studies on cesium mixed-cation lead mixed-halide perovskites estimate the bandgap from photoluminescence (PL) measurements.1,10 Also, studies of the complex refractive index obtain n by fitting dispersion models to optical data,7 which can lead to unwanted artifacts and biases in the results.5

In this work, the bandgap engineering potential of two types of $\text{FA}_{0.83} \text{Cs}_{0.17} \text{Pb}(\text{I}_1-x \text{Br}_x)_3$ perovskite films is studied. One presents a flat though somewhat uneven surface topography, which appears to be typical for films of this type of perovskite manufactured by spin coating. The other presents an unusual, strongly wrinkled self-texturing effect, that produces very optically diffuse films. These may have significant potential for light trapping schemes that can use the perovskite films as grown and on flat substrates suitable for low-cost spin coating processes, without requiring further processing of the layers to achieve sufficient light scattering inside the cell.

For both surface topographies, the complex refractive indices are determined in the wavelength range of 190 nm to 850 nm. This is achieved using a combination of spectral transmittance (T) and variable angle spectroscopic ellipsometry (VASE), which allows the calculation of the absorption coefficient in a wider dynamic range than would be possible with ellipsometry only.13 The solution algorithm minimizes an error function on a point-by-point basis, i.e. for each measured wavelength, to achieve a self consistent calculation of the complex refractive index, film thickness and root mean square (rms) roughness layer thickness, without using dispersion models. The proposed optical models account for film thickness variation, film surface roughness and internal reflections in the substrate. The optical bandgaps and Urbach energies are subsequently determined using a band fluctuations model for the absorption coefficient of direct semiconductors, which describes both the fundamental band-to-band absorption region and the Urbach tail in a single equation.5 From these results, the composition for the ideal bandgap of 1.75 eV for Si-perovskite tandem cells is determined.

a) Electronic mail: atejada@pucp.edu.pe
b) Electronic mail: korte@helmholtz-berlin.de
c) Electronic mail: guerra.jorgea@pucp.edu.pe
II. EXPERIMENTAL DETAILS

A. Perovskite fabrication

Chemicals were purchased from TCI (lead(II) iodide 99.99\% Pb, lead(II) bromide 99.99\% Pb), Sigma-Aldrich (anhydrous chlorobenzene, anhydrous dimethyl sulfoxide, anhydrous dimethylformamide), ABCR (cesium iodide 99.999\% Cs) and Dyenamo (formamidinium iodide 99\%), and were used as received.

The FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{0.60}Br\textsubscript{0.40})\textsubscript{3} perovskite films were grown on two side polished 500\(\mu\)m thick fused quartz substrates (for optical measurements) as well as ordinary glass slides (for topography measurements). In both cases, the substrates were consecutively cleaned in acetone, detergent (Mucasol 2 vol\% in water), water and isopropanol in an ultrasonic bath for 15 min, respectively. Before layer deposition the substrates were dried in a N\textsubscript{2} stream and treated in an UV ozone cleaner (FHR Analagenbau GmbH, UVOH 150 LAB) for 15 min.

The perovskite layers were fabricated in a glove box with an N\textsubscript{2} atmosphere in close analogy to previously reported procedures for these compositions.3,10 The precursor solutions for the various perovskite compositions were obtained by mixing two 1.0M perovskite stock solutions (see Table I) in appropriate ratios (see Table II). The perovskite stock solutions were prepared by weighing the respective solid starting materials into a 5.0 mL volumetric flask and brought up to volume with dimethylformamide and dimethyl sulfoxide (4:1 volume ratio). The precursor solutions were shaken at 60°C for 30 min and left to cool down to room temperature before blending.

<table>
<thead>
<tr>
<th>Perovskite composition</th>
<th>Stock solutions (ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA\textsubscript{0.83}Cs\textsubscript{0.17}PbI\textsubscript{3}</td>
<td>1</td>
</tr>
<tr>
<td>FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{0.60}Br\textsubscript{0.40})\textsubscript{3}</td>
<td>1 & 2 (3:1)</td>
</tr>
<tr>
<td>FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{0.40}Br\textsubscript{0.60})\textsubscript{3}</td>
<td>1 & 2 (1:1)</td>
</tr>
<tr>
<td>FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{0.70}Br\textsubscript{0.30})\textsubscript{3}</td>
<td>1 & 2 (1:3)</td>
</tr>
<tr>
<td>FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{0.00}Br\textsubscript{0.90})\textsubscript{3}</td>
<td>2</td>
</tr>
</tbody>
</table>

Table II. Mixing ratios of stock solutions 1 and 2 to generate the final perovskite precursor solutions used for layer fabrication.

Two deposition procedures were used to yield perovskite layers with flat topographies (Procedure 1, P1) and wrinkled topographies (Procedure 2, P2). P1: Perovskite precursor solution (100\(\mu\)L) was spread on the substrate and spun in a single step process with open spin coater lid, 4000 rpm for 30 s with an acceleration time of 1 s; during this process chlorobenzene (150\(\mu\)L) was dripped from 1 cm distance on the center of the spinning substrate after 25 s. The perovskite layer was directly transferred onto a hot plate for annealing at 100°C for 20 min. P2: Perovskite precursor solution (100\(\mu\)L) was spread on the substrate and spun in a two step process with closed spin coater lid, 1000 rpm for 10 s with an acceleration time of 1 s followed by 6000 rpm for 30 s with an acceleration time of 3 s; during this process chlorobenzene (150\(\mu\)L) was dripped from 1 cm distance on the center of the spinning substrate after 42 s. The perovskite layer was directly transferred onto a hot plate for annealing at 50°C for 1 min, then on a second hot plate at 100°C for 20 min.

B. Optical measurements

Total spectral transmittance was measured with a Perkin Elmer Lambda 1050 UV/VIS/NIR spectrophotometer with an integrating sphere from 250 nm to 1500 nm (5 nm step). The VASE curves were measured with a Sentech SE 850 ellipsometer from 190 nm to 850 nm (~1 nm step), with incidence angles from 20° to 70°, in 10° increments. The flat film samples were measured with the probing beam incident on the film side, while the wrinkled-textured samples were measured through the backside of the quartz substrate. This was due to the optically diffuse nature of the wrinkle-textured films, which often impeded the ellipsometer from collecting enough light for proper measurements. Because the latter are significantly depolarizing measurements, the degree of polarization was also measured.

Film topography was measured using a Keyence VK-X260 confocal 3D laser scanning microscope with a 408 nm laser at 50x magnification. Care was taken to measure the glass-deposited films in locations similar to those used in the quartz-deposited ones for the transmittance and ellipsometry measurements.

To prevent film degradation, all samples were sealed in plastic bags inside the N\textsubscript{2} atmosphere of the glove box and only removed just before measuring. Degradation during the measurements themselves was considered negligible, as no significant change in the ellipsometry curves was observed during the span of a measurement session.

III. OPTICAL ANALYSIS

A. Extraction of the complex refractive index

The complex refractive index \(\tilde{n} = n - ik\), where \(n\) is the refractive index and \(k\) is the extinction coefficient, is obtained using a combination of spectral transmittance and ellipsometry. This approach is chosen due to the complementary nature of the two techniques: \(T\) obtains plenty of information from the bulk of the probed film and is thus very sensitive to the low absorption coefficients found in the fundamental absorption and trans-
parent regions. However, as absorption increases, transmittance approaches zero and no further information can be obtained. Here, ellipsometry can be exploited as it is a very surface sensitive technique which obtains most of its information from the top layer of the film, and is therefore suitable for studying highly absorbing regions. The use of two different techniques also adds more equations to the system, further constraining the final solutions for \(n \) and \(k \).\(^{5,6}\)

The most common strategy for extracting optical constants is to fit curves generated with a dispersion model for \(n \) to the experimental data.\(^{4,6,7,13}\) This has the advantages of being quick and yielding convenient equations for \(n \) and \(k \). However, some insight into the fundamental properties of the sample is necessary to select the appropriate dispersion model, and there are many to choose from.\(^{13}\) If the model is inadequate, it can be unclear whether certain features in \(n \) are genuine or if they are artifacts caused by forcing an incorrect model.\(^5\) For lead halide perovskites in particular, the Forouhi-Bloomer,\(^{4,6}\) Tauc-Lorentz\(^{4,7}\) and Drude-Lorentz\(^4\) dispersions have been used.

The approach used in this work instead is to self consistently determine \(n \) for each individual wavelength, i.e. ‘point-by-point’. This is done by numerically solving a system of equations of the type shown in Eq. (1).

\[
M_{i,j}^{\text{exp}} - M_{i,j}^{\text{th}}(n_i,k_i,\lambda_i) = 0
\] (1)

Here, \(M_{i,j}^{\text{exp}} \) is a vector containing entries representing experimental optical data (in this case, \(T \) and/or VASE) at the wavelength \(\lambda_i \), and \(M_{i,j}^{\text{th}}(n_i,k_i,\lambda_i) \) is the theoretical value for \(M_{i,j}^{\text{exp}} \) as a function of \(\lambda_i \), as well as of discrete values for \(n \) and \(k \) chosen by the solution algorithm. The index \(j \) runs through the independent measurement sets, e.g. \(T, \psi, \Delta \). Assuming the film thickness and other such parameters are known, in principle only two measurement sets should suffice to obtain \(n(\lambda) \) and \(k(\lambda) \). In practice, this typically yields noisy solution curves with several artifacts,\(^5\) such as diverging solution branches,\(^{14}\) discontinuities and non-physical values. The reasons for this are two-fold: first, the solution process is highly sensitive to measurement noise, as \(M_{i,j}^{\text{th}} \) is usually very strongly dependent on \(n_i \) and \(k_i \), such that small variations in \(M_{i,j}^{\text{exp}} \) yield comparatively large variations in \(n_i \) and \(k_i \). Second, when solved numerically, a system of only two equations such as this one often allows several possible values for the algorithm to converge to.

To mitigate the aforementioned issues, redundancy is increased by adding more measurement sets for the same sample. In this work, this is done by adding ellipsometry data obtained for several angles. Doing so averages out the effect of measurement noise and constrains the number of possible solution curves for \(n \) and \(k \). Similar results have also been achieved using multi-sample analyses.\(^{8,9}\)

B. Solution algorithm

The self consistent analysis is carried out by minimizing a global error function of the type shown in Eq. (2).

\[
\sigma_i^2(n_i,k_i,\lambda_i,d_f,d_r) = \left[T_i^{\text{exp}} - T_i^{\text{th}}(n_i,k_i,\lambda_i,d_f) \right]^2 + \sum_j \left[S_{2,i}^{\text{exp}} - S_{2,i}^{\text{th}}(n_i,k_i,\lambda_i,\theta_j,d_f,d_r) \right]^2 + \left[S_{3,i}^{\text{exp}} - S_{3,i}^{\text{th}}(n_i,k_i,\lambda_i,\theta_j,d_f,d_r) \right]^2
\] (2)

Here, \(T \) is transmittance, \(\theta_j \) is the incidence angle for the various ellipsometry measurements, and \(S_2 \) and \(S_3 \) are the second and third Stokes parameters, which are related to the usual ellipsometry measurements by Eq. (3), where \(p \) is the degree of polarization.\(^{13}\) The constants \(d_f \) and \(d_r \) are the film and rms roughness layer thicknesses, respectively.

\[
\begin{align*}
S_1 &= -p\cos(2\psi) \\
S_2 &= p\sin(2\psi)\cos(2\Delta) \\
S_3 &= -p\sin(2\psi)\sin(2\Delta)
\end{align*}
\] (3)

\(S_2 \) and \(S_3 \) are chosen over \(\psi \) and \(\Delta \) as they tend to be better fitting variables. This is attributed to their typical value ranges being closer to each other and to those for \(T \). Consequently, the minimization algorithm does not skew excessively towards one type of measurement. \(S_1 \) provides no additional information to the system, so it isn’t necessary to include it in the error function. An example of a fit between the theoretical and experimental curves obtained using this procedure is shown in Fig. 1.

The effects of surface micro roughness are not considered for \(T \). This is because, for low rms values, the resulting light scattering can be mostly compensated for by measuring total transmittance instead of only specular transmittance. Note that this is entirely equivalent to using the classical scalar scattering theory models for surface roughness, which assume the total transmittance of a rough sample to be equal to the specular transmittance of an equivalent flat sample.\(^{14-17}\) On the other hand, it is necessary to consider surface roughness in ellipsometry (at least when probing on the film side, see section III C). This is done by the typical Bruggeman effective medium approximation (EMA), with a void fraction of 50\%.\(^{5-9,13}\)

As film and roughness layer thicknesses are not known beforehand, they are determined by minimizing the total error obtained from Eq. (2) for all wavelengths, as a function of \(d_f \) and \(d_r \) (see Eq. (4)).\(^5\)

\[
\sigma_{f,r}^2(d_f,d_r) = \sum_{i=1}^{N} \sigma_i^2(n_i,k_i,\lambda_i,d_f,d_r)
\] (4)

Here, \(N \) indicates the total number of measured wavelengths. In practice, the wavelengths used for this step should be limited to the region where \(T \) is noticeably greater than zero, to maximize accuracy. Further details on this procedure are outlined in a previous work.\(^5\)
Figure 1. Transmittance T (a), and VASE variables ψ (b) and Δ (c) fit. Experimental curves (circles) and corresponding fits (solid curves) obtained with the self consistent approach. The example corresponds to a composition of $x = 0$. Solid curves correspond to the region where transmittance and ellipsometry spectra overlap (250 to 850 nm) whilst dashed lines correspond to theoretical curves calculated with ellipsometry data only (190 to 250 nm).

C. Film topography considerations

Two types of films were studied: one with a generally flat, though still somewhat inhomogeneous topography (Procedure 1, P1), and one with a strongly wrinkled self-texturing effect caused by the deposition parameters (Procedure 2, P2). Examples of both are shown in Fig. 2. Laser confocal microscope images of typical flat (a) and wrinkle-textured (b) film topographies. They are the results of film manufacturing procedures P1 and P2, respectively. Note the considerably different height scale of the color maps. Insets are normalized histograms displaying the height distributions of each image.

2. In order to obtain accurate estimates for n and k, the effects of these topographies on the optical measurements had to be considered. To this end, surface topography images for each sample were recorded with a laser confocal microscope. The images were leveled by mean plane subtraction and smoothed with a Gaussian filter to remove high frequency noise and anomalous peaks.

To include the topography effects in the optical models, the height data in the images was then used to build a histogram (see Fig. 2 insets), from which a normalized probability distribution function f for the film height was calculated. This could then be used to average the transmittance and ellipsometry variables, as seen in Eqs. (5) and (6), respectively.

\[
\langle T \rangle = \int T(d + t)f(t)\,dt \quad (5)
\]

\[
\langle S_n \rangle = \int S_n(d + t)f(t)\,dt \quad (n = 1, 2, 3) \quad (6)
\]

Here, t is the height of a thickness variation layer on top of a layer with constant thickness d (recalling section III B, the roughness layer would be on top of the t layer). Note that this is completely equivalent to averaging over
the imaging area, as seen in Eq. (7), where A is the imaged area.16 The main advantage of averaging over height frequency is increased calculation speed, as the integrals in Eqs. (5) and (6) are one-dimensional and require far fewer computations of $T(d + t)$ and $S_n(d + t)$ for the same level of precision.

$$
\langle T \rangle = \iint_A T(d + t(x, y)) \, dx \, dy
$$

(7)

The models for T and S_n to be averaged are standard ones obtained through Fresnel coefficient addition for the corresponding sample and probing beam configurations.13,16 The refractive index for the fused quartz substrate is modeled with a Sellmeier series, previously fitted to measurements of the substrate only. The effect of internal reflections in the substrate is also considered.

With these considerations and those of section III B in mind, the complex refractive index for the various flat topography films are shown in Fig. 3. These samples are analyzed with the ellipsometry probing beam incident on the film side.

The wrinkle-textured films require some additional considerations. Due to their optically diffuse nature, the ellipsometer was often unable to collect enough light for proper measurements. To get around this problem, these samples were measured with the probing beam incident on the substrate side of the sample, which required the use of a depolarizing model that considers the incoherent light passing through the quartz glass.13 Because of this, the degree of polarization p was also measured to be used in Eq. (3) ($p \approx 1$ for the flat samples).

It was observed in practice that using a simplified ellipsometry model, assuming the film to be an infinite homogeneous medium beneath the quartz substrate, was just as effective as the fully detailed model. This is attributed to the large thickness of these films ($\sim 1 \, \mu m$), the scattering effect of the wrinkled texturing and the intermediate reflections in the substrate, which results in practically no light reflected from the bottom layer of the sample reaching the detector. This assumption breaks down slightly as absorption approaches zero, but is compensated for by the transmittance measurements. While this may seem inconsequential, it allowed the film thickness to be calculated much quicker, as Eq. (4) would then only depend on d/f. With these considerations in mind, the complex refractive index for the various wrinkle-textured films are shown in Fig. 4.

There are some slight differences between the $n(\lambda)$ and $k(\lambda)$ curves shown in Figs. 3 and 4, particularly in higher energy regions. Even though the compositions for both the flat and wrinkle-textured films are the same, they were formed under different deposition conditions. This could have yielded somewhat differing levels of atomic disorder and therefore internal stresses within the bulk material, which can distort the band structure and therefore $n(\lambda)$ as well. Differences in the deep UV may be partly due to the quartz substrate becoming slightly absorbing near 190 nm, as well as information loss due to the depolarizing nature of the measurements for the wrinkle-textured films.

![Graph](image)

Figure 3. Refractive indices (a) and extinction coefficients (b) of the flat topography perovskite films for various stoichiometries. Here, x corresponds to $F\text{A}_x\text{C}_y\text{Br}_{3-x}$ $\text{Pb}(\text{I},\text{Br})_{1-x}$. Solid lines correspond to calculations obtained from both T and ellipsometry (250 to 850 nm), and dashed lines correspond to the calculation performed with ellipsometry only (190 to 250 nm).

IV. BANDGAP CALCULATION

The optical bandgap E_g is calculated from the absorption coefficient α, which is obtained from the previously calculated k values by $\alpha = 4\pi k/\lambda$. The classical procedure for achieving this, which uses a fundamental absorption model for optical band-to-band transitions in direct bandgap materials, involves fitting a linear region located near the absorption edge in a $(\alpha \cdot \omega)^2$-plot.20 While this is a very simple and straightforward approach, the linear region in question is arbitrarily delimited, and partial overlap with the Urbach tail may result in few available measurement points as well as a systematic bias in the yielded bandgap values.5,21 These issues, which can limit the accuracy and reliability of the procedure, can be compensated for by instead using a model that considers a larger spectral region. For this purpose, a band fluctuations model for direct semiconductors developed in a previous work,5 which describes both the Urbach tail and fundamental absorption region in a single equation, is chosen (see Eq. (8)).
Figure 4. Refractive indices (a) and extinction coefficients (b) of the wrinkle-textured perovskite films for various stoichiometries. Here, \(x \) corresponds to FA_{0.83}Cs_{0.17}Pb(I_{1-x}Br_{x})_3. \) Solid and dashed lines have the same meaning as in Fig. 3.

\[
\alpha (\hbar \omega) = \frac{1}{2} \frac{\alpha_0}{\hbar \omega} \sqrt{\frac{\pi}{\beta}} \text{Li}_{1/2} \left(-e^{\beta (\hbar \omega - E_u)} \right)
\]

(8)

where, \(\text{Li}_n(x) \) is the \(n \)-th order polylogarithm function of \(x \), \(\alpha_0 \) is a constant and \(\beta = 1/E_U \), with \(E_U \) the Urbach energy. A comparison between fits achieved with this model and the direct bandgap model for all the samples in this work is shown in Fig. 5.

From the fits in Fig. 5, the values for \(E_g \) and \(E_U \) can be extracted; they are shown in Fig. 6. Typical error values for both \(E_g \) and \(E_U \) are ±0.001 eV. Very good correspondence between the bandgap values for the flat and wrinkled films is observed, as well as between the band fluctuations and conventional models. A slight offset can be seen between the values obtained with either model, which is attributed to the limitations of the conventional strategy, outlined previously. The Urbach energies on the other hand, while generally increasing with Br concentration in both cases, are noticeably different for the two film morphologies. As the Urbach energy is indicative of lattice disorder,\(^{22}\) the differences between the flat and wrinkle-textured films in this aspect may be of similar origin as the differences between the \(n(\lambda) \) and \(k(\lambda) \) curves shown in Figs. 3 and 4 (see section III C).

Within the considered stoichiometries, the bandgap increases quite linearly from 1.564 eV to 1.792 eV, with a slope parameter \(dE_g/dx \) of 0.575 eV (values averaged between flat and wrinkle textured films). Thus the material’s optical bandgap is not only highly tunable,\(^{3,10}\) but is so in a predictable way within the range of \(x = 0 \) to 0.4. Finally, it is possible to interpolate the composition that would yield the ideal 1.75 eV\(^{1–3,12}\) bandgap necessary for a Si-perovskite tandem solar cell. This is determined to be \(x = 0.33 \), or FA_{0.83}Cs_{0.17}Pb(I_{0.47}Br_{0.53})_3.

V. SUMMARY

To summarize, the complex refractive index for both flat and textured topography FA_{0.83}Cs_{0.17}Pb(I_{1-x}Br_{x})_3 perovskite films of various compositions was determined (see Figs. 3 and 4). This was achieved using a combination of transmittance and ellipsometry at various angles via a self consistent point-by-point approach using suitable optical models which included film thickness variation, surface roughness and internal reflections in the substrate for maximal accuracy. The optical bandgap and Urbach energy were then calculated using a band fluctuations model for direct semiconductors, and com-
ideal 1.75 eV bandgap for a Si-perovskite tandem solar cell, and the composition that would yield the bandgap can predictably be tuned within a considerable range (at least from 1.564 eV to 1.792 eV). Finally, the composition that would yield the ideal 1.75 eV bandgap for a Si-perovskite tandem solar cell is inferred to be FA0.83Cs0.17Pb(I0.67Br0.33)3.

ACKNOWLEDGMENTS

This work was funded by the Research Management Office of the Pontificia Universidad Católica del Perú (PUCP), project 2017-1-0030/502. Additional support has been provided by the German Academic Exchange Service (DAAD) in conjunction with the Peruvian National Fund for Scientific and Technological Development (FONDECYT) (grants no. 037-2016 and no. 132-2017), the Research Internationalization Office of the PUCP, the Research Office of the German Federal Ministry of Education and Research (BMBF), within the project “Materialforschung für die Energiewende” (grant no. 03SF0540), and the German Federal Ministry for Economic Affairs and Energy (BMWi) through the “PersiST” project (grant no. 0324037C). A.T. gratefully acknowledges Cienciactiva CONCYTEC for a MSc scholarship. S.B. gratefully acknowledges the Alexander von Humboldt Foundation for a Feodor Lynen Research Fellowship.

REFERENCES

Dear Mr. Tejada,

On 13-Feb-2018, your manuscript passed the submission check and has now entered the editorial process.

Title: "Optical characterization and bandgap engineering of flat and wrinkle-textured FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_x$)$_3$ perovskite thin films"

Author: Alvaro Tejada, Steffen Braunger, Lars Korte, Steve Albrecht, Bernd Rech, and Jorge Guerra.

Your manuscript has been assigned the Manuscript #JAP18-AR-00878.

You may check on the status of your manuscript by accessing the Live Manuscripts folder and selecting the "Check Manuscript Status" link at the following URL:
https://jap.peerx-press.org/cgi-bin/main.plex?el=A5N1kM1A5GYwy3J4A9ftddiFvcxaHq4hrb5zx6iMQY

(You may need to copy/paste the complete URL into your browser's address/location bar if clicking on it within your email reader does not work.)

You will receive another email when we have secured the review reports that the Editors need to evaluate and reach a decision about publication.

Thank you for submitting your best, interesting work to Journal of Applied Physics.

If you have any questions, feel free to contact us at jap-edoffice@aip.org.

Sincerely,

Ania Bukowski
Staff
Journal of Applied Physics
Para optar por el grado de Magíster en Física:

Caracterización óptica e ingeniería de ancho de banda de películas planas y texturizadas de perovskita $\text{FA}_{0.83}\text{Cs}_{0.17}\text{Pb(I}_1-x\text{Br}_x)_3$

Alvaro Tejada Esteves
atejadae@pucp.edu.pe
Laboratorio de Materiales
Sección Física PUCP
Esquema de presentación

• Introducción
 • Perovskitas
 • Aplicaciones fotovoltaicas
 • Interés en propiedades ópticas
• Fabricación de películas
• Análisis óptico
 • Técnicas
 • Cálculo de n y k
 • Consideraciones topográficas
 • Modelos ópticos
 • Resultados
• Cálculo del ancho de banda
 • Métodos
 • Resultados
• Resumen
Introducción: Perovskitas

Perovskitas híbridas orgánicas-inorgánicas de haluros metálicos

A: CH$_3$NH$_3$, CH(NH$_2$)$_2$, Cs

B: Pb, Sn X: I, Br, Cl

Introducción: Aplicaciones fotovoltaicas

• Absorsores para celdas solares

✓ Costos bajos (spin coating)
✓ Alta eficiencia: 22.7% perovskita vs. 26.6% Silicio*

✗ Inestables
✗ Tóxicos (Pb)

FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_x$)$_3$

*https://www.nrel.gov/pv/assets/images/efficiency-chart.png
Introducción: Aplicaciones fotovoltaicas

- Potencial para **celdas tándem** (eficiencias reales > 30%)
 - Ancho de banda ideal ≈ 1.75 eV

Introducción: Interés en propiedades ópticas

- Índice de refracción complejo ($\tilde{n} = n - ik$):
 - Pérdidas ópticas
 - Capas antirreflejantes
 - Absorción/reflexión de contactos (ej. TCOs).
 - Coeficiente de absorción
 - Desempeño vs. espesor
 - Absorción directa/indirecta
 - Ancho de banda
 - Límite de eficiencia
 - Celdas tándem
 - Permite modelar celdas

Fabricación de películas (spin coating)

- Películas “planas”
 1. Goteo 100 µL de solución precursora sobre sustrato
 2. 4000 rpm por 30 s, aceleración: 1 s
 3. Goteo de 100 µL de clorobenzina a 25 s
 4. Calentamiento a 100 ºC por 20 min

- Películas texturizadas
 1. Goteo 100 µL de solución precursora sobre sustrato
 2. 1000 rpm por 10 s, aceleración: 1 s
 3. 6000 rpm por 10 s, aceleración: 3 s
 4. Goteo de 100 µL de clorobenzina a 25 s
 5. Calentamiento a 50 ºC por 1 min
 6. Calentamiento a 100 ºC por 20 min
Fabricación de películas

• Películas “planas”

• Películas texturizadas
Análisis óptico: Consideraciones topográficas

- Películas “planas”
- Películas texturizadas
Fabricación de películas

- Sección transversal SEM (película texturizada)

(Crédito: Steffen Braunger)
Fabricación de películas

- Películas texturizadas
 - Altamente difusas
 - Potencial para atrapamiento de luz
 - Consecuencia de proceso de fabricación
 - No requiere post-procesamiento
Análisis óptico: Técnicas

- **Elipsometría** (ψ, Δ)
 - Cambio de estado de polarización
 - Sensible a superficie
 - $\alpha \gtrsim 10^4 \text{ cm}^{-1}$

- **Transmitancia** (T)
 - Proporción total de luz transmitida
 - Sensible a volumen
 - $10^5 \text{ cm}^{-1} \gtrsim \alpha \gtrsim 10^3 \text{ cm}^{-1}$

\[
\tan(\psi) e^{i\Delta} = \frac{r_p}{r_s} = \left(\frac{E_{rp}}{E_{ip}}\right) / \left(\frac{E_{rs}}{E_{is}}\right)
\]

Análisis óptico: Cálculo de n y k

• Enfoque tradicional: modelar n y k
 • Ej. Tauc-Lorentz, Forouhi-Bloomer
 • Ajustar a data óptica
 ✓ Robusto, fácil y rápido
 ✗ Sujeto a sesgos \rightarrow modelo es crítico

• Enfoque riguroso: método auto consistente
 • Inversión matemática directa
 ✗ Más desafiante
 ✓ Libre de sesgos
Análisis óptico: Cálculo de n y k

- Minimización de función de error global:

$$\sigma_i^2(n_i, k_i, \lambda_i, d_f, d_r) = \left(T_i^{\exp} - T_i^{\text{th}}(n_i, k_i, \lambda_i, d_f)\right)^2 +$$
$$\sum_j \left(S_{2,i}^{\exp} - S_{2,i}^{\text{th}}(n_i, k_i, \lambda_i, \theta_j, d_f, d_r)\right)^2 + \left(S_{3,i}^{\exp} - S_{3,i}^{\text{th}}(n_i, k_i, \lambda_i, \theta_j, d_f, d_r)\right)^2$$

- Parámetros de Stokes:

$$\begin{cases}
S_1 = -\rho \cos(2\psi) \\
S_2 = -\rho \sin(2\psi) \cos(2\Delta) \\
S_2 = -\rho \sin(2\psi) \sin(2\Delta)
\end{cases}$$

$\lambda_i \rightarrow$ Longitud de onda
$\theta_j \rightarrow$ Ángulo de incidencia (elipsometría)
$d_f \rightarrow$ Espesor de película
$d_r \rightarrow$ Espesor de rugosidad (rms)
Análisis óptico: Cálculo de n y k

- Adición de coeficientes de Fresnel:

\[
\begin{align*}
 r_{jk,p} &= \frac{N_k \cos \theta_j - N_j \cos \theta_k}{N_k \cos \theta_j + N_j \cos \theta_k} \\
 t_{jk,p} &= \frac{2N_j \cos \theta_j}{N_k \cos \theta_j + N_j \cos \theta_k} \\
 r_{jk,s} &= \frac{N_j \cos \theta_j - N_k \cos \theta_k}{N_j \cos \theta_j + N_k \cos \theta_k} \\
 t_{jk,s} &= \frac{2N_j \cos \theta_j}{N_j \cos \theta_j + N_k \cos \theta_k}
\end{align*}
\]

\[
\beta = \frac{2\pi d}{\lambda} N_1 \cos \theta_1
\]

Análisis óptico: Cálculo de \(n \) y \(k \)

- \(d_f, d_r \) no son conocidos a priori

- Minimización de suma de error total:

\[
\sigma_{f,r}^2(d_f, d_r) = \sum_{i=1}^{N} \sigma_i^2(n_i, k_i, \lambda_i, d_f, d_r)
\]

- \(i = 1, \ldots, N \rightarrow T > 0 \)
Análisis óptico: Consideraciones topográficas

• Inclusión de variación de espesor:

\[
\langle T \rangle = \int T(d + t)f(t)dt
\]
\[
\langle S_n \rangle = \int S_n(d + t)f(t)dt \quad (n = 1, 2, 3)
\]
Análisis óptico: Modelos ópticos

- Películas “planas”
 - Incidencia frontal en elipsometría
 - Variación de espesor en T y elipsometría

- Películas texturizadas
 - Dificultad para medidas frontales por difusión
 - Aproximación “película infinita” para elipsometría
 - Medidas depolarizantes
Análisis óptico: Resultados

"Planas"

Texturizadas
Análisis óptico: Resultados

- Películas “planas”
- Películas texturizadas
Análisis óptico: Resultados

FA$_{0.83}$Cs$_{0.17}$Pb(I$_{1-x}$Br$_x$)$_3$

- **Flat**
- **Textured**
Cálculo del ancho de banda: Métodos

• Coeficiente de absorción: \(\alpha = \frac{4\pi k}{\lambda} \)

• Método clásico → absorción fundamental (banda a banda):

\[
(\alpha \cdot \hbar \omega)^2 = \gamma (\hbar \omega - E_g)
\]

✓ Fácil y rápido
✗ Región lineal arbitraria en \((\alpha \cdot \hbar \omega)^2\)
✗ Superposición de colas de Urbach con absorción fundamental

\(\hbar \omega \rightarrow\) Energía del fotón
\(E_g \rightarrow\) Ancho de banda
\(\gamma \rightarrow\) Constante
Cálculo del ancho de banda: Métodos

- Fluctuaciones de banda:

\[\alpha(\hbar \omega) = -\frac{1}{2} \frac{\alpha_0}{\hbar \omega} \sqrt{\frac{\pi \text{Li} \beta}{\beta}} \left[-e^{\beta(\hbar \omega - E_g)} \right], \beta = \frac{1}{E_U} \]

- Colas de Urbach + absorción fundamental en una ecuación
- \(E_g \) y \(E_U \) simultáneamente
- Sólo 3 parámetros

\(\hbar \omega \rightarrow \) Energía del fotón
\(\alpha_0 \rightarrow \) Constante
\(E_g \rightarrow \) Ancho de banda
\(E_U \rightarrow \) Energía de Urbach
Cálculo del ancho de banda: Resultados

![Gráficos de ancho de banda para diferentes valores de x para FA\textsubscript{0.83}Cs\textsubscript{0.17}Pb(I\textsubscript{1-x}Br\textsubscript{x})\textsubscript{3} en ambientes planos (Flat) y texturados (Textured).](image)
• Ancho de banda \((E_g)\)

\[\begin{array}{c}
E_g (eV) \\
\hline
1.55 & 1.60 \\
1.65 & 1.70 \\
1.75 & 1.80 \\
\end{array}\]

- Comportamiento muy lineal
- Correspondencia con ley de Vegard (1er orden).
- Posible interpolar valores

\[\begin{array}{c}
x \\
0 & 0.1 & 0.2 & 0.3 & 0.4 \\
\end{array}\]

- Ley de Vegard

• Energía de Urbach \((E_U)\)

\[\begin{array}{c}
E_U (meV) \\
\hline
17 & 19 & 21 & 23 \\
\end{array}\]

- \(E_U \rightarrow\) Desorden topológico (atómico) distinto.
- Distinto grado de desorden en películas planas y texturizadas
- Diferente manufactura, y diferentes \(n\) y \(k\).
Cálculo del ancho de banda: Resultados

- Ancho de banda óptimo para celda solar tandem Si/perovskita:

\[x = 0.33 \rightarrow \text{FA}_{0.83}\text{Cs}_{0.17}\text{Pb(I}_{0.67}\text{Br}_{0.33})_{3} \]

Fuente: S. Albrecht et al, Energ. Env. Sci. 9 (2916) 81-8
Resumen

• Se calculó $\hat{n} = n - ik$ de $\text{FA}_{0.83}\text{Cs}_{0.17}\text{Pb}(\text{I}_{1-x}\text{Br}_x)_3$ para $x = 0$ a $x = 0.4$, para muestras planas y texturizadas, de forma rigurosa.

• Se hizo ingeniería del ancho de banda del material, observando un comportamiento predecible, consistente con la ley de Vegard.

• Se obtuvo las energías de Urbach para cada caso, denotando diferencias topológicas internas entre los tipos de topografía.

• Se calculó la composición óptima para una celda solar tándem Si-perovskite: $x = 0.33 \rightarrow \text{FA}_{0.83}\text{Cs}_{0.17}\text{Pb}(\text{I}_{0.67}\text{Br}_{0.33})_3$
Resumen

• Publicaciones:
 • A. Tejada, S. Braunger, L. Korte, S. Albrecht, B. Rech, and J. A. Guerra, *Journal of Applied Physics* (**submitted Feb 2018**)
Agradecimientos

CIENCIACTIVA
Scholarships and Grants by Concytec

CONCYTEC
CONSEJO NACIONAL DE CIENCIA, TECNOLOGÍA E INNOVACIÓN TECNOLÓGICA

FONDECYT
FONDO NACIONAL DE DESARROLLO CIENTÍFICO, TECNOLÓGICO Y DE INNOVACIÓN TECNOLÓGICA

DAAD
Bundesministerium für Bildung und Forschung

Dr. Andrés Guerra (PUCP)
Dr. Amaru Töllflinger (PUCP)
Dr. Bernd Stannowski (PVcomB - HZB)

Dr. Lars Korte (HZB)
Dr. Steffen Braunger (HZB)
Dr. Steve Albrecht (HZB)